Subversion Repositories Tronxy-X3A-Marlin

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 ron 1
/**
2
 * Marlin 3D Printer Firmware
3
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
4
 *
5
 * Based on Sprinter and grbl.
6
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
7
 *
8
 * This program is free software: you can redistribute it and/or modify
9
 * it under the terms of the GNU General Public License as published by
10
 * the Free Software Foundation, either version 3 of the License, or
11
 * (at your option) any later version.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License
19
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20
 *
21
 */
22
#ifndef MARLIN_H
23
#define MARLIN_H
24
 
25
#include <math.h>
26
#include <stdio.h>
27
#include <stdlib.h>
28
#include <string.h>
29
#include <inttypes.h>
30
 
31
#include <util/delay.h>
32
#include <avr/eeprom.h>
33
#include <avr/interrupt.h>
34
 
35
#include "MarlinConfig.h"
36
 
37
#ifdef DEBUG_GCODE_PARSER
38
  #include "parser.h"
39
#endif
40
 
41
#include "enum.h"
42
#include "types.h"
43
#include "fastio.h"
44
#include "utility.h"
45
#include "serial.h"
46
 
47
void idle(
48
  #if ENABLED(ADVANCED_PAUSE_FEATURE)
49
    bool no_stepper_sleep = false  // pass true to keep steppers from disabling on timeout
50
  #endif
51
);
52
 
53
void manage_inactivity(const bool ignore_stepper_queue=false);
54
 
55
extern const char axis_codes[XYZE];
56
 
57
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
58
  extern bool extruder_duplication_enabled;
59
#endif
60
 
61
#if HAS_X2_ENABLE
62
  #define  enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
63
  #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
64
#elif HAS_X_ENABLE
65
  #define  enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
66
  #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
67
#else
68
  #define  enable_X() NOOP
69
  #define disable_X() NOOP
70
#endif
71
 
72
#if HAS_Y2_ENABLE
73
  #define  enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
74
  #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
75
#elif HAS_Y_ENABLE
76
  #define  enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
77
  #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
78
#else
79
  #define  enable_Y() NOOP
80
  #define disable_Y() NOOP
81
#endif
82
 
83
#if HAS_Z2_ENABLE
84
  #define  enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
85
  #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
86
#elif HAS_Z_ENABLE
87
  #define  enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
88
  #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
89
#else
90
  #define  enable_Z() NOOP
91
  #define disable_Z() NOOP
92
#endif
93
 
94
#if ENABLED(MIXING_EXTRUDER)
95
 
96
  /**
97
   * Mixing steppers synchronize their enable (and direction) together
98
   */
99
  #if MIXING_STEPPERS > 4
100
    #define  enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); E4_ENABLE_WRITE( E_ENABLE_ON); }
101
    #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); E4_ENABLE_WRITE(!E_ENABLE_ON); }
102
  #elif MIXING_STEPPERS > 3
103
    #define  enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
104
    #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
105
  #elif MIXING_STEPPERS > 2
106
    #define  enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
107
    #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
108
  #else
109
    #define  enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
110
    #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
111
  #endif
112
  #define  enable_E1() NOOP
113
  #define disable_E1() NOOP
114
  #define  enable_E2() NOOP
115
  #define disable_E2() NOOP
116
  #define  enable_E3() NOOP
117
  #define disable_E3() NOOP
118
  #define  enable_E4() NOOP
119
  #define disable_E4() NOOP
120
 
121
#else // !MIXING_EXTRUDER
122
 
123
  #if HAS_E0_ENABLE
124
    #define  enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
125
    #define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
126
  #else
127
    #define  enable_E0() NOOP
128
    #define disable_E0() NOOP
129
  #endif
130
 
131
  #if E_STEPPERS > 1 && HAS_E1_ENABLE
132
    #define  enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
133
    #define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
134
  #else
135
    #define  enable_E1() NOOP
136
    #define disable_E1() NOOP
137
  #endif
138
 
139
  #if E_STEPPERS > 2 && HAS_E2_ENABLE
140
    #define  enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
141
    #define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
142
  #else
143
    #define  enable_E2() NOOP
144
    #define disable_E2() NOOP
145
  #endif
146
 
147
  #if E_STEPPERS > 3 && HAS_E3_ENABLE
148
    #define  enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
149
    #define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
150
  #else
151
    #define  enable_E3() NOOP
152
    #define disable_E3() NOOP
153
  #endif
154
 
155
  #if E_STEPPERS > 4 && HAS_E4_ENABLE
156
    #define  enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
157
    #define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
158
  #else
159
    #define  enable_E4() NOOP
160
    #define disable_E4() NOOP
161
  #endif
162
 
163
#endif // !MIXING_EXTRUDER
164
 
165
#if ENABLED(HANGPRINTER)
166
 
167
  #define enable_A() enable_X()
168
  #define enable_B() enable_Y()
169
  #define enable_C() enable_Z()
170
  #define __D_ENABLE(p) E##p##_ENABLE_WRITE(E_ENABLE_ON)
171
  #define _D_ENABLE(p) __D_ENABLE(p)
172
  #define enable_D() _D_ENABLE(EXTRUDERS)
173
 
174
  // Don't allow any axes to be disabled
175
  #undef disable_X
176
  #undef disable_Y
177
  #undef disable_Z
178
  #define disable_X() NOOP
179
  #define disable_Y() NOOP
180
  #define disable_Z() NOOP
181
 
182
  #if EXTRUDERS >= 1
183
    #undef disable_E1
184
    #define disable_E1() NOOP
185
    #if EXTRUDERS >= 2
186
      #undef disable_E2
187
      #define disable_E2() NOOP
188
      #if EXTRUDERS >= 3
189
        #undef disable_E3
190
        #define disable_E3() NOOP
191
        #if EXTRUDERS >= 4
192
          #undef disable_E4
193
          #define disable_E4() NOOP
194
        #endif // EXTRUDERS >= 4
195
      #endif // EXTRUDERS >= 3
196
    #endif // EXTRUDERS >= 2
197
  #endif // EXTRUDERS >= 1
198
 
199
#endif // HANGPRINTER
200
 
201
#if ENABLED(G38_PROBE_TARGET)
202
  extern bool G38_move,        // flag to tell the interrupt handler that a G38 command is being run
203
              G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
204
#endif
205
 
206
void enable_all_steppers();
207
void disable_e_stepper(const uint8_t e);
208
void disable_e_steppers();
209
void disable_all_steppers();
210
 
211
void sync_plan_position();
212
void sync_plan_position_e();
213
 
214
#if IS_KINEMATIC
215
  void sync_plan_position_kinematic();
216
  #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
217
#else
218
  #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
219
#endif
220
 
221
void flush_and_request_resend();
222
void ok_to_send();
223
 
224
void kill(const char*);
225
 
226
void quickstop_stepper();
227
 
228
extern uint8_t marlin_debug_flags;
229
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
230
 
231
extern bool Running;
232
inline bool IsRunning() { return  Running; }
233
inline bool IsStopped() { return !Running; }
234
 
235
bool enqueue_and_echo_command(const char* cmd);           // Add a single command to the end of the buffer. Return false on failure.
236
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
237
void clear_command_queue();
238
 
239
#if ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(POWER_LOSS_RECOVERY)
240
  extern char command_queue[BUFSIZE][MAX_CMD_SIZE];
241
#endif
242
 
243
#define HAS_LCD_QUEUE_NOW (ENABLED(MALYAN_LCD) || (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE))))
244
#define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW)
245
#if HAS_QUEUE_NOW
246
  // Return only when commands are actually enqueued
247
  void enqueue_and_echo_command_now(const char* cmd);
248
  #if HAS_LCD_QUEUE_NOW
249
    void enqueue_and_echo_commands_now_P(const char * const cmd);
250
  #endif
251
#endif
252
 
253
extern millis_t previous_move_ms;
254
inline void reset_stepper_timeout() { previous_move_ms = millis(); }
255
 
256
/**
257
 * Feedrate scaling and conversion
258
 */
259
extern float feedrate_mm_s;
260
extern int16_t feedrate_percentage;
261
 
262
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f)
263
 
264
extern bool axis_relative_modes[XYZE];
265
 
266
extern uint8_t axis_homed, axis_known_position;
267
 
268
constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
269
FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
270
FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
271
 
272
extern volatile bool wait_for_heatup;
273
 
274
#if HAS_RESUME_CONTINUE
275
  extern volatile bool wait_for_user;
276
#endif
277
 
278
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
279
  extern bool suspend_auto_report;
280
#endif
281
 
282
extern float current_position[XYZE], destination[XYZE];
283
 
284
/**
285
 * Workspace offsets
286
 */
287
#if HAS_WORKSPACE_OFFSET
288
  #if HAS_HOME_OFFSET
289
    extern float home_offset[XYZ];
290
  #endif
291
  #if HAS_POSITION_SHIFT
292
    extern float position_shift[XYZ];
293
  #endif
294
  #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
295
    extern float workspace_offset[XYZ];
296
    #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
297
  #elif HAS_HOME_OFFSET
298
    #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
299
  #elif HAS_POSITION_SHIFT
300
    #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
301
  #endif
302
  #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
303
  #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
304
#else
305
  #define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
306
  #define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
307
#endif
308
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
309
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
310
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
311
#define RAW_X_POSITION(POS)     LOGICAL_TO_NATIVE(POS, X_AXIS)
312
#define RAW_Y_POSITION(POS)     LOGICAL_TO_NATIVE(POS, Y_AXIS)
313
#define RAW_Z_POSITION(POS)     LOGICAL_TO_NATIVE(POS, Z_AXIS)
314
 
315
// Hotend Offsets
316
#if HOTENDS > 1
317
  extern float hotend_offset[XYZ][HOTENDS];
318
#endif
319
 
320
// Software Endstops
321
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
322
 
323
#if HAS_SOFTWARE_ENDSTOPS
324
  extern bool soft_endstops_enabled;
325
  void clamp_to_software_endstops(float target[XYZ]);
326
#else
327
  #define soft_endstops_enabled false
328
  #define clamp_to_software_endstops(x) NOOP
329
#endif
330
 
331
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
332
  void update_software_endstops(const AxisEnum axis);
333
#endif
334
 
335
#define MAX_COORDINATE_SYSTEMS 9
336
#if ENABLED(CNC_COORDINATE_SYSTEMS)
337
  extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
338
  bool select_coordinate_system(const int8_t _new);
339
#endif
340
 
341
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
342
 
343
void home_all_axes();
344
 
345
void report_current_position();
346
 
347
#if IS_KINEMATIC
348
  #if ENABLED(HANGPRINTER)
349
    extern float line_lengths[ABCD];
350
  #else
351
    extern float delta[ABC];
352
  #endif
353
  void inverse_kinematics(const float raw[XYZ]);
354
#endif
355
 
356
#if ENABLED(DELTA)
357
  extern float delta_height,
358
               delta_endstop_adj[ABC],
359
               delta_radius,
360
               delta_tower_angle_trim[ABC],
361
               delta_tower[ABC][2],
362
               delta_diagonal_rod,
363
               delta_calibration_radius,
364
               delta_diagonal_rod_2_tower[ABC],
365
               delta_segments_per_second,
366
               delta_clip_start_height;
367
 
368
  void recalc_delta_settings();
369
  float delta_safe_distance_from_top();
370
 
371
  // Macro to obtain the Z position of an individual tower
372
  #define DELTA_Z(V,T) V[Z_AXIS] + SQRT(    \
373
    delta_diagonal_rod_2_tower[T] - HYPOT2( \
374
        delta_tower[T][X_AXIS] - V[X_AXIS], \
375
        delta_tower[T][Y_AXIS] - V[Y_AXIS]  \
376
      )                                     \
377
    )
378
 
379
  #define DELTA_IK(V) do {              \
380
    delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
381
    delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
382
    delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
383
  }while(0)
384
 
385
#elif ENABLED(HANGPRINTER)
386
 
387
  // Don't collect anchor positions in array because there are no A_x, D_x or D_y
388
  extern float anchor_A_y,
389
               anchor_A_z,
390
               anchor_B_x,
391
               anchor_B_y,
392
               anchor_B_z,
393
               anchor_C_x,
394
               anchor_C_y,
395
               anchor_C_z,
396
               anchor_D_z,
397
               delta_segments_per_second,
398
               line_lengths_origin[ABCD];
399
 
400
  void recalc_hangprinter_settings();
401
 
402
  #define HANGPRINTER_IK(V) do {                             \
403
    line_lengths[A_AXIS] = SQRT(sq(anchor_A_z - V[Z_AXIS])   \
404
                              + sq(anchor_A_y - V[Y_AXIS])   \
405
                              + sq(             V[X_AXIS])); \
406
    line_lengths[B_AXIS] = SQRT(sq(anchor_B_z - V[Z_AXIS])   \
407
                              + sq(anchor_B_y - V[Y_AXIS])   \
408
                              + sq(anchor_B_x - V[X_AXIS])); \
409
    line_lengths[C_AXIS] = SQRT(sq(anchor_C_z - V[Z_AXIS])   \
410
                              + sq(anchor_C_y - V[Y_AXIS])   \
411
                              + sq(anchor_C_x - V[X_AXIS])); \
412
    line_lengths[D_AXIS] = SQRT(sq(             V[X_AXIS])   \
413
                              + sq(             V[Y_AXIS])   \
414
                              + sq(anchor_D_z - V[Z_AXIS])); \
415
  }while(0)
416
 
417
  // Inverse kinematics at origin
418
  #define HANGPRINTER_IK_ORIGIN(LL) do { \
419
    LL[A_AXIS] = SQRT(sq(anchor_A_z)     \
420
                    + sq(anchor_A_y));   \
421
    LL[B_AXIS] = SQRT(sq(anchor_B_z)     \
422
                    + sq(anchor_B_y)     \
423
                    + sq(anchor_B_x));   \
424
    LL[C_AXIS] = SQRT(sq(anchor_C_z)     \
425
                    + sq(anchor_C_y)     \
426
                    + sq(anchor_C_x));   \
427
    LL[D_AXIS] = anchor_D_z;             \
428
  }while(0)
429
 
430
#elif IS_SCARA
431
  void forward_kinematics_SCARA(const float &a, const float &b);
432
#endif
433
 
434
#if ENABLED(G26_MESH_VALIDATION)
435
  extern bool g26_debug_flag;
436
#elif ENABLED(AUTO_BED_LEVELING_UBL)
437
  constexpr bool g26_debug_flag = false;
438
#endif
439
 
440
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
441
  #define _GET_MESH_X(I) (bilinear_start[X_AXIS] + (I) * bilinear_grid_spacing[X_AXIS])
442
  #define _GET_MESH_Y(J) (bilinear_start[Y_AXIS] + (J) * bilinear_grid_spacing[Y_AXIS])
443
#elif ENABLED(AUTO_BED_LEVELING_UBL)
444
  #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
445
  #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
446
#elif ENABLED(MESH_BED_LEVELING)
447
  #define _GET_MESH_X(I) mbl.index_to_xpos[I]
448
  #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
449
#endif
450
 
451
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
452
  extern int bilinear_grid_spacing[2], bilinear_start[2];
453
  extern float bilinear_grid_factor[2],
454
               z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
455
  float bilinear_z_offset(const float raw[XYZ]);
456
#endif
457
 
458
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
459
  typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
460
  void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn);
461
#endif
462
 
463
#if HAS_LEVELING
464
  bool leveling_is_valid();
465
  void set_bed_leveling_enabled(const bool enable=true);
466
  void reset_bed_level();
467
#endif
468
 
469
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
470
  void set_z_fade_height(const float zfh, const bool do_report=true);
471
#endif
472
 
473
#if HAS_BED_PROBE
474
  extern float zprobe_zoffset;
475
  bool set_probe_deployed(const bool deploy);
476
  #ifdef Z_AFTER_PROBING
477
    void move_z_after_probing();
478
  #endif
479
  enum ProbePtRaise : unsigned char {
480
    PROBE_PT_NONE,  // No raise or stow after run_z_probe
481
    PROBE_PT_STOW,  // Do a complete stow after run_z_probe
482
    PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
483
    PROBE_PT_BIG_RAISE  // Raise to big clearance after run_z_probe
484
  };
485
  float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
486
  #define DEPLOY_PROBE() set_probe_deployed(true)
487
  #define STOW_PROBE() set_probe_deployed(false)
488
#else
489
  #define DEPLOY_PROBE()
490
  #define STOW_PROBE()
491
#endif
492
 
493
#if ENABLED(HOST_KEEPALIVE_FEATURE)
494
  extern MarlinBusyState busy_state;
495
  #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
496
#else
497
  #define KEEPALIVE_STATE(n) NOOP
498
#endif
499
 
500
#if FAN_COUNT > 0
501
  extern int16_t fanSpeeds[FAN_COUNT];
502
  #if ENABLED(EXTRA_FAN_SPEED)
503
    extern int16_t old_fanSpeeds[FAN_COUNT],
504
                   new_fanSpeeds[FAN_COUNT];
505
  #endif
506
  #if ENABLED(PROBING_FANS_OFF)
507
    extern bool fans_paused;
508
    extern int16_t paused_fanSpeeds[FAN_COUNT];
509
  #endif
510
#endif
511
 
512
#if ENABLED(USE_CONTROLLER_FAN)
513
  extern int controllerFanSpeed;
514
#endif
515
 
516
#if ENABLED(BARICUDA)
517
  extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
518
#endif
519
 
520
#if ENABLED(FILAMENT_WIDTH_SENSOR)
521
  extern bool filament_sensor;         // Flag that filament sensor readings should control extrusion
522
  extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
523
               filament_width_meas;    // Measured filament diameter
524
  extern uint8_t meas_delay_cm;        // Delay distance
525
  extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1],  // Ring buffer to delay measurement
526
                filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
527
#endif
528
 
529
#if ENABLED(ADVANCED_PAUSE_FEATURE)
530
  extern int8_t did_pause_print;
531
  extern AdvancedPauseMenuResponse advanced_pause_menu_response;
532
  extern float filament_change_unload_length[EXTRUDERS],
533
               filament_change_load_length[EXTRUDERS];
534
#endif
535
 
536
#if HAS_POWER_SWITCH
537
  extern bool powersupply_on;
538
  #define PSU_PIN_ON()  do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0)
539
  #define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0)
540
#endif
541
 
542
// Handling multiple extruders pins
543
extern uint8_t active_extruder;
544
 
545
#if ENABLED(MIXING_EXTRUDER)
546
  extern float mixing_factor[MIXING_STEPPERS];
547
#endif
548
 
549
inline void set_current_from_destination() { COPY(current_position, destination); }
550
inline void set_destination_from_current() { COPY(destination, current_position); }
551
void prepare_move_to_destination();
552
 
553
/**
554
 * Blocking movement and shorthand functions
555
 */
556
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0);
557
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0);
558
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0);
559
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0);
560
 
561
#if ENABLED(ARC_SUPPORT)
562
  void plan_arc(const float(&cart)[XYZE], const float(&offset)[2], const bool clockwise);
563
#endif
564
 
565
#define HAS_AXIS_UNHOMED_ERR (                                                     \
566
         ENABLED(Z_PROBE_ALLEN_KEY)                                                \
567
      || ENABLED(Z_PROBE_SLED)                                                     \
568
      || HAS_PROBING_PROCEDURE                                                     \
569
      || HOTENDS > 1                                                               \
570
      || ENABLED(NOZZLE_CLEAN_FEATURE)                                             \
571
      || ENABLED(NOZZLE_PARK_FEATURE)                                              \
572
      || (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
573
      || HAS_M206_COMMAND                                                          \
574
    ) || ENABLED(NO_MOTION_BEFORE_HOMING)
575
 
576
#if HAS_AXIS_UNHOMED_ERR
577
  bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
578
#endif
579
 
580
/**
581
 * position_is_reachable family of functions
582
 */
583
 
584
#if IS_KINEMATIC // (DELTA or SCARA)
585
 
586
  #if IS_SCARA
587
    extern const float L1, L2;
588
  #endif
589
 
590
  // Return true if the given point is within the printable area
591
  inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
592
    #if ENABLED(DELTA)
593
      return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
594
    #elif ENABLED(HANGPRINTER)
595
      // TODO: This is over simplified. Hangprinter's build volume is _not_ cylindrical.
596
      return HYPOT2(rx, ry) <= sq(HANGPRINTER_PRINTABLE_RADIUS - inset);
597
    #elif IS_SCARA
598
      const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
599
      return (
600
        R2 <= sq(L1 + L2) - inset
601
        #if MIDDLE_DEAD_ZONE_R > 0
602
          && R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
603
        #endif
604
      );
605
    #endif
606
  }
607
 
608
  #if HAS_BED_PROBE
609
    // Return true if the both nozzle and the probe can reach the given point.
610
    // Note: This won't work on SCARA since the probe offset rotates with the arm.
611
    inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
612
      return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
613
             && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
614
    }
615
  #endif
616
 
617
#else // CARTESIAN
618
 
619
   // Return true if the given position is within the machine bounds.
620
  inline bool position_is_reachable(const float &rx, const float &ry) {
621
    // Add 0.001 margin to deal with float imprecision
622
    return WITHIN(rx, X_MIN_POS - 0.001f, X_MAX_POS + 0.001f)
623
        && WITHIN(ry, Y_MIN_POS - 0.001f, Y_MAX_POS + 0.001f);
624
  }
625
 
626
  #if HAS_BED_PROBE
627
    /**
628
     * Return whether the given position is within the bed, and whether the nozzle
629
     * can reach the position required to put the probe at the given position.
630
     *
631
     * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
632
     *          nozzle must be be able to reach +10,-10.
633
     */
634
    inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
635
      return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
636
          && WITHIN(rx, MIN_PROBE_X - 0.001f, MAX_PROBE_X + 0.001f)
637
          && WITHIN(ry, MIN_PROBE_Y - 0.001f, MAX_PROBE_Y + 0.001f);
638
    }
639
  #endif
640
 
641
#endif // CARTESIAN
642
 
643
#if !HAS_BED_PROBE
644
  FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
645
#endif
646
 
647
#endif // MARLIN_H