Subversion Repositories Tronxy-X3A-Marlin

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 ron 1
/**
2
 * Marlin 3D Printer Firmware
3
 * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
4
 *
5
 * Based on Sprinter and grbl.
6
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
7
 *
8
 * This program is free software: you can redistribute it and/or modify
9
 * it under the terms of the GNU General Public License as published by
10
 * the Free Software Foundation, either version 3 of the License, or
11
 * (at your option) any later version.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License
19
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20
 *
21
 */
22
 
23
#ifndef I2CPOSENC_H
24
#define I2CPOSENC_H
25
 
26
#include "MarlinConfig.h"
27
 
28
#if ENABLED(I2C_POSITION_ENCODERS)
29
 
30
  #include "enum.h"
31
  #include "macros.h"
32
  #include "types.h"
33
  #include <Wire.h>
34
 
35
  //=========== Advanced / Less-Common Encoder Configuration Settings ==========
36
 
37
  #define I2CPE_EC_THRESH_PROPORTIONAL                    // if enabled adjusts the error correction threshold
38
                                                          // proportional to the current speed of the axis allows
39
                                                          // for very small error margin at low speeds without
40
                                                          // stuttering due to reading latency at high speeds
41
 
42
  #define I2CPE_DEBUG                                     // enable encoder-related debug serial echos
43
 
44
  #define I2CPE_REBOOT_TIME             5000              // time we wait for an encoder module to reboot
45
                                                          // after changing address.
46
 
47
  #define I2CPE_MAG_SIG_GOOD            0
48
  #define I2CPE_MAG_SIG_MID             1
49
  #define I2CPE_MAG_SIG_BAD             2
50
  #define I2CPE_MAG_SIG_NF              255
51
 
52
  #define I2CPE_REQ_REPORT              0
53
  #define I2CPE_RESET_COUNT             1
54
  #define I2CPE_SET_ADDR                2
55
  #define I2CPE_SET_REPORT_MODE         3
56
  #define I2CPE_CLEAR_EEPROM            4
57
 
58
  #define I2CPE_LED_PAR_MODE            10
59
  #define I2CPE_LED_PAR_BRT             11
60
  #define I2CPE_LED_PAR_RATE            14
61
 
62
  #define I2CPE_REPORT_DISTANCE         0
63
  #define I2CPE_REPORT_STRENGTH         1
64
  #define I2CPE_REPORT_VERSION          2
65
 
66
  // Default I2C addresses
67
  #define I2CPE_PRESET_ADDR_X           30
68
  #define I2CPE_PRESET_ADDR_Y           31
69
  #define I2CPE_PRESET_ADDR_Z           32
70
  #define I2CPE_PRESET_ADDR_E           33
71
 
72
  #define I2CPE_DEF_AXIS                X_AXIS
73
  #define I2CPE_DEF_ADDR                I2CPE_PRESET_ADDR_X
74
 
75
  // Error event counter; tracks how many times there is an error exceeding a certain threshold
76
  #define I2CPE_ERR_CNT_THRESH          3.00
77
  #define I2CPE_ERR_CNT_DEBOUNCE_MS     2000
78
 
79
  #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
80
    #define I2CPE_ERR_ARRAY_SIZE        32
81
    #define I2CPE_ERR_PRST_ARRAY_SIZE   10
82
  #endif
83
 
84
  // Error Correction Methods
85
  #define I2CPE_ECM_NONE                0
86
  #define I2CPE_ECM_MICROSTEP           1
87
  #define I2CPE_ECM_PLANNER             2
88
  #define I2CPE_ECM_STALLDETECT         3
89
 
90
  // Encoder types
91
  #define I2CPE_ENC_TYPE_ROTARY         0
92
  #define I2CPE_ENC_TYPE_LINEAR         1
93
 
94
  // Parser
95
  #define I2CPE_PARSE_ERR               1
96
  #define I2CPE_PARSE_OK                0
97
 
98
  #define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
99
  #define CHECK_IDX() do{ if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; }while(0)
100
 
101
  typedef union {
102
    volatile int32_t val = 0;
103
    uint8_t          bval[4];
104
  } i2cLong;
105
 
106
  class I2CPositionEncoder {
107
  private:
108
    AxisEnum  encoderAxis         = I2CPE_DEF_AXIS;
109
 
110
    uint8_t   i2cAddress          = I2CPE_DEF_ADDR,
111
              ecMethod            = I2CPE_DEF_EC_METHOD,
112
              type                = I2CPE_DEF_TYPE,
113
              H                   = I2CPE_MAG_SIG_NF;    // Magnetic field strength
114
 
115
    int       encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
116
              stepperTicks        = I2CPE_DEF_TICKS_REV,
117
              errorCount          = 0,
118
              errorPrev           = 0;
119
 
120
    float     ecThreshold         = I2CPE_DEF_EC_THRESH;
121
 
122
    bool      homed               = false,
123
              trusted             = false,
124
              initialised         = false,
125
              active              = false,
126
              invert              = false,
127
              ec                  = true;
128
 
129
    int32_t   zeroOffset          = 0,
130
              lastPosition        = 0,
131
              position;
132
 
133
    millis_t  lastPositionTime    = 0,
134
              nextErrorCountTime  = 0,
135
              lastErrorTime;
136
 
137
    #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
138
      uint8_t errIdx = 0, errPrstIdx = 0;
139
      int err[I2CPE_ERR_ARRAY_SIZE] = { 0 },
140
          errPrst[I2CPE_ERR_PRST_ARRAY_SIZE] = { 0 };
141
    #endif
142
 
143
  public:
144
    void init(const uint8_t address, const AxisEnum axis);
145
    void reset();
146
 
147
    void update();
148
 
149
    void set_homed();
150
 
151
    int32_t get_raw_count();
152
 
153
    FORCE_INLINE float mm_from_count(const int32_t count) {
154
      switch (type) {
155
        default: return -1;
156
        case I2CPE_ENC_TYPE_LINEAR:
157
          return count / encoderTicksPerUnit;
158
        case I2CPE_ENC_TYPE_ROTARY:
159
          return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]);
160
      }
161
    }
162
 
163
    FORCE_INLINE float get_position_mm() { return mm_from_count(get_position()); }
164
    FORCE_INLINE int32_t get_position() { return get_raw_count() - zeroOffset; }
165
 
166
    int32_t get_axis_error_steps(const bool report);
167
    float get_axis_error_mm(const bool report);
168
 
169
    void calibrate_steps_mm(const uint8_t iter);
170
 
171
    bool passes_test(const bool report);
172
 
173
    bool test_axis(void);
174
 
175
    FORCE_INLINE int get_error_count(void) { return errorCount; }
176
    FORCE_INLINE void set_error_count(const int newCount) { errorCount = newCount; }
177
 
178
    FORCE_INLINE uint8_t get_address() { return i2cAddress; }
179
    FORCE_INLINE void set_address(const uint8_t addr) { i2cAddress = addr; }
180
 
181
    FORCE_INLINE bool get_active(void) { return active; }
182
    FORCE_INLINE void set_active(const bool a) { active = a; }
183
 
184
    FORCE_INLINE void set_inverted(const bool i) { invert = i; }
185
 
186
    FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
187
 
188
    FORCE_INLINE bool get_ec_enabled() { return ec; }
189
    FORCE_INLINE void set_ec_enabled(const bool enabled) { ec = enabled; }
190
 
191
    FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
192
    FORCE_INLINE void set_ec_method(const byte method) { ecMethod = method; }
193
 
194
    FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
195
    FORCE_INLINE void set_ec_threshold(const float newThreshold) { ecThreshold = newThreshold; }
196
 
197
    FORCE_INLINE int get_encoder_ticks_mm() {
198
      switch (type) {
199
        default: return 0;
200
        case I2CPE_ENC_TYPE_LINEAR:
201
          return encoderTicksPerUnit;
202
        case I2CPE_ENC_TYPE_ROTARY:
203
          return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]);
204
      }
205
    }
206
 
207
    FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
208
    FORCE_INLINE void set_ticks_unit(const int ticks) { encoderTicksPerUnit = ticks; }
209
 
210
    FORCE_INLINE uint8_t get_type() { return type; }
211
    FORCE_INLINE void set_type(const byte newType) { type = newType; }
212
 
213
    FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
214
    FORCE_INLINE void set_stepper_ticks(const int ticks) { stepperTicks = ticks; }
215
  };
216
 
217
  class I2CPositionEncodersMgr {
218
  private:
219
    static bool I2CPE_anyaxis;
220
    static uint8_t I2CPE_addr, I2CPE_idx;
221
 
222
  public:
223
 
224
    static void init(void);
225
 
226
    // consider only updating one endoder per call / tick if encoders become too time intensive
227
    static void update(void) { LOOP_PE(i) encoders[i].update(); }
228
 
229
    static void homed(const AxisEnum axis) {
230
      LOOP_PE(i)
231
        if (encoders[i].get_axis() == axis) encoders[i].set_homed();
232
    }
233
 
234
    static void report_position(const int8_t idx, const bool units, const bool noOffset);
235
 
236
    static void report_status(const int8_t idx) {
237
      CHECK_IDX();
238
      SERIAL_ECHOPAIR("Encoder ",idx);
239
      SERIAL_ECHOPGM(": ");
240
      encoders[idx].get_raw_count();
241
      encoders[idx].passes_test(true);
242
    }
243
 
244
    static void report_error(const int8_t idx) {
245
      CHECK_IDX();
246
      encoders[idx].get_axis_error_steps(true);
247
    }
248
 
249
    static void test_axis(const int8_t idx) {
250
      CHECK_IDX();
251
      encoders[idx].test_axis();
252
    }
253
 
254
    static void calibrate_steps_mm(const int8_t idx, const int iterations) {
255
      CHECK_IDX();
256
      encoders[idx].calibrate_steps_mm(iterations);
257
    }
258
 
259
    static void change_module_address(const uint8_t oldaddr, const uint8_t newaddr);
260
    static void report_module_firmware(const uint8_t address);
261
 
262
    static void report_error_count(const int8_t idx, const AxisEnum axis) {
263
      CHECK_IDX();
264
      SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
265
      SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count());
266
    }
267
 
268
    static void reset_error_count(const int8_t idx, const AxisEnum axis) {
269
      CHECK_IDX();
270
      encoders[idx].set_error_count(0);
271
      SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
272
      SERIAL_ECHOLNPGM(" axis has been reset.");
273
    }
274
 
275
    static void enable_ec(const int8_t idx, const bool enabled, const AxisEnum axis) {
276
      CHECK_IDX();
277
      encoders[idx].set_ec_enabled(enabled);
278
      SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
279
      SERIAL_ECHOPGM(" axis is ");
280
      serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis"));
281
      SERIAL_ECHOLNPGM("abled.");
282
    }
283
 
284
    static void set_ec_threshold(const int8_t idx, const float newThreshold, const AxisEnum axis) {
285
      CHECK_IDX();
286
      encoders[idx].set_ec_threshold(newThreshold);
287
      SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
288
      SERIAL_ECHOPAIR_F(" axis set to ", newThreshold);
289
      SERIAL_ECHOLNPGM("mm.");
290
    }
291
 
292
    static void get_ec_threshold(const int8_t idx, const AxisEnum axis) {
293
      CHECK_IDX();
294
      const float threshold = encoders[idx].get_ec_threshold();
295
      SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
296
      SERIAL_ECHOPAIR_F(" axis is ", threshold);
297
      SERIAL_ECHOLNPGM("mm.");
298
    }
299
 
300
    static int8_t idx_from_axis(const AxisEnum axis) {
301
      LOOP_PE(i)
302
        if (encoders[i].get_axis() == axis) return i;
303
      return -1;
304
    }
305
 
306
    static int8_t idx_from_addr(const uint8_t addr) {
307
      LOOP_PE(i)
308
        if (encoders[i].get_address() == addr) return i;
309
      return -1;
310
    }
311
 
312
    static int8_t parse();
313
 
314
    static void M860();
315
    static void M861();
316
    static void M862();
317
    static void M863();
318
    static void M864();
319
    static void M865();
320
    static void M866();
321
    static void M867();
322
    static void M868();
323
    static void M869();
324
 
325
    static I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
326
  };
327
 
328
  extern I2CPositionEncodersMgr I2CPEM;
329
 
330
  FORCE_INLINE static void gcode_M860() { I2CPEM.M860(); }
331
  FORCE_INLINE static void gcode_M861() { I2CPEM.M861(); }
332
  FORCE_INLINE static void gcode_M862() { I2CPEM.M862(); }
333
  FORCE_INLINE static void gcode_M863() { I2CPEM.M863(); }
334
  FORCE_INLINE static void gcode_M864() { I2CPEM.M864(); }
335
  FORCE_INLINE static void gcode_M865() { I2CPEM.M865(); }
336
  FORCE_INLINE static void gcode_M866() { I2CPEM.M866(); }
337
  FORCE_INLINE static void gcode_M867() { I2CPEM.M867(); }
338
  FORCE_INLINE static void gcode_M868() { I2CPEM.M868(); }
339
  FORCE_INLINE static void gcode_M869() { I2CPEM.M869(); }
340
 
341
#endif //I2C_POSITION_ENCODERS
342
#endif //I2CPOSENC_H