1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* About Marlin
|
|
|
25 |
*
|
|
|
26 |
* This firmware is a mashup between Sprinter and grbl.
|
|
|
27 |
* - https://github.com/kliment/Sprinter
|
|
|
28 |
* - https://github.com/grbl/grbl
|
|
|
29 |
*/
|
|
|
30 |
|
|
|
31 |
/**
|
|
|
32 |
* -----------------
|
|
|
33 |
* G-Codes in Marlin
|
|
|
34 |
* -----------------
|
|
|
35 |
*
|
|
|
36 |
* Helpful G-code references:
|
|
|
37 |
* - http://linuxcnc.org/handbook/gcode/g-code.html
|
|
|
38 |
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
39 |
*
|
|
|
40 |
* Help to document Marlin's G-codes online:
|
|
|
41 |
* - http://reprap.org/wiki/G-code
|
|
|
42 |
* - https://github.com/MarlinFirmware/MarlinDocumentation
|
|
|
43 |
*
|
|
|
44 |
* -----------------
|
|
|
45 |
*
|
|
|
46 |
* "G" Codes
|
|
|
47 |
*
|
|
|
48 |
* G0 -> G1
|
|
|
49 |
* G1 - Coordinated Movement X Y Z E
|
|
|
50 |
* G2 - CW ARC
|
|
|
51 |
* G3 - CCW ARC
|
|
|
52 |
* G4 - Dwell S<seconds> or P<milliseconds>
|
|
|
53 |
* G5 - Cubic B-spline with XYZE destination and IJPQ offsets
|
|
|
54 |
* G6 - Direct stepper move (Requires UNREGISTERED_MOVE_SUPPORT). Hangprinter defaults to relative moves. Others default to absolute moves.
|
|
|
55 |
* G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
|
|
|
56 |
* G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
|
|
|
57 |
* G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
|
|
|
58 |
* G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
|
|
|
59 |
* G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
|
|
|
60 |
* G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
|
|
|
61 |
* G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
|
|
|
62 |
* G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
|
|
|
63 |
* G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
|
|
|
64 |
* G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
|
|
|
65 |
* G28 - Home one or more axes
|
|
|
66 |
* G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
|
|
|
67 |
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
|
|
|
68 |
* G31 - Dock sled (Z_PROBE_SLED only)
|
|
|
69 |
* G32 - Undock sled (Z_PROBE_SLED only)
|
|
|
70 |
* G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
|
|
|
71 |
* G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
|
|
|
72 |
* G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
|
|
|
73 |
* G90 - Use Absolute Coordinates
|
|
|
74 |
* G91 - Use Relative Coordinates
|
|
|
75 |
* G92 - Set current position to coordinates given
|
|
|
76 |
* G95 - Set torque mode (Requires MECHADUINO_I2C_COMMANDS enabled)
|
|
|
77 |
* G96 - Set encoder reference point (Requires MECHADUINO_I2C_COMMANDS enabled)
|
|
|
78 |
*
|
|
|
79 |
* "M" Codes
|
|
|
80 |
*
|
|
|
81 |
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
|
82 |
* M1 -> M0
|
|
|
83 |
* M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
|
|
|
84 |
* M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
|
|
|
85 |
* M5 - Turn laser/spindle off
|
|
|
86 |
* M17 - Enable/Power all stepper motors
|
|
|
87 |
* M18 - Disable all stepper motors; same as M84
|
|
|
88 |
* M20 - List SD card. (Requires SDSUPPORT)
|
|
|
89 |
* M21 - Init SD card. (Requires SDSUPPORT)
|
|
|
90 |
* M22 - Release SD card. (Requires SDSUPPORT)
|
|
|
91 |
* M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
|
|
|
92 |
* M24 - Start/resume SD print. (Requires SDSUPPORT)
|
|
|
93 |
* M25 - Pause SD print. (Requires SDSUPPORT)
|
|
|
94 |
* M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
|
|
|
95 |
* M27 - Report SD print status. (Requires SDSUPPORT)
|
|
|
96 |
* OR, with 'S<seconds>' set the SD status auto-report interval. (Requires AUTO_REPORT_SD_STATUS)
|
|
|
97 |
* OR, with 'C' get the current filename.
|
|
|
98 |
* M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
|
|
|
99 |
* M29 - Stop SD write. (Requires SDSUPPORT)
|
|
|
100 |
* M30 - Delete file from SD: "M30 /path/file.gco"
|
|
|
101 |
* M31 - Report time since last M109 or SD card start to serial.
|
|
|
102 |
* M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
|
|
|
103 |
* Use P to run other files as sub-programs: "M32 P !filename#"
|
|
|
104 |
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
|
105 |
* M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
|
|
|
106 |
* M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
|
|
|
107 |
* M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
|
|
|
108 |
* M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
|
|
|
109 |
* M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs> S<chizoid>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
110 |
* M75 - Start the print job timer.
|
|
|
111 |
* M76 - Pause the print job timer.
|
|
|
112 |
* M77 - Stop the print job timer.
|
|
|
113 |
* M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
|
|
|
114 |
* M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
|
|
|
115 |
* M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
|
|
|
116 |
* M82 - Set E codes absolute (default).
|
|
|
117 |
* M83 - Set E codes relative while in Absolute (G90) mode.
|
|
|
118 |
* M84 - Disable steppers until next move, or use S<seconds> to specify an idle
|
|
|
119 |
* duration after which steppers should turn off. S0 disables the timeout.
|
|
|
120 |
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
|
121 |
* M92 - Set planner.axis_steps_per_mm for one or more axes.
|
|
|
122 |
* M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
|
|
|
123 |
* M104 - Set extruder target temp.
|
|
|
124 |
* M105 - Report current temperatures.
|
|
|
125 |
* M106 - Set print fan speed.
|
|
|
126 |
* M107 - Print fan off.
|
|
|
127 |
* M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
|
|
|
128 |
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
|
129 |
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
|
130 |
* If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
|
131 |
* M110 - Set the current line number. (Used by host printing)
|
|
|
132 |
* M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
|
|
|
133 |
* M112 - Emergency stop.
|
|
|
134 |
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
|
|
|
135 |
* M114 - Report current position.
|
|
|
136 |
* - S1 Compute length traveled since last G96 using encoder position data (Requires MECHADUINO_I2C_COMMANDS, only kinematic axes)
|
|
|
137 |
* M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
|
|
|
138 |
* M117 - Display a message on the controller screen. (Requires an LCD)
|
|
|
139 |
* M118 - Display a message in the host console.
|
|
|
140 |
* M119 - Report endstops status.
|
|
|
141 |
* M120 - Enable endstops detection.
|
|
|
142 |
* M121 - Disable endstops detection.
|
|
|
143 |
* M122 - Debug stepper (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
|
|
|
144 |
* M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
|
|
|
145 |
* M126 - Solenoid Air Valve Open. (Requires BARICUDA)
|
|
|
146 |
* M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
|
|
|
147 |
* M128 - EtoP Open. (Requires BARICUDA)
|
|
|
148 |
* M129 - EtoP Closed. (Requires BARICUDA)
|
|
|
149 |
* M140 - Set bed target temp. S<temp>
|
|
|
150 |
* M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
|
|
|
151 |
* M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
|
|
|
152 |
* M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
|
|
|
153 |
* M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
|
|
|
154 |
* M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
|
|
|
155 |
* M164 - Commit the mix (Req. MIXING_EXTRUDER) and optionally save as a virtual tool (Req. MIXING_VIRTUAL_TOOLS > 1)
|
|
|
156 |
* M165 - Set the mix for a mixing extruder wuth parameters ABCDHI. (Requires MIXING_EXTRUDER and DIRECT_MIXING_IN_G1)
|
|
|
157 |
* M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
|
|
|
158 |
* Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
|
|
|
159 |
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
|
|
|
160 |
* M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
|
|
|
161 |
* M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
|
|
|
162 |
* M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
|
|
|
163 |
* M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
|
|
|
164 |
* M205 - Set advanced settings. Current units apply:
|
|
|
165 |
S<print> T<travel> minimum speeds
|
|
|
166 |
Q<minimum segment time>
|
|
|
167 |
X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
|
|
|
168 |
* M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
|
|
|
169 |
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
|
|
|
170 |
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
|
|
|
171 |
* M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
|
|
|
172 |
Every normal extrude-only move will be classified as retract depending on the direction.
|
|
|
173 |
* M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
|
|
|
174 |
* M218 - Set/get a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
|
|
|
175 |
* M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
|
|
|
176 |
* M221 - Set Flow Percentage: "M221 S<percent>"
|
|
|
177 |
* M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
|
|
|
178 |
* M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
|
|
|
179 |
* M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
|
|
|
180 |
* M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
|
|
|
181 |
* M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
|
|
|
182 |
* M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
|
|
|
183 |
* M290 - Babystepping (Requires BABYSTEPPING)
|
|
|
184 |
* M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
|
185 |
* M301 - Set PID parameters P I and D. (Requires PIDTEMP)
|
|
|
186 |
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
|
|
|
187 |
* M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
|
|
|
188 |
* M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
|
|
|
189 |
* M350 - Set microstepping mode. (Requires digital microstepping pins.)
|
|
|
190 |
* M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
|
|
|
191 |
* M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
|
|
|
192 |
* M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
|
|
|
193 |
* M381 - Disable all solenoids. (Requires EXT_SOLENOID)
|
|
|
194 |
* M400 - Finish all moves.
|
|
|
195 |
* M401 - Deploy and activate Z probe. (Requires a probe)
|
|
|
196 |
* M402 - Deactivate and stow Z probe. (Requires a probe)
|
|
|
197 |
* M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
|
|
|
198 |
* M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
|
|
|
199 |
* M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
|
|
|
200 |
* M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
|
|
|
201 |
* M410 - Quickstop. Abort all planned moves.
|
|
|
202 |
* M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
|
|
|
203 |
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, or AUTO_BED_LEVELING_UBL)
|
|
|
204 |
* M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
|
|
|
205 |
* M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
|
|
|
206 |
* M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
|
|
|
207 |
* M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
|
|
|
208 |
* M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
|
|
|
209 |
* M524 - Abort SD card print job started with M24 (Requires SDSUPPORT)
|
|
|
210 |
* M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
211 |
* M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
|
|
|
212 |
* M603 - Configure filament change: "M603 T<tool> U<unload_length> L<load_length>". (Requires ADVANCED_PAUSE_FEATURE)
|
|
|
213 |
* M605 - Set Dual X-Carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
|
|
|
214 |
* M665 - Set Delta configurations: "M665 H<delta height> L<diagonal rod> R<delta radius> S<segments/s> B<calibration radius> X<Alpha angle trim> Y<Beta angle trim> Z<Gamma angle trim> (Requires DELTA)
|
|
|
215 |
* M665 - Set Hangprinter configurations: "M665 W<Ay> E<Az> R<Bx> T<By> Y<Bz> U<Cx> I<Cy> O<Cz> P<Dz> S<segments/s>" (Requires HANGPRINTER)
|
|
|
216 |
* M666 - Set/get endstop offsets for delta (Requires DELTA) or dual endstops (Requires [XYZ]_DUAL_ENDSTOPS).
|
|
|
217 |
* M701 - Load filament (requires FILAMENT_LOAD_UNLOAD_GCODES)
|
|
|
218 |
* M702 - Unload filament (requires FILAMENT_LOAD_UNLOAD_GCODES)
|
|
|
219 |
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
|
|
|
220 |
* M852 - Set skew factors: "M852 [I<xy>] [J<xz>] [K<yz>]". (Requires SKEW_CORRECTION_GCODE, and SKEW_CORRECTION_FOR_Z for IJ)
|
|
|
221 |
* M860 - Report the position of position encoder modules.
|
|
|
222 |
* M861 - Report the status of position encoder modules.
|
|
|
223 |
* M862 - Perform an axis continuity test for position encoder modules.
|
|
|
224 |
* M863 - Perform steps-per-mm calibration for position encoder modules.
|
|
|
225 |
* M864 - Change position encoder module I2C address.
|
|
|
226 |
* M865 - Check position encoder module firmware version.
|
|
|
227 |
* M866 - Report or reset position encoder module error count.
|
|
|
228 |
* M867 - Enable/disable or toggle error correction for position encoder modules.
|
|
|
229 |
* M868 - Report or set position encoder module error correction threshold.
|
|
|
230 |
* M869 - Report position encoder module error.
|
|
|
231 |
* M900 - Get or Set Linear Advance K-factor. (Requires LIN_ADVANCE)
|
|
|
232 |
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
|
|
|
233 |
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
|
|
|
234 |
* M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
|
|
|
235 |
* M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
|
|
|
236 |
* M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
|
|
|
237 |
* M911 - Report stepper driver overtemperature pre-warn condition. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
|
|
|
238 |
* M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
|
|
|
239 |
* M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
|
|
|
240 |
* M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
|
|
|
241 |
*
|
|
|
242 |
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
|
243 |
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
|
244 |
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
|
245 |
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
|
246 |
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
|
247 |
*
|
|
|
248 |
* ************ Custom codes - This can change to suit future G-code regulations
|
|
|
249 |
* M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
|
|
|
250 |
* M999 - Restart after being stopped by error
|
|
|
251 |
*
|
|
|
252 |
* "T" Codes
|
|
|
253 |
*
|
|
|
254 |
* T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
|
|
|
255 |
*
|
|
|
256 |
*/
|
|
|
257 |
|
|
|
258 |
#include "Marlin.h"
|
|
|
259 |
|
|
|
260 |
#include "ultralcd.h"
|
|
|
261 |
#include "planner.h"
|
|
|
262 |
#include "stepper.h"
|
|
|
263 |
#include "endstops.h"
|
|
|
264 |
#include "temperature.h"
|
|
|
265 |
#include "cardreader.h"
|
|
|
266 |
#include "configuration_store.h"
|
|
|
267 |
#include "language.h"
|
|
|
268 |
#include "pins_arduino.h"
|
|
|
269 |
#include "math.h"
|
|
|
270 |
#include "nozzle.h"
|
|
|
271 |
#include "printcounter.h"
|
|
|
272 |
#include "duration_t.h"
|
|
|
273 |
#include "types.h"
|
|
|
274 |
#include "parser.h"
|
|
|
275 |
|
|
|
276 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
277 |
#include "power.h"
|
|
|
278 |
#endif
|
|
|
279 |
|
|
|
280 |
#if ABL_PLANAR
|
|
|
281 |
#include "vector_3.h"
|
|
|
282 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
283 |
#include "least_squares_fit.h"
|
|
|
284 |
#endif
|
|
|
285 |
#elif ENABLED(MESH_BED_LEVELING)
|
|
|
286 |
#include "mesh_bed_leveling.h"
|
|
|
287 |
#endif
|
|
|
288 |
|
|
|
289 |
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
290 |
#include "planner_bezier.h"
|
|
|
291 |
#endif
|
|
|
292 |
|
|
|
293 |
#if ENABLED(FWRETRACT)
|
|
|
294 |
#include "fwretract.h"
|
|
|
295 |
#endif
|
|
|
296 |
|
|
|
297 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
298 |
#include "power_loss_recovery.h"
|
|
|
299 |
#endif
|
|
|
300 |
|
|
|
301 |
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
302 |
#include "runout.h"
|
|
|
303 |
#endif
|
|
|
304 |
|
|
|
305 |
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
|
|
306 |
#include "buzzer.h"
|
|
|
307 |
#endif
|
|
|
308 |
|
|
|
309 |
#if ENABLED(USE_WATCHDOG)
|
|
|
310 |
#include "watchdog.h"
|
|
|
311 |
#endif
|
|
|
312 |
|
|
|
313 |
#if ENABLED(MAX7219_DEBUG)
|
|
|
314 |
#include "Max7219_Debug_LEDs.h"
|
|
|
315 |
#endif
|
|
|
316 |
|
|
|
317 |
#if HAS_COLOR_LEDS
|
|
|
318 |
#include "leds.h"
|
|
|
319 |
#endif
|
|
|
320 |
|
|
|
321 |
#if HAS_SERVOS
|
|
|
322 |
#include "servo.h"
|
|
|
323 |
#endif
|
|
|
324 |
|
|
|
325 |
#if HAS_DIGIPOTSS
|
|
|
326 |
#include <SPI.h>
|
|
|
327 |
#endif
|
|
|
328 |
|
|
|
329 |
#if HAS_TRINAMIC
|
|
|
330 |
#include "tmc_util.h"
|
|
|
331 |
#endif
|
|
|
332 |
|
|
|
333 |
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
|
334 |
#include "stepper_dac.h"
|
|
|
335 |
#endif
|
|
|
336 |
|
|
|
337 |
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
338 |
#include "twibus.h"
|
|
|
339 |
#endif
|
|
|
340 |
|
|
|
341 |
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
342 |
#include "I2CPositionEncoder.h"
|
|
|
343 |
#endif
|
|
|
344 |
|
|
|
345 |
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
|
346 |
void gcode_M100();
|
|
|
347 |
void M100_dump_routine(const char * const title, const char *start, const char *end);
|
|
|
348 |
#endif
|
|
|
349 |
|
|
|
350 |
#if ENABLED(G26_MESH_VALIDATION)
|
|
|
351 |
bool g26_debug_flag; // =false
|
|
|
352 |
void gcode_G26();
|
|
|
353 |
#endif
|
|
|
354 |
|
|
|
355 |
#if ENABLED(SDSUPPORT)
|
|
|
356 |
CardReader card;
|
|
|
357 |
#endif
|
|
|
358 |
|
|
|
359 |
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
360 |
TWIBus i2c;
|
|
|
361 |
#endif
|
|
|
362 |
|
|
|
363 |
#if ENABLED(G38_PROBE_TARGET)
|
|
|
364 |
bool G38_move = false,
|
|
|
365 |
G38_endstop_hit = false;
|
|
|
366 |
#endif
|
|
|
367 |
|
|
|
368 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
369 |
#include "ubl.h"
|
|
|
370 |
#endif
|
|
|
371 |
|
|
|
372 |
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
373 |
int8_t active_coordinate_system = -1; // machine space
|
|
|
374 |
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
|
|
|
375 |
#endif
|
|
|
376 |
|
|
|
377 |
bool Running = true;
|
|
|
378 |
|
|
|
379 |
uint8_t marlin_debug_flags = DEBUG_NONE;
|
|
|
380 |
|
|
|
381 |
/**
|
|
|
382 |
* Cartesian Current Position
|
|
|
383 |
* Used to track the native machine position as moves are queued.
|
|
|
384 |
* Used by 'buffer_line_to_current_position' to do a move after changing it.
|
|
|
385 |
* Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
|
|
|
386 |
*/
|
|
|
387 |
float current_position[XYZE] = { 0 };
|
|
|
388 |
|
|
|
389 |
/**
|
|
|
390 |
* Cartesian Destination
|
|
|
391 |
* The destination for a move, filled in by G-code movement commands,
|
|
|
392 |
* and expected by functions like 'prepare_move_to_destination'.
|
|
|
393 |
* Set with 'gcode_get_destination' or 'set_destination_from_current'.
|
|
|
394 |
*/
|
|
|
395 |
float destination[XYZE] = { 0 };
|
|
|
396 |
|
|
|
397 |
/**
|
|
|
398 |
* axis_homed
|
|
|
399 |
* Flags that each linear axis was homed.
|
|
|
400 |
* XYZ on cartesian, ABC on delta, ABZ on SCARA.
|
|
|
401 |
*
|
|
|
402 |
* axis_known_position
|
|
|
403 |
* Flags that the position is known in each linear axis. Set when homed.
|
|
|
404 |
* Cleared whenever a stepper powers off, potentially losing its position.
|
|
|
405 |
*/
|
|
|
406 |
uint8_t axis_homed, axis_known_position; // = 0
|
|
|
407 |
|
|
|
408 |
/**
|
|
|
409 |
* GCode line number handling. Hosts may opt to include line numbers when
|
|
|
410 |
* sending commands to Marlin, and lines will be checked for sequentiality.
|
|
|
411 |
* M110 N<int> sets the current line number.
|
|
|
412 |
*/
|
|
|
413 |
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
|
|
414 |
|
|
|
415 |
/**
|
|
|
416 |
* GCode Command Queue
|
|
|
417 |
* A simple ring buffer of BUFSIZE command strings.
|
|
|
418 |
*
|
|
|
419 |
* Commands are copied into this buffer by the command injectors
|
|
|
420 |
* (immediate, serial, sd card) and they are processed sequentially by
|
|
|
421 |
* the main loop. The process_next_command function parses the next
|
|
|
422 |
* command and hands off execution to individual handler functions.
|
|
|
423 |
*/
|
|
|
424 |
uint8_t commands_in_queue = 0, // Count of commands in the queue
|
|
|
425 |
cmd_queue_index_r = 0, // Ring buffer read (out) position
|
|
|
426 |
cmd_queue_index_w = 0; // Ring buffer write (in) position
|
|
|
427 |
|
|
|
428 |
char command_queue[BUFSIZE][MAX_CMD_SIZE];
|
|
|
429 |
|
|
|
430 |
/**
|
|
|
431 |
* Next Injected Command pointer. NULL if no commands are being injected.
|
|
|
432 |
* Used by Marlin internally to ensure that commands initiated from within
|
|
|
433 |
* are enqueued ahead of any pending serial or sd card commands.
|
|
|
434 |
*/
|
|
|
435 |
static const char *injected_commands_P = NULL;
|
|
|
436 |
|
|
|
437 |
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
|
438 |
TempUnit input_temp_units = TEMPUNIT_C;
|
|
|
439 |
#endif
|
|
|
440 |
|
|
|
441 |
/**
|
|
|
442 |
* Feed rates are often configured with mm/m
|
|
|
443 |
* but the planner and stepper like mm/s units.
|
|
|
444 |
*/
|
|
|
445 |
static const float homing_feedrate_mm_s[] PROGMEM = {
|
|
|
446 |
#if ENABLED(HANGPRINTER)
|
|
|
447 |
MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), MMM_TO_MMS(DUMMY_HOMING_FEEDRATE),
|
|
|
448 |
MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), 0
|
|
|
449 |
#else
|
|
|
450 |
#if ENABLED(DELTA)
|
|
|
451 |
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
|
|
|
452 |
#else
|
|
|
453 |
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
|
|
|
454 |
#endif
|
|
|
455 |
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
|
|
|
456 |
#endif
|
|
|
457 |
};
|
|
|
458 |
FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
|
|
|
459 |
|
|
|
460 |
float feedrate_mm_s = MMM_TO_MMS(1500.0f);
|
|
|
461 |
static float saved_feedrate_mm_s;
|
|
|
462 |
int16_t feedrate_percentage = 100, saved_feedrate_percentage;
|
|
|
463 |
|
|
|
464 |
// Initialized by settings.load()
|
|
|
465 |
bool axis_relative_modes[XYZE] = AXIS_RELATIVE_MODES;
|
|
|
466 |
|
|
|
467 |
#if HAS_WORKSPACE_OFFSET
|
|
|
468 |
#if HAS_POSITION_SHIFT
|
|
|
469 |
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
|
470 |
float position_shift[XYZ] = { 0 };
|
|
|
471 |
#endif
|
|
|
472 |
#if HAS_HOME_OFFSET
|
|
|
473 |
// This offset is added to the configured home position.
|
|
|
474 |
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
|
475 |
float home_offset[XYZ] = { 0 };
|
|
|
476 |
#endif
|
|
|
477 |
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
|
478 |
// The above two are combined to save on computes
|
|
|
479 |
float workspace_offset[XYZ] = { 0 };
|
|
|
480 |
#endif
|
|
|
481 |
#endif
|
|
|
482 |
|
|
|
483 |
// Software Endstops are based on the configured limits.
|
|
|
484 |
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
|
|
485 |
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
|
|
|
486 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
487 |
bool soft_endstops_enabled = true;
|
|
|
488 |
#if IS_KINEMATIC
|
|
|
489 |
float soft_endstop_radius, soft_endstop_radius_2;
|
|
|
490 |
#endif
|
|
|
491 |
#endif
|
|
|
492 |
|
|
|
493 |
#if FAN_COUNT > 0
|
|
|
494 |
int16_t fanSpeeds[FAN_COUNT] = { 0 };
|
|
|
495 |
#if ENABLED(EXTRA_FAN_SPEED)
|
|
|
496 |
int16_t old_fanSpeeds[FAN_COUNT],
|
|
|
497 |
new_fanSpeeds[FAN_COUNT];
|
|
|
498 |
#endif
|
|
|
499 |
#if ENABLED(PROBING_FANS_OFF)
|
|
|
500 |
bool fans_paused; // = false;
|
|
|
501 |
int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
|
|
|
502 |
#endif
|
|
|
503 |
#endif
|
|
|
504 |
|
|
|
505 |
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
506 |
int controllerFanSpeed; // = 0;
|
|
|
507 |
#endif
|
|
|
508 |
|
|
|
509 |
// The active extruder (tool). Set with T<extruder> command.
|
|
|
510 |
uint8_t active_extruder; // = 0;
|
|
|
511 |
|
|
|
512 |
// Relative Mode. Enable with G91, disable with G90.
|
|
|
513 |
static bool relative_mode; // = false;
|
|
|
514 |
|
|
|
515 |
// For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
|
|
|
516 |
volatile bool wait_for_heatup = true;
|
|
|
517 |
|
|
|
518 |
// For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
|
|
|
519 |
#if HAS_RESUME_CONTINUE
|
|
|
520 |
volatile bool wait_for_user; // = false;
|
|
|
521 |
#endif
|
|
|
522 |
|
|
|
523 |
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
524 |
bool suspend_auto_report; // = false
|
|
|
525 |
#endif
|
|
|
526 |
|
|
|
527 |
const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
|
|
|
528 |
|
|
|
529 |
#if ENABLED(HANGPRINTER)
|
|
|
530 |
const char axis_codes_hangprinter[ABCDE] = { 'A', 'B', 'C', 'D', 'E' };
|
|
|
531 |
#define RAW_AXIS_CODES(I) axis_codes_hangprinter[I]
|
|
|
532 |
#else
|
|
|
533 |
#define RAW_AXIS_CODES(I) axis_codes[I]
|
|
|
534 |
#endif
|
|
|
535 |
|
|
|
536 |
// Number of characters read in the current line of serial input
|
|
|
537 |
static int serial_count; // = 0;
|
|
|
538 |
|
|
|
539 |
// Inactivity shutdown
|
|
|
540 |
millis_t previous_move_ms; // = 0;
|
|
|
541 |
static millis_t max_inactive_time; // = 0;
|
|
|
542 |
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
|
|
|
543 |
|
|
|
544 |
// Buzzer - I2C on the LCD or a BEEPER_PIN
|
|
|
545 |
#if ENABLED(LCD_USE_I2C_BUZZER)
|
|
|
546 |
#define BUZZ(d,f) lcd_buzz(d, f)
|
|
|
547 |
#elif PIN_EXISTS(BEEPER)
|
|
|
548 |
Buzzer buzzer;
|
|
|
549 |
#define BUZZ(d,f) buzzer.tone(d, f)
|
|
|
550 |
#else
|
|
|
551 |
#define BUZZ(d,f) NOOP
|
|
|
552 |
#endif
|
|
|
553 |
|
|
|
554 |
uint8_t target_extruder;
|
|
|
555 |
|
|
|
556 |
#if HAS_BED_PROBE
|
|
|
557 |
float zprobe_zoffset; // Initialized by settings.load()
|
|
|
558 |
#endif
|
|
|
559 |
|
|
|
560 |
#if HAS_ABL
|
|
|
561 |
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
|
|
562 |
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
|
|
|
563 |
#elif defined(XY_PROBE_SPEED)
|
|
|
564 |
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
|
|
|
565 |
#else
|
|
|
566 |
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
|
|
|
567 |
#endif
|
|
|
568 |
|
|
|
569 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
570 |
#if ENABLED(DELTA)
|
|
|
571 |
#define ADJUST_DELTA(V) \
|
|
|
572 |
if (planner.leveling_active) { \
|
|
|
573 |
const float zadj = bilinear_z_offset(V); \
|
|
|
574 |
delta[A_AXIS] += zadj; \
|
|
|
575 |
delta[B_AXIS] += zadj; \
|
|
|
576 |
delta[C_AXIS] += zadj; \
|
|
|
577 |
}
|
|
|
578 |
#else
|
|
|
579 |
#define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
|
|
|
580 |
#endif
|
|
|
581 |
#elif IS_KINEMATIC
|
|
|
582 |
#define ADJUST_DELTA(V) NOOP
|
|
|
583 |
#endif
|
|
|
584 |
|
|
|
585 |
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
|
|
|
586 |
const static char msg_wait_for_bed_heating[] PROGMEM = "Wait for bed heating...\n";
|
|
|
587 |
#endif
|
|
|
588 |
|
|
|
589 |
// Extruder offsets
|
|
|
590 |
#if HOTENDS > 1
|
|
|
591 |
float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
|
|
|
592 |
#endif
|
|
|
593 |
|
|
|
594 |
#if HAS_Z_SERVO_PROBE
|
|
|
595 |
const int z_servo_angle[2] = Z_SERVO_ANGLES;
|
|
|
596 |
#endif
|
|
|
597 |
|
|
|
598 |
#if ENABLED(BARICUDA)
|
|
|
599 |
uint8_t baricuda_valve_pressure = 0,
|
|
|
600 |
baricuda_e_to_p_pressure = 0;
|
|
|
601 |
#endif
|
|
|
602 |
|
|
|
603 |
#if HAS_POWER_SWITCH
|
|
|
604 |
bool powersupply_on;
|
|
|
605 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
606 |
#define PSU_ON() powerManager.power_on()
|
|
|
607 |
#define PSU_OFF() powerManager.power_off()
|
|
|
608 |
#else
|
|
|
609 |
#define PSU_ON() PSU_PIN_ON()
|
|
|
610 |
#define PSU_OFF() PSU_PIN_OFF()
|
|
|
611 |
#endif
|
|
|
612 |
#endif
|
|
|
613 |
|
|
|
614 |
#if ENABLED(DELTA)
|
|
|
615 |
|
|
|
616 |
float delta[ABC];
|
|
|
617 |
|
|
|
618 |
// Initialized by settings.load()
|
|
|
619 |
float delta_height,
|
|
|
620 |
delta_endstop_adj[ABC] = { 0 },
|
|
|
621 |
delta_radius,
|
|
|
622 |
delta_tower_angle_trim[ABC],
|
|
|
623 |
delta_tower[ABC][2],
|
|
|
624 |
delta_diagonal_rod,
|
|
|
625 |
delta_calibration_radius,
|
|
|
626 |
delta_diagonal_rod_2_tower[ABC],
|
|
|
627 |
delta_segments_per_second,
|
|
|
628 |
delta_clip_start_height = Z_MAX_POS;
|
|
|
629 |
|
|
|
630 |
float delta_safe_distance_from_top();
|
|
|
631 |
|
|
|
632 |
#elif ENABLED(HANGPRINTER)
|
|
|
633 |
|
|
|
634 |
float anchor_A_y,
|
|
|
635 |
anchor_A_z,
|
|
|
636 |
anchor_B_x,
|
|
|
637 |
anchor_B_y,
|
|
|
638 |
anchor_B_z,
|
|
|
639 |
anchor_C_x,
|
|
|
640 |
anchor_C_y,
|
|
|
641 |
anchor_C_z,
|
|
|
642 |
anchor_D_z,
|
|
|
643 |
line_lengths[ABCD],
|
|
|
644 |
line_lengths_origin[ABCD],
|
|
|
645 |
delta_segments_per_second;
|
|
|
646 |
|
|
|
647 |
#endif
|
|
|
648 |
|
|
|
649 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
650 |
int bilinear_grid_spacing[2], bilinear_start[2];
|
|
|
651 |
float bilinear_grid_factor[2],
|
|
|
652 |
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
653 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
654 |
#define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
|
|
|
655 |
#define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
|
|
|
656 |
#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
|
|
|
657 |
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
|
|
|
658 |
#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
|
|
|
659 |
#else
|
|
|
660 |
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
|
|
|
661 |
#define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
|
|
|
662 |
#define ABL_BG_POINTS_X GRID_MAX_POINTS_X
|
|
|
663 |
#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
|
|
|
664 |
#define ABL_BG_GRID(X,Y) z_values[X][Y]
|
|
|
665 |
#endif
|
|
|
666 |
#endif
|
|
|
667 |
|
|
|
668 |
#if IS_SCARA
|
|
|
669 |
// Float constants for SCARA calculations
|
|
|
670 |
const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
|
|
|
671 |
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
|
|
|
672 |
L2_2 = sq(float(L2));
|
|
|
673 |
|
|
|
674 |
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
|
|
|
675 |
delta[ABC];
|
|
|
676 |
#endif
|
|
|
677 |
|
|
|
678 |
float cartes[XYZ] = { 0 };
|
|
|
679 |
|
|
|
680 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
681 |
bool filament_sensor; // = false; // M405 turns on filament sensor control. M406 turns it off.
|
|
|
682 |
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
|
|
|
683 |
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
|
|
|
684 |
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
|
|
|
685 |
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
|
|
686 |
filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
|
|
|
687 |
#endif
|
|
|
688 |
|
|
|
689 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
690 |
AdvancedPauseMenuResponse advanced_pause_menu_response;
|
|
|
691 |
float filament_change_unload_length[EXTRUDERS],
|
|
|
692 |
filament_change_load_length[EXTRUDERS];
|
|
|
693 |
#endif
|
|
|
694 |
|
|
|
695 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
696 |
float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
|
|
|
697 |
#if MIXING_VIRTUAL_TOOLS > 1
|
|
|
698 |
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
|
|
|
699 |
#endif
|
|
|
700 |
#endif
|
|
|
701 |
|
|
|
702 |
static bool send_ok[BUFSIZE];
|
|
|
703 |
|
|
|
704 |
#if HAS_SERVOS
|
|
|
705 |
Servo servo[NUM_SERVOS];
|
|
|
706 |
#define MOVE_SERVO(I, P) servo[I].move(P)
|
|
|
707 |
#if HAS_Z_SERVO_PROBE
|
|
|
708 |
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[0])
|
|
|
709 |
#define STOW_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[1])
|
|
|
710 |
#endif
|
|
|
711 |
#endif
|
|
|
712 |
|
|
|
713 |
#ifdef CHDK
|
|
|
714 |
millis_t chdkHigh = 0;
|
|
|
715 |
bool chdkActive = false;
|
|
|
716 |
#endif
|
|
|
717 |
|
|
|
718 |
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
719 |
MarlinBusyState busy_state = NOT_BUSY;
|
|
|
720 |
static millis_t next_busy_signal_ms = 0;
|
|
|
721 |
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
|
|
|
722 |
#else
|
|
|
723 |
#define host_keepalive() NOOP
|
|
|
724 |
#endif
|
|
|
725 |
|
|
|
726 |
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
727 |
I2CPositionEncodersMgr I2CPEM;
|
|
|
728 |
#endif
|
|
|
729 |
|
|
|
730 |
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
731 |
static WorkspacePlane workspace_plane = PLANE_XY;
|
|
|
732 |
#endif
|
|
|
733 |
|
|
|
734 |
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
|
|
|
735 |
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
|
|
|
736 |
|
|
|
737 |
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
|
738 |
static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
|
739 |
static inline type array(const AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
|
|
|
740 |
typedef void __void_##CONFIG##__
|
|
|
741 |
|
|
|
742 |
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
|
743 |
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
|
744 |
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
|
745 |
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
|
746 |
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
|
|
|
747 |
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
748 |
|
|
|
749 |
/**
|
|
|
750 |
* ***************************************************************************
|
|
|
751 |
* ******************************** FUNCTIONS ********************************
|
|
|
752 |
* ***************************************************************************
|
|
|
753 |
*/
|
|
|
754 |
|
|
|
755 |
void stop();
|
|
|
756 |
|
|
|
757 |
void get_available_commands();
|
|
|
758 |
void process_next_command();
|
|
|
759 |
void process_parsed_command();
|
|
|
760 |
|
|
|
761 |
void get_cartesian_from_steppers();
|
|
|
762 |
void set_current_from_steppers_for_axis(const AxisEnum axis);
|
|
|
763 |
|
|
|
764 |
#if ENABLED(ARC_SUPPORT)
|
|
|
765 |
void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const bool clockwise);
|
|
|
766 |
#endif
|
|
|
767 |
|
|
|
768 |
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
769 |
void plan_cubic_move(const float (&cart)[XYZE], const float (&offset)[4]);
|
|
|
770 |
#endif
|
|
|
771 |
|
|
|
772 |
void report_current_position();
|
|
|
773 |
void report_current_position_detail();
|
|
|
774 |
|
|
|
775 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
776 |
void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
|
|
|
777 |
serialprintPGM(prefix);
|
|
|
778 |
SERIAL_CHAR('(');
|
|
|
779 |
SERIAL_ECHO(x);
|
|
|
780 |
SERIAL_ECHOPAIR(", ", y);
|
|
|
781 |
SERIAL_ECHOPAIR(", ", z);
|
|
|
782 |
SERIAL_CHAR(')');
|
|
|
783 |
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
|
|
|
784 |
}
|
|
|
785 |
|
|
|
786 |
void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
|
|
|
787 |
print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
|
|
|
788 |
}
|
|
|
789 |
|
|
|
790 |
#define DEBUG_POS(SUFFIX,VAR) do { \
|
|
|
791 |
print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
|
|
|
792 |
#endif
|
|
|
793 |
|
|
|
794 |
/**
|
|
|
795 |
* sync_plan_position
|
|
|
796 |
*
|
|
|
797 |
* Set the planner/stepper positions directly from current_position with
|
|
|
798 |
* no kinematic translation. Used for homing axes and cartesian/core syncing.
|
|
|
799 |
*
|
|
|
800 |
* This is not possible for Hangprinter because current_position and position are different sizes
|
|
|
801 |
*/
|
|
|
802 |
void sync_plan_position() {
|
|
|
803 |
#if DISABLED(HANGPRINTER)
|
|
|
804 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
805 |
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
|
|
|
806 |
#endif
|
|
|
807 |
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART]);
|
|
|
808 |
#endif
|
|
|
809 |
}
|
|
|
810 |
void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_CART]); }
|
|
|
811 |
|
|
|
812 |
#if IS_KINEMATIC
|
|
|
813 |
inline void sync_plan_position_kinematic() {
|
|
|
814 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
815 |
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
|
|
|
816 |
#endif
|
|
|
817 |
planner.set_position_mm_kinematic(current_position);
|
|
|
818 |
}
|
|
|
819 |
#endif
|
|
|
820 |
|
|
|
821 |
#if ENABLED(SDSUPPORT)
|
|
|
822 |
#include "SdFatUtil.h"
|
|
|
823 |
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
|
824 |
#else
|
|
|
825 |
extern "C" {
|
|
|
826 |
extern char __bss_end;
|
|
|
827 |
extern char __heap_start;
|
|
|
828 |
extern void* __brkval;
|
|
|
829 |
|
|
|
830 |
int freeMemory() {
|
|
|
831 |
int free_memory;
|
|
|
832 |
if (int(__brkval) == 0)
|
|
|
833 |
free_memory = (int(&free_memory)) - (int(&__bss_end));
|
|
|
834 |
else
|
|
|
835 |
free_memory = (int(&free_memory)) - (int(__brkval));
|
|
|
836 |
return free_memory;
|
|
|
837 |
}
|
|
|
838 |
}
|
|
|
839 |
#endif // !SDSUPPORT
|
|
|
840 |
|
|
|
841 |
#if ENABLED(DIGIPOT_I2C)
|
|
|
842 |
extern void digipot_i2c_set_current(uint8_t channel, float current);
|
|
|
843 |
extern void digipot_i2c_init();
|
|
|
844 |
#endif
|
|
|
845 |
|
|
|
846 |
/**
|
|
|
847 |
* Inject the next "immediate" command, when possible, onto the front of the queue.
|
|
|
848 |
* Return true if any immediate commands remain to inject.
|
|
|
849 |
*/
|
|
|
850 |
static bool drain_injected_commands_P() {
|
|
|
851 |
if (injected_commands_P != NULL) {
|
|
|
852 |
size_t i = 0;
|
|
|
853 |
char c, cmd[30];
|
|
|
854 |
strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
|
|
|
855 |
cmd[sizeof(cmd) - 1] = '\0';
|
|
|
856 |
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
|
|
|
857 |
cmd[i] = '\0';
|
|
|
858 |
if (enqueue_and_echo_command(cmd)) // success?
|
|
|
859 |
injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
|
|
|
860 |
}
|
|
|
861 |
return (injected_commands_P != NULL); // return whether any more remain
|
|
|
862 |
}
|
|
|
863 |
|
|
|
864 |
/**
|
|
|
865 |
* Record one or many commands to run from program memory.
|
|
|
866 |
* Aborts the current queue, if any.
|
|
|
867 |
* Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
|
|
|
868 |
*/
|
|
|
869 |
void enqueue_and_echo_commands_P(const char * const pgcode) {
|
|
|
870 |
injected_commands_P = pgcode;
|
|
|
871 |
(void)drain_injected_commands_P(); // first command executed asap (when possible)
|
|
|
872 |
}
|
|
|
873 |
|
|
|
874 |
/**
|
|
|
875 |
* Clear the Marlin command queue
|
|
|
876 |
*/
|
|
|
877 |
void clear_command_queue() {
|
|
|
878 |
cmd_queue_index_r = cmd_queue_index_w = commands_in_queue = 0;
|
|
|
879 |
}
|
|
|
880 |
|
|
|
881 |
/**
|
|
|
882 |
* Once a new command is in the ring buffer, call this to commit it
|
|
|
883 |
*/
|
|
|
884 |
inline void _commit_command(bool say_ok) {
|
|
|
885 |
send_ok[cmd_queue_index_w] = say_ok;
|
|
|
886 |
if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
|
|
|
887 |
commands_in_queue++;
|
|
|
888 |
}
|
|
|
889 |
|
|
|
890 |
/**
|
|
|
891 |
* Copy a command from RAM into the main command buffer.
|
|
|
892 |
* Return true if the command was successfully added.
|
|
|
893 |
* Return false for a full buffer, or if the 'command' is a comment.
|
|
|
894 |
*/
|
|
|
895 |
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
|
|
|
896 |
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
|
|
|
897 |
strcpy(command_queue[cmd_queue_index_w], cmd);
|
|
|
898 |
_commit_command(say_ok);
|
|
|
899 |
return true;
|
|
|
900 |
}
|
|
|
901 |
|
|
|
902 |
/**
|
|
|
903 |
* Enqueue with Serial Echo
|
|
|
904 |
*/
|
|
|
905 |
bool enqueue_and_echo_command(const char* cmd) {
|
|
|
906 |
if (_enqueuecommand(cmd)) {
|
|
|
907 |
SERIAL_ECHO_START();
|
|
|
908 |
SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
|
|
|
909 |
SERIAL_CHAR('"');
|
|
|
910 |
SERIAL_EOL();
|
|
|
911 |
return true;
|
|
|
912 |
}
|
|
|
913 |
return false;
|
|
|
914 |
}
|
|
|
915 |
|
|
|
916 |
#if HAS_QUEUE_NOW
|
|
|
917 |
void enqueue_and_echo_command_now(const char* cmd) {
|
|
|
918 |
while (!enqueue_and_echo_command(cmd)) idle();
|
|
|
919 |
}
|
|
|
920 |
#if HAS_LCD_QUEUE_NOW
|
|
|
921 |
void enqueue_and_echo_commands_now_P(const char * const pgcode) {
|
|
|
922 |
enqueue_and_echo_commands_P(pgcode);
|
|
|
923 |
while (drain_injected_commands_P()) idle();
|
|
|
924 |
}
|
|
|
925 |
#endif
|
|
|
926 |
#endif
|
|
|
927 |
|
|
|
928 |
void setup_killpin() {
|
|
|
929 |
#if HAS_KILL
|
|
|
930 |
SET_INPUT_PULLUP(KILL_PIN);
|
|
|
931 |
#endif
|
|
|
932 |
}
|
|
|
933 |
|
|
|
934 |
void setup_powerhold() {
|
|
|
935 |
#if HAS_SUICIDE
|
|
|
936 |
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
|
937 |
#endif
|
|
|
938 |
#if HAS_POWER_SWITCH
|
|
|
939 |
#if ENABLED(PS_DEFAULT_OFF)
|
|
|
940 |
powersupply_on = true; PSU_OFF();
|
|
|
941 |
#else
|
|
|
942 |
powersupply_on = false; PSU_ON();
|
|
|
943 |
#endif
|
|
|
944 |
#endif
|
|
|
945 |
}
|
|
|
946 |
|
|
|
947 |
void suicide() {
|
|
|
948 |
#if HAS_SUICIDE
|
|
|
949 |
OUT_WRITE(SUICIDE_PIN, LOW);
|
|
|
950 |
#endif
|
|
|
951 |
}
|
|
|
952 |
|
|
|
953 |
void servo_init() {
|
|
|
954 |
#if NUM_SERVOS >= 1 && HAS_SERVO_0
|
|
|
955 |
servo[0].attach(SERVO0_PIN);
|
|
|
956 |
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
|
|
|
957 |
#endif
|
|
|
958 |
#if NUM_SERVOS >= 2 && HAS_SERVO_1
|
|
|
959 |
servo[1].attach(SERVO1_PIN);
|
|
|
960 |
servo[1].detach();
|
|
|
961 |
#endif
|
|
|
962 |
#if NUM_SERVOS >= 3 && HAS_SERVO_2
|
|
|
963 |
servo[2].attach(SERVO2_PIN);
|
|
|
964 |
servo[2].detach();
|
|
|
965 |
#endif
|
|
|
966 |
#if NUM_SERVOS >= 4 && HAS_SERVO_3
|
|
|
967 |
servo[3].attach(SERVO3_PIN);
|
|
|
968 |
servo[3].detach();
|
|
|
969 |
#endif
|
|
|
970 |
|
|
|
971 |
#if HAS_Z_SERVO_PROBE
|
|
|
972 |
/**
|
|
|
973 |
* Set position of Z Servo Endstop
|
|
|
974 |
*
|
|
|
975 |
* The servo might be deployed and positioned too low to stow
|
|
|
976 |
* when starting up the machine or rebooting the board.
|
|
|
977 |
* There's no way to know where the nozzle is positioned until
|
|
|
978 |
* homing has been done - no homing with z-probe without init!
|
|
|
979 |
*
|
|
|
980 |
*/
|
|
|
981 |
STOW_Z_SERVO();
|
|
|
982 |
#endif
|
|
|
983 |
}
|
|
|
984 |
|
|
|
985 |
/**
|
|
|
986 |
* Stepper Reset (RigidBoard, et.al.)
|
|
|
987 |
*/
|
|
|
988 |
#if HAS_STEPPER_RESET
|
|
|
989 |
void disableStepperDrivers() {
|
|
|
990 |
OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
|
|
|
991 |
}
|
|
|
992 |
void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
|
|
|
993 |
#endif
|
|
|
994 |
|
|
|
995 |
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
|
996 |
|
|
|
997 |
void i2c_on_receive(int bytes) { // just echo all bytes received to serial
|
|
|
998 |
i2c.receive(bytes);
|
|
|
999 |
}
|
|
|
1000 |
|
|
|
1001 |
void i2c_on_request() { // just send dummy data for now
|
|
|
1002 |
i2c.reply("Hello World!\n");
|
|
|
1003 |
}
|
|
|
1004 |
|
|
|
1005 |
#endif
|
|
|
1006 |
|
|
|
1007 |
void gcode_line_error(const char* err, bool doFlush = true) {
|
|
|
1008 |
SERIAL_ERROR_START();
|
|
|
1009 |
serialprintPGM(err);
|
|
|
1010 |
SERIAL_ERRORLN(gcode_LastN);
|
|
|
1011 |
//Serial.println(gcode_N);
|
|
|
1012 |
if (doFlush) flush_and_request_resend();
|
|
|
1013 |
serial_count = 0;
|
|
|
1014 |
}
|
|
|
1015 |
|
|
|
1016 |
/**
|
|
|
1017 |
* Get all commands waiting on the serial port and queue them.
|
|
|
1018 |
* Exit when the buffer is full or when no more characters are
|
|
|
1019 |
* left on the serial port.
|
|
|
1020 |
*/
|
|
|
1021 |
inline void get_serial_commands() {
|
|
|
1022 |
static char serial_line_buffer[MAX_CMD_SIZE];
|
|
|
1023 |
static bool serial_comment_mode = false;
|
|
|
1024 |
|
|
|
1025 |
// If the command buffer is empty for too long,
|
|
|
1026 |
// send "wait" to indicate Marlin is still waiting.
|
|
|
1027 |
#if NO_TIMEOUTS > 0
|
|
|
1028 |
static millis_t last_command_time = 0;
|
|
|
1029 |
const millis_t ms = millis();
|
|
|
1030 |
if (commands_in_queue == 0 && !MYSERIAL0.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
|
|
|
1031 |
SERIAL_ECHOLNPGM(MSG_WAIT);
|
|
|
1032 |
last_command_time = ms;
|
|
|
1033 |
}
|
|
|
1034 |
#endif
|
|
|
1035 |
|
|
|
1036 |
/**
|
|
|
1037 |
* Loop while serial characters are incoming and the queue is not full
|
|
|
1038 |
*/
|
|
|
1039 |
int c;
|
|
|
1040 |
while (commands_in_queue < BUFSIZE && (c = MYSERIAL0.read()) >= 0) {
|
|
|
1041 |
|
|
|
1042 |
char serial_char = c;
|
|
|
1043 |
|
|
|
1044 |
/**
|
|
|
1045 |
* If the character ends the line
|
|
|
1046 |
*/
|
|
|
1047 |
if (serial_char == '\n' || serial_char == '\r') {
|
|
|
1048 |
|
|
|
1049 |
serial_comment_mode = false; // end of line == end of comment
|
|
|
1050 |
|
|
|
1051 |
// Skip empty lines and comments
|
|
|
1052 |
if (!serial_count) { thermalManager.manage_heater(); continue; }
|
|
|
1053 |
|
|
|
1054 |
serial_line_buffer[serial_count] = 0; // Terminate string
|
|
|
1055 |
serial_count = 0; // Reset buffer
|
|
|
1056 |
|
|
|
1057 |
char* command = serial_line_buffer;
|
|
|
1058 |
|
|
|
1059 |
while (*command == ' ') command++; // Skip leading spaces
|
|
|
1060 |
char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
|
|
|
1061 |
|
|
|
1062 |
if (npos) {
|
|
|
1063 |
|
|
|
1064 |
bool M110 = strstr_P(command, PSTR("M110")) != NULL;
|
|
|
1065 |
|
|
|
1066 |
if (M110) {
|
|
|
1067 |
char* n2pos = strchr(command + 4, 'N');
|
|
|
1068 |
if (n2pos) npos = n2pos;
|
|
|
1069 |
}
|
|
|
1070 |
|
|
|
1071 |
gcode_N = strtol(npos + 1, NULL, 10);
|
|
|
1072 |
|
|
|
1073 |
if (gcode_N != gcode_LastN + 1 && !M110)
|
|
|
1074 |
return gcode_line_error(PSTR(MSG_ERR_LINE_NO));
|
|
|
1075 |
|
|
|
1076 |
char *apos = strrchr(command, '*');
|
|
|
1077 |
if (apos) {
|
|
|
1078 |
uint8_t checksum = 0, count = uint8_t(apos - command);
|
|
|
1079 |
while (count) checksum ^= command[--count];
|
|
|
1080 |
if (strtol(apos + 1, NULL, 10) != checksum)
|
|
|
1081 |
return gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
|
|
|
1082 |
}
|
|
|
1083 |
else
|
|
|
1084 |
return gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
|
|
|
1085 |
|
|
|
1086 |
gcode_LastN = gcode_N;
|
|
|
1087 |
}
|
|
|
1088 |
#if ENABLED(SDSUPPORT)
|
|
|
1089 |
else if (card.saving && strcmp(command, "M29") != 0) // No line number with M29 in Pronterface
|
|
|
1090 |
return gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
|
|
|
1091 |
#endif
|
|
|
1092 |
|
|
|
1093 |
// Movement commands alert when stopped
|
|
|
1094 |
if (IsStopped()) {
|
|
|
1095 |
char* gpos = strchr(command, 'G');
|
|
|
1096 |
if (gpos) {
|
|
|
1097 |
switch (strtol(gpos + 1, NULL, 10)) {
|
|
|
1098 |
case 0:
|
|
|
1099 |
case 1:
|
|
|
1100 |
#if ENABLED(ARC_SUPPORT)
|
|
|
1101 |
case 2:
|
|
|
1102 |
case 3:
|
|
|
1103 |
#endif
|
|
|
1104 |
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
1105 |
case 5:
|
|
|
1106 |
#endif
|
|
|
1107 |
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
|
1108 |
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
|
1109 |
break;
|
|
|
1110 |
}
|
|
|
1111 |
}
|
|
|
1112 |
}
|
|
|
1113 |
|
|
|
1114 |
#if DISABLED(EMERGENCY_PARSER)
|
|
|
1115 |
// Process critical commands early
|
|
|
1116 |
if (strcmp(command, "M108") == 0) {
|
|
|
1117 |
wait_for_heatup = false;
|
|
|
1118 |
#if ENABLED(NEWPANEL)
|
|
|
1119 |
wait_for_user = false;
|
|
|
1120 |
#endif
|
|
|
1121 |
}
|
|
|
1122 |
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
|
|
|
1123 |
if (strcmp(command, "M410") == 0) quickstop_stepper();
|
|
|
1124 |
#endif
|
|
|
1125 |
|
|
|
1126 |
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
|
|
|
1127 |
last_command_time = ms;
|
|
|
1128 |
#endif
|
|
|
1129 |
|
|
|
1130 |
// Add the command to the queue
|
|
|
1131 |
_enqueuecommand(serial_line_buffer, true);
|
|
|
1132 |
}
|
|
|
1133 |
else if (serial_count >= MAX_CMD_SIZE - 1) {
|
|
|
1134 |
// Keep fetching, but ignore normal characters beyond the max length
|
|
|
1135 |
// The command will be injected when EOL is reached
|
|
|
1136 |
}
|
|
|
1137 |
else if (serial_char == '\\') { // Handle escapes
|
|
|
1138 |
if ((c = MYSERIAL0.read()) >= 0 && !serial_comment_mode) // if we have one more character, copy it over
|
|
|
1139 |
serial_line_buffer[serial_count++] = (char)c;
|
|
|
1140 |
// otherwise do nothing
|
|
|
1141 |
}
|
|
|
1142 |
else { // it's not a newline, carriage return or escape char
|
|
|
1143 |
if (serial_char == ';') serial_comment_mode = true;
|
|
|
1144 |
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
|
|
|
1145 |
}
|
|
|
1146 |
|
|
|
1147 |
} // queue has space, serial has data
|
|
|
1148 |
}
|
|
|
1149 |
|
|
|
1150 |
#if ENABLED(SDSUPPORT)
|
|
|
1151 |
|
|
|
1152 |
#if ENABLED(PRINTER_EVENT_LEDS) && HAS_RESUME_CONTINUE
|
|
|
1153 |
static bool lights_off_after_print; // = false
|
|
|
1154 |
#endif
|
|
|
1155 |
|
|
|
1156 |
/**
|
|
|
1157 |
* Get commands from the SD Card until the command buffer is full
|
|
|
1158 |
* or until the end of the file is reached. The special character '#'
|
|
|
1159 |
* can also interrupt buffering.
|
|
|
1160 |
*/
|
|
|
1161 |
inline void get_sdcard_commands() {
|
|
|
1162 |
static bool stop_buffering = false,
|
|
|
1163 |
sd_comment_mode = false;
|
|
|
1164 |
|
|
|
1165 |
if (!card.sdprinting) return;
|
|
|
1166 |
|
|
|
1167 |
/**
|
|
|
1168 |
* '#' stops reading from SD to the buffer prematurely, so procedural
|
|
|
1169 |
* macro calls are possible. If it occurs, stop_buffering is triggered
|
|
|
1170 |
* and the buffer is run dry; this character _can_ occur in serial com
|
|
|
1171 |
* due to checksums, however, no checksums are used in SD printing.
|
|
|
1172 |
*/
|
|
|
1173 |
|
|
|
1174 |
if (commands_in_queue == 0) stop_buffering = false;
|
|
|
1175 |
|
|
|
1176 |
uint16_t sd_count = 0;
|
|
|
1177 |
bool card_eof = card.eof();
|
|
|
1178 |
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
|
|
|
1179 |
const int16_t n = card.get();
|
|
|
1180 |
char sd_char = (char)n;
|
|
|
1181 |
card_eof = card.eof();
|
|
|
1182 |
if (card_eof || n == -1
|
|
|
1183 |
|| sd_char == '\n' || sd_char == '\r'
|
|
|
1184 |
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
|
|
|
1185 |
) {
|
|
|
1186 |
if (card_eof) {
|
|
|
1187 |
|
|
|
1188 |
card.printingHasFinished();
|
|
|
1189 |
|
|
|
1190 |
if (card.sdprinting)
|
|
|
1191 |
sd_count = 0; // If a sub-file was printing, continue from call point
|
|
|
1192 |
else {
|
|
|
1193 |
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
|
|
|
1194 |
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
|
1195 |
LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
|
|
|
1196 |
leds.set_green();
|
|
|
1197 |
#if HAS_RESUME_CONTINUE
|
|
|
1198 |
lights_off_after_print = true;
|
|
|
1199 |
enqueue_and_echo_commands_P(PSTR("M0 S"
|
|
|
1200 |
#if ENABLED(NEWPANEL)
|
|
|
1201 |
"1800"
|
|
|
1202 |
#else
|
|
|
1203 |
"60"
|
|
|
1204 |
#endif
|
|
|
1205 |
));
|
|
|
1206 |
#else
|
|
|
1207 |
safe_delay(2000);
|
|
|
1208 |
leds.set_off();
|
|
|
1209 |
#endif
|
|
|
1210 |
#endif // PRINTER_EVENT_LEDS
|
|
|
1211 |
}
|
|
|
1212 |
}
|
|
|
1213 |
else if (n == -1) {
|
|
|
1214 |
SERIAL_ERROR_START();
|
|
|
1215 |
SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
|
|
|
1216 |
}
|
|
|
1217 |
if (sd_char == '#') stop_buffering = true;
|
|
|
1218 |
|
|
|
1219 |
sd_comment_mode = false; // for new command
|
|
|
1220 |
|
|
|
1221 |
// Skip empty lines and comments
|
|
|
1222 |
if (!sd_count) { thermalManager.manage_heater(); continue; }
|
|
|
1223 |
|
|
|
1224 |
command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
|
|
|
1225 |
sd_count = 0; // clear sd line buffer
|
|
|
1226 |
|
|
|
1227 |
_commit_command(false);
|
|
|
1228 |
}
|
|
|
1229 |
else if (sd_count >= MAX_CMD_SIZE - 1) {
|
|
|
1230 |
/**
|
|
|
1231 |
* Keep fetching, but ignore normal characters beyond the max length
|
|
|
1232 |
* The command will be injected when EOL is reached
|
|
|
1233 |
*/
|
|
|
1234 |
}
|
|
|
1235 |
else {
|
|
|
1236 |
if (sd_char == ';') sd_comment_mode = true;
|
|
|
1237 |
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
|
|
|
1238 |
}
|
|
|
1239 |
}
|
|
|
1240 |
}
|
|
|
1241 |
|
|
|
1242 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
1243 |
|
|
|
1244 |
inline bool drain_job_recovery_commands() {
|
|
|
1245 |
static uint8_t job_recovery_commands_index = 0; // Resets on reboot
|
|
|
1246 |
if (job_recovery_commands_count) {
|
|
|
1247 |
if (_enqueuecommand(job_recovery_commands[job_recovery_commands_index])) {
|
|
|
1248 |
++job_recovery_commands_index;
|
|
|
1249 |
if (!--job_recovery_commands_count) job_recovery_phase = JOB_RECOVERY_DONE;
|
|
|
1250 |
}
|
|
|
1251 |
return true;
|
|
|
1252 |
}
|
|
|
1253 |
return false;
|
|
|
1254 |
}
|
|
|
1255 |
|
|
|
1256 |
#endif
|
|
|
1257 |
|
|
|
1258 |
#endif // SDSUPPORT
|
|
|
1259 |
|
|
|
1260 |
/**
|
|
|
1261 |
* Add to the circular command queue the next command from:
|
|
|
1262 |
* - The command-injection queue (injected_commands_P)
|
|
|
1263 |
* - The active serial input (usually USB)
|
|
|
1264 |
* - Commands left in the queue after power-loss
|
|
|
1265 |
* - The SD card file being actively printed
|
|
|
1266 |
*/
|
|
|
1267 |
void get_available_commands() {
|
|
|
1268 |
|
|
|
1269 |
// Immediate commands block the other queues
|
|
|
1270 |
if (drain_injected_commands_P()) return;
|
|
|
1271 |
|
|
|
1272 |
get_serial_commands();
|
|
|
1273 |
|
|
|
1274 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
1275 |
// Commands for power-loss recovery take precedence
|
|
|
1276 |
if (job_recovery_phase == JOB_RECOVERY_YES && drain_job_recovery_commands()) return;
|
|
|
1277 |
#endif
|
|
|
1278 |
|
|
|
1279 |
#if ENABLED(SDSUPPORT)
|
|
|
1280 |
get_sdcard_commands();
|
|
|
1281 |
#endif
|
|
|
1282 |
}
|
|
|
1283 |
|
|
|
1284 |
/**
|
|
|
1285 |
* Set target_extruder from the T parameter or the active_extruder
|
|
|
1286 |
*
|
|
|
1287 |
* Returns TRUE if the target is invalid
|
|
|
1288 |
*/
|
|
|
1289 |
bool get_target_extruder_from_command(const uint16_t code) {
|
|
|
1290 |
if (parser.seenval('T')) {
|
|
|
1291 |
const int8_t e = parser.value_byte();
|
|
|
1292 |
if (e >= EXTRUDERS) {
|
|
|
1293 |
SERIAL_ECHO_START();
|
|
|
1294 |
SERIAL_CHAR('M');
|
|
|
1295 |
SERIAL_ECHO(code);
|
|
|
1296 |
SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
|
|
|
1297 |
return true;
|
|
|
1298 |
}
|
|
|
1299 |
target_extruder = e;
|
|
|
1300 |
}
|
|
|
1301 |
else
|
|
|
1302 |
target_extruder = active_extruder;
|
|
|
1303 |
|
|
|
1304 |
return false;
|
|
|
1305 |
}
|
|
|
1306 |
|
|
|
1307 |
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
1308 |
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
|
|
|
1309 |
#endif
|
|
|
1310 |
|
|
|
1311 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
1312 |
|
|
|
1313 |
static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
|
1314 |
|
|
|
1315 |
static float x_home_pos(const int extruder) {
|
|
|
1316 |
if (extruder == 0)
|
|
|
1317 |
return base_home_pos(X_AXIS);
|
|
|
1318 |
else
|
|
|
1319 |
/**
|
|
|
1320 |
* In dual carriage mode the extruder offset provides an override of the
|
|
|
1321 |
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
|
|
|
1322 |
* This allows soft recalibration of the second extruder home position
|
|
|
1323 |
* without firmware reflash (through the M218 command).
|
|
|
1324 |
*/
|
|
|
1325 |
return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
|
|
|
1326 |
}
|
|
|
1327 |
|
|
|
1328 |
static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
|
|
|
1329 |
|
|
|
1330 |
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
|
|
|
1331 |
static bool active_extruder_parked = false; // used in mode 1 & 2
|
|
|
1332 |
static float raised_parked_position[XYZE]; // used in mode 1
|
|
|
1333 |
static millis_t delayed_move_time = 0; // used in mode 1
|
|
|
1334 |
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
|
|
|
1335 |
static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
|
|
|
1336 |
|
|
|
1337 |
#endif // DUAL_X_CARRIAGE
|
|
|
1338 |
|
|
|
1339 |
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
|
|
|
1340 |
|
|
|
1341 |
/**
|
|
|
1342 |
* Software endstops can be used to monitor the open end of
|
|
|
1343 |
* an axis that has a hardware endstop on the other end. Or
|
|
|
1344 |
* they can prevent axes from moving past endstops and grinding.
|
|
|
1345 |
*
|
|
|
1346 |
* To keep doing their job as the coordinate system changes,
|
|
|
1347 |
* the software endstop positions must be refreshed to remain
|
|
|
1348 |
* at the same positions relative to the machine.
|
|
|
1349 |
*/
|
|
|
1350 |
void update_software_endstops(const AxisEnum axis) {
|
|
|
1351 |
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
|
1352 |
workspace_offset[axis] = home_offset[axis] + position_shift[axis];
|
|
|
1353 |
#endif
|
|
|
1354 |
|
|
|
1355 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
1356 |
if (axis == X_AXIS) {
|
|
|
1357 |
|
|
|
1358 |
// In Dual X mode hotend_offset[X] is T1's home position
|
|
|
1359 |
const float dual_max_x = MAX(hotend_offset[X_AXIS][1], X2_MAX_POS);
|
|
|
1360 |
|
|
|
1361 |
if (active_extruder != 0) {
|
|
|
1362 |
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
|
|
|
1363 |
soft_endstop_min[X_AXIS] = X2_MIN_POS;
|
|
|
1364 |
soft_endstop_max[X_AXIS] = dual_max_x;
|
|
|
1365 |
}
|
|
|
1366 |
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
|
1367 |
// In Duplication Mode, T0 can move as far left as X_MIN_POS
|
|
|
1368 |
// but not so far to the right that T1 would move past the end
|
|
|
1369 |
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
|
|
|
1370 |
soft_endstop_max[X_AXIS] = MIN(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
|
|
|
1371 |
}
|
|
|
1372 |
else {
|
|
|
1373 |
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
|
|
|
1374 |
soft_endstop_min[axis] = base_min_pos(axis);
|
|
|
1375 |
soft_endstop_max[axis] = base_max_pos(axis);
|
|
|
1376 |
}
|
|
|
1377 |
}
|
|
|
1378 |
#elif ENABLED(DELTA)
|
|
|
1379 |
soft_endstop_min[axis] = base_min_pos(axis);
|
|
|
1380 |
soft_endstop_max[axis] = axis == Z_AXIS ? delta_height
|
|
|
1381 |
#if HAS_BED_PROBE
|
|
|
1382 |
- zprobe_zoffset
|
|
|
1383 |
#endif
|
|
|
1384 |
: base_max_pos(axis);
|
|
|
1385 |
#else
|
|
|
1386 |
soft_endstop_min[axis] = base_min_pos(axis);
|
|
|
1387 |
soft_endstop_max[axis] = base_max_pos(axis);
|
|
|
1388 |
#endif
|
|
|
1389 |
|
|
|
1390 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1391 |
if (DEBUGGING(LEVELING)) {
|
|
|
1392 |
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
|
|
|
1393 |
#if HAS_HOME_OFFSET
|
|
|
1394 |
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
|
|
|
1395 |
#endif
|
|
|
1396 |
#if HAS_POSITION_SHIFT
|
|
|
1397 |
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
|
|
|
1398 |
#endif
|
|
|
1399 |
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
|
|
|
1400 |
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
|
|
|
1401 |
}
|
|
|
1402 |
#endif
|
|
|
1403 |
|
|
|
1404 |
#if ENABLED(DELTA)
|
|
|
1405 |
switch (axis) {
|
|
|
1406 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
1407 |
case X_AXIS:
|
|
|
1408 |
case Y_AXIS:
|
|
|
1409 |
// Get a minimum radius for clamping
|
|
|
1410 |
soft_endstop_radius = MIN3(ABS(MAX(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
|
|
|
1411 |
soft_endstop_radius_2 = sq(soft_endstop_radius);
|
|
|
1412 |
break;
|
|
|
1413 |
#endif
|
|
|
1414 |
case Z_AXIS:
|
|
|
1415 |
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
|
|
|
1416 |
default: break;
|
|
|
1417 |
}
|
|
|
1418 |
#endif
|
|
|
1419 |
}
|
|
|
1420 |
|
|
|
1421 |
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE || DELTA
|
|
|
1422 |
|
|
|
1423 |
#if HAS_M206_COMMAND
|
|
|
1424 |
/**
|
|
|
1425 |
* Change the home offset for an axis.
|
|
|
1426 |
* Also refreshes the workspace offset.
|
|
|
1427 |
*/
|
|
|
1428 |
static void set_home_offset(const AxisEnum axis, const float v) {
|
|
|
1429 |
home_offset[axis] = v;
|
|
|
1430 |
update_software_endstops(axis);
|
|
|
1431 |
}
|
|
|
1432 |
#endif // HAS_M206_COMMAND
|
|
|
1433 |
|
|
|
1434 |
/**
|
|
|
1435 |
* Set an axis' current position to its home position (after homing).
|
|
|
1436 |
*
|
|
|
1437 |
* For Core and Cartesian robots this applies one-to-one when an
|
|
|
1438 |
* individual axis has been homed.
|
|
|
1439 |
*
|
|
|
1440 |
* DELTA should wait until all homing is done before setting the XYZ
|
|
|
1441 |
* current_position to home, because homing is a single operation.
|
|
|
1442 |
* In the case where the axis positions are already known and previously
|
|
|
1443 |
* homed, DELTA could home to X or Y individually by moving either one
|
|
|
1444 |
* to the center. However, homing Z always homes XY and Z.
|
|
|
1445 |
*
|
|
|
1446 |
* SCARA should wait until all XY homing is done before setting the XY
|
|
|
1447 |
* current_position to home, because neither X nor Y is at home until
|
|
|
1448 |
* both are at home. Z can however be homed individually.
|
|
|
1449 |
*
|
|
|
1450 |
* Callers must sync the planner position after calling this!
|
|
|
1451 |
*/
|
|
|
1452 |
static void set_axis_is_at_home(const AxisEnum axis) {
|
|
|
1453 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1454 |
if (DEBUGGING(LEVELING)) {
|
|
|
1455 |
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
|
|
|
1456 |
SERIAL_CHAR(')');
|
|
|
1457 |
SERIAL_EOL();
|
|
|
1458 |
}
|
|
|
1459 |
#endif
|
|
|
1460 |
|
|
|
1461 |
SBI(axis_known_position, axis);
|
|
|
1462 |
SBI(axis_homed, axis);
|
|
|
1463 |
|
|
|
1464 |
#if HAS_POSITION_SHIFT
|
|
|
1465 |
position_shift[axis] = 0;
|
|
|
1466 |
update_software_endstops(axis);
|
|
|
1467 |
#endif
|
|
|
1468 |
|
|
|
1469 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
1470 |
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
|
|
|
1471 |
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
|
1472 |
return;
|
|
|
1473 |
}
|
|
|
1474 |
#endif
|
|
|
1475 |
|
|
|
1476 |
#if ENABLED(MORGAN_SCARA)
|
|
|
1477 |
|
|
|
1478 |
/**
|
|
|
1479 |
* Morgan SCARA homes XY at the same time
|
|
|
1480 |
*/
|
|
|
1481 |
if (axis == X_AXIS || axis == Y_AXIS) {
|
|
|
1482 |
|
|
|
1483 |
float homeposition[XYZ] = {
|
|
|
1484 |
base_home_pos(X_AXIS),
|
|
|
1485 |
base_home_pos(Y_AXIS),
|
|
|
1486 |
base_home_pos(Z_AXIS)
|
|
|
1487 |
};
|
|
|
1488 |
|
|
|
1489 |
// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
|
|
|
1490 |
// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
|
|
|
1491 |
|
|
|
1492 |
/**
|
|
|
1493 |
* Get Home position SCARA arm angles using inverse kinematics,
|
|
|
1494 |
* and calculate homing offset using forward kinematics
|
|
|
1495 |
*/
|
|
|
1496 |
inverse_kinematics(homeposition);
|
|
|
1497 |
forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
|
|
|
1498 |
|
|
|
1499 |
// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
|
|
|
1500 |
// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
|
|
|
1501 |
|
|
|
1502 |
current_position[axis] = cartes[axis];
|
|
|
1503 |
|
|
|
1504 |
/**
|
|
|
1505 |
* SCARA home positions are based on configuration since the actual
|
|
|
1506 |
* limits are determined by the inverse kinematic transform.
|
|
|
1507 |
*/
|
|
|
1508 |
soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
|
1509 |
soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
|
1510 |
}
|
|
|
1511 |
else
|
|
|
1512 |
#elif ENABLED(DELTA)
|
|
|
1513 |
current_position[axis] = (axis == Z_AXIS ? delta_height
|
|
|
1514 |
#if HAS_BED_PROBE
|
|
|
1515 |
- zprobe_zoffset
|
|
|
1516 |
#endif
|
|
|
1517 |
: base_home_pos(axis));
|
|
|
1518 |
#else
|
|
|
1519 |
current_position[axis] = base_home_pos(axis);
|
|
|
1520 |
#endif
|
|
|
1521 |
|
|
|
1522 |
/**
|
|
|
1523 |
* Z Probe Z Homing? Account for the probe's Z offset.
|
|
|
1524 |
*/
|
|
|
1525 |
#if HAS_BED_PROBE && Z_HOME_DIR < 0
|
|
|
1526 |
if (axis == Z_AXIS) {
|
|
|
1527 |
#if HOMING_Z_WITH_PROBE
|
|
|
1528 |
|
|
|
1529 |
current_position[Z_AXIS] -= zprobe_zoffset;
|
|
|
1530 |
|
|
|
1531 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1532 |
if (DEBUGGING(LEVELING)) {
|
|
|
1533 |
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
|
|
|
1534 |
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
|
|
|
1535 |
}
|
|
|
1536 |
#endif
|
|
|
1537 |
|
|
|
1538 |
#elif ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1539 |
|
|
|
1540 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
|
|
|
1541 |
|
|
|
1542 |
#endif
|
|
|
1543 |
}
|
|
|
1544 |
#endif
|
|
|
1545 |
|
|
|
1546 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1547 |
if (DEBUGGING(LEVELING)) {
|
|
|
1548 |
#if HAS_HOME_OFFSET
|
|
|
1549 |
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
|
|
|
1550 |
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
|
|
|
1551 |
#endif
|
|
|
1552 |
DEBUG_POS("", current_position);
|
|
|
1553 |
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
|
|
|
1554 |
SERIAL_CHAR(')');
|
|
|
1555 |
SERIAL_EOL();
|
|
|
1556 |
}
|
|
|
1557 |
#endif
|
|
|
1558 |
|
|
|
1559 |
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
1560 |
I2CPEM.homed(axis);
|
|
|
1561 |
#endif
|
|
|
1562 |
}
|
|
|
1563 |
|
|
|
1564 |
/**
|
|
|
1565 |
* Homing bump feedrate (mm/s)
|
|
|
1566 |
*/
|
|
|
1567 |
inline float get_homing_bump_feedrate(const AxisEnum axis) {
|
|
|
1568 |
#if HOMING_Z_WITH_PROBE
|
|
|
1569 |
if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW);
|
|
|
1570 |
#endif
|
|
|
1571 |
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
|
|
|
1572 |
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
|
|
|
1573 |
if (hbd < 1) {
|
|
|
1574 |
hbd = 10;
|
|
|
1575 |
SERIAL_ECHO_START();
|
|
|
1576 |
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
|
|
|
1577 |
}
|
|
|
1578 |
return homing_feedrate(axis) / hbd;
|
|
|
1579 |
}
|
|
|
1580 |
|
|
|
1581 |
/**
|
|
|
1582 |
* Some planner shorthand inline functions
|
|
|
1583 |
*/
|
|
|
1584 |
|
|
|
1585 |
/**
|
|
|
1586 |
* Move the planner to the current position from wherever it last moved
|
|
|
1587 |
* (or from wherever it has been told it is located).
|
|
|
1588 |
*
|
|
|
1589 |
* Impossible on Hangprinter because current_position and position are of different sizes
|
|
|
1590 |
*/
|
|
|
1591 |
inline void buffer_line_to_current_position() {
|
|
|
1592 |
#if DISABLED(HANGPRINTER) // emptying this function probably breaks do_blocking_move_to()
|
|
|
1593 |
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART], feedrate_mm_s, active_extruder);
|
|
|
1594 |
#endif
|
|
|
1595 |
}
|
|
|
1596 |
|
|
|
1597 |
/**
|
|
|
1598 |
* Move the planner to the position stored in the destination array, which is
|
|
|
1599 |
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
|
|
|
1600 |
*/
|
|
|
1601 |
inline void buffer_line_to_destination(const float &fr_mm_s) {
|
|
|
1602 |
#if ENABLED(HANGPRINTER)
|
|
|
1603 |
UNUSED(fr_mm_s);
|
|
|
1604 |
#else
|
|
|
1605 |
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_CART], fr_mm_s, active_extruder);
|
|
|
1606 |
#endif
|
|
|
1607 |
}
|
|
|
1608 |
|
|
|
1609 |
#if IS_KINEMATIC
|
|
|
1610 |
/**
|
|
|
1611 |
* Calculate delta, start a line, and set current_position to destination
|
|
|
1612 |
*/
|
|
|
1613 |
void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0) {
|
|
|
1614 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1615 |
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
|
|
|
1616 |
#endif
|
|
|
1617 |
|
|
|
1618 |
#if UBL_SEGMENTED
|
|
|
1619 |
// ubl segmented line will do z-only moves in single segment
|
|
|
1620 |
ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
|
|
|
1621 |
#else
|
|
|
1622 |
if ( current_position[X_AXIS] == destination[X_AXIS]
|
|
|
1623 |
&& current_position[Y_AXIS] == destination[Y_AXIS]
|
|
|
1624 |
&& current_position[Z_AXIS] == destination[Z_AXIS]
|
|
|
1625 |
&& current_position[E_CART] == destination[E_CART]
|
|
|
1626 |
) return;
|
|
|
1627 |
|
|
|
1628 |
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
|
|
1629 |
#endif
|
|
|
1630 |
|
|
|
1631 |
set_current_from_destination();
|
|
|
1632 |
}
|
|
|
1633 |
#endif // IS_KINEMATIC
|
|
|
1634 |
|
|
|
1635 |
/**
|
|
|
1636 |
* Plan a move to (X, Y, Z) and set the current_position.
|
|
|
1637 |
* The final current_position may not be the one that was requested
|
|
|
1638 |
* Caution: 'destination' is modified by this function.
|
|
|
1639 |
*/
|
|
|
1640 |
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s/*=0.0*/) {
|
|
|
1641 |
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
1642 |
|
|
|
1643 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1644 |
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
|
|
|
1645 |
#endif
|
|
|
1646 |
|
|
|
1647 |
const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
|
|
|
1648 |
|
|
|
1649 |
#if ENABLED(DELTA)
|
|
|
1650 |
|
|
|
1651 |
if (!position_is_reachable(rx, ry)) return;
|
|
|
1652 |
|
|
|
1653 |
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
1654 |
|
|
|
1655 |
set_destination_from_current(); // sync destination at the start
|
|
|
1656 |
|
|
|
1657 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1658 |
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
|
|
|
1659 |
#endif
|
|
|
1660 |
|
|
|
1661 |
// when in the danger zone
|
|
|
1662 |
if (current_position[Z_AXIS] > delta_clip_start_height) {
|
|
|
1663 |
if (rz > delta_clip_start_height) { // staying in the danger zone
|
|
|
1664 |
destination[X_AXIS] = rx; // move directly (uninterpolated)
|
|
|
1665 |
destination[Y_AXIS] = ry;
|
|
|
1666 |
destination[Z_AXIS] = rz;
|
|
|
1667 |
prepare_uninterpolated_move_to_destination(); // set_current_from_destination
|
|
|
1668 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1669 |
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
|
|
|
1670 |
#endif
|
|
|
1671 |
return;
|
|
|
1672 |
}
|
|
|
1673 |
destination[Z_AXIS] = delta_clip_start_height;
|
|
|
1674 |
prepare_uninterpolated_move_to_destination(); // set_current_from_destination
|
|
|
1675 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1676 |
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
|
|
|
1677 |
#endif
|
|
|
1678 |
}
|
|
|
1679 |
|
|
|
1680 |
if (rz > current_position[Z_AXIS]) { // raising?
|
|
|
1681 |
destination[Z_AXIS] = rz;
|
|
|
1682 |
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
|
|
|
1683 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1684 |
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
|
|
|
1685 |
#endif
|
|
|
1686 |
}
|
|
|
1687 |
|
|
|
1688 |
destination[X_AXIS] = rx;
|
|
|
1689 |
destination[Y_AXIS] = ry;
|
|
|
1690 |
prepare_move_to_destination(); // set_current_from_destination
|
|
|
1691 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1692 |
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
|
|
|
1693 |
#endif
|
|
|
1694 |
|
|
|
1695 |
if (rz < current_position[Z_AXIS]) { // lowering?
|
|
|
1696 |
destination[Z_AXIS] = rz;
|
|
|
1697 |
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
|
|
|
1698 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1699 |
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
|
|
|
1700 |
#endif
|
|
|
1701 |
}
|
|
|
1702 |
|
|
|
1703 |
#elif IS_SCARA
|
|
|
1704 |
|
|
|
1705 |
if (!position_is_reachable(rx, ry)) return;
|
|
|
1706 |
|
|
|
1707 |
set_destination_from_current();
|
|
|
1708 |
|
|
|
1709 |
// If Z needs to raise, do it before moving XY
|
|
|
1710 |
if (destination[Z_AXIS] < rz) {
|
|
|
1711 |
destination[Z_AXIS] = rz;
|
|
|
1712 |
prepare_uninterpolated_move_to_destination(z_feedrate);
|
|
|
1713 |
}
|
|
|
1714 |
|
|
|
1715 |
destination[X_AXIS] = rx;
|
|
|
1716 |
destination[Y_AXIS] = ry;
|
|
|
1717 |
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
|
|
|
1718 |
|
|
|
1719 |
// If Z needs to lower, do it after moving XY
|
|
|
1720 |
if (destination[Z_AXIS] > rz) {
|
|
|
1721 |
destination[Z_AXIS] = rz;
|
|
|
1722 |
prepare_uninterpolated_move_to_destination(z_feedrate);
|
|
|
1723 |
}
|
|
|
1724 |
|
|
|
1725 |
#else
|
|
|
1726 |
|
|
|
1727 |
// If Z needs to raise, do it before moving XY
|
|
|
1728 |
if (current_position[Z_AXIS] < rz) {
|
|
|
1729 |
feedrate_mm_s = z_feedrate;
|
|
|
1730 |
current_position[Z_AXIS] = rz;
|
|
|
1731 |
buffer_line_to_current_position();
|
|
|
1732 |
}
|
|
|
1733 |
|
|
|
1734 |
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
1735 |
current_position[X_AXIS] = rx;
|
|
|
1736 |
current_position[Y_AXIS] = ry;
|
|
|
1737 |
buffer_line_to_current_position();
|
|
|
1738 |
|
|
|
1739 |
// If Z needs to lower, do it after moving XY
|
|
|
1740 |
if (current_position[Z_AXIS] > rz) {
|
|
|
1741 |
feedrate_mm_s = z_feedrate;
|
|
|
1742 |
current_position[Z_AXIS] = rz;
|
|
|
1743 |
buffer_line_to_current_position();
|
|
|
1744 |
}
|
|
|
1745 |
|
|
|
1746 |
#endif
|
|
|
1747 |
|
|
|
1748 |
planner.synchronize();
|
|
|
1749 |
|
|
|
1750 |
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
1751 |
|
|
|
1752 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1753 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
|
|
|
1754 |
#endif
|
|
|
1755 |
}
|
|
|
1756 |
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
|
|
|
1757 |
do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
|
|
|
1758 |
}
|
|
|
1759 |
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
|
|
|
1760 |
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
|
|
|
1761 |
}
|
|
|
1762 |
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
|
|
|
1763 |
do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
|
|
|
1764 |
}
|
|
|
1765 |
|
|
|
1766 |
//
|
|
|
1767 |
// Prepare to do endstop or probe moves
|
|
|
1768 |
// with custom feedrates.
|
|
|
1769 |
//
|
|
|
1770 |
// - Save current feedrates
|
|
|
1771 |
// - Reset the rate multiplier
|
|
|
1772 |
// - Reset the command timeout
|
|
|
1773 |
// - Enable the endstops (for endstop moves)
|
|
|
1774 |
//
|
|
|
1775 |
void setup_for_endstop_or_probe_move() {
|
|
|
1776 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1777 |
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
|
|
|
1778 |
#endif
|
|
|
1779 |
saved_feedrate_mm_s = feedrate_mm_s;
|
|
|
1780 |
saved_feedrate_percentage = feedrate_percentage;
|
|
|
1781 |
feedrate_percentage = 100;
|
|
|
1782 |
}
|
|
|
1783 |
|
|
|
1784 |
void clean_up_after_endstop_or_probe_move() {
|
|
|
1785 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1786 |
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
|
|
|
1787 |
#endif
|
|
|
1788 |
feedrate_mm_s = saved_feedrate_mm_s;
|
|
|
1789 |
feedrate_percentage = saved_feedrate_percentage;
|
|
|
1790 |
}
|
|
|
1791 |
|
|
|
1792 |
#if HAS_AXIS_UNHOMED_ERR
|
|
|
1793 |
|
|
|
1794 |
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
|
|
|
1795 |
#if ENABLED(HOME_AFTER_DEACTIVATE)
|
|
|
1796 |
const bool xx = x && !TEST(axis_known_position, X_AXIS),
|
|
|
1797 |
yy = y && !TEST(axis_known_position, Y_AXIS),
|
|
|
1798 |
zz = z && !TEST(axis_known_position, Z_AXIS);
|
|
|
1799 |
#else
|
|
|
1800 |
const bool xx = x && !TEST(axis_homed, X_AXIS),
|
|
|
1801 |
yy = y && !TEST(axis_homed, Y_AXIS),
|
|
|
1802 |
zz = z && !TEST(axis_homed, Z_AXIS);
|
|
|
1803 |
#endif
|
|
|
1804 |
if (xx || yy || zz) {
|
|
|
1805 |
SERIAL_ECHO_START();
|
|
|
1806 |
SERIAL_ECHOPGM(MSG_HOME " ");
|
|
|
1807 |
if (xx) SERIAL_ECHOPGM(MSG_X);
|
|
|
1808 |
if (yy) SERIAL_ECHOPGM(MSG_Y);
|
|
|
1809 |
if (zz) SERIAL_ECHOPGM(MSG_Z);
|
|
|
1810 |
SERIAL_ECHOLNPGM(" " MSG_FIRST);
|
|
|
1811 |
|
|
|
1812 |
#if ENABLED(ULTRA_LCD)
|
|
|
1813 |
lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
|
|
|
1814 |
#endif
|
|
|
1815 |
return true;
|
|
|
1816 |
}
|
|
|
1817 |
return false;
|
|
|
1818 |
}
|
|
|
1819 |
|
|
|
1820 |
#endif // HAS_AXIS_UNHOMED_ERR
|
|
|
1821 |
|
|
|
1822 |
#if ENABLED(Z_PROBE_SLED)
|
|
|
1823 |
|
|
|
1824 |
#ifndef SLED_DOCKING_OFFSET
|
|
|
1825 |
#define SLED_DOCKING_OFFSET 0
|
|
|
1826 |
#endif
|
|
|
1827 |
|
|
|
1828 |
/**
|
|
|
1829 |
* Method to dock/undock a sled designed by Charles Bell.
|
|
|
1830 |
*
|
|
|
1831 |
* stow[in] If false, move to MAX_X and engage the solenoid
|
|
|
1832 |
* If true, move to MAX_X and release the solenoid
|
|
|
1833 |
*/
|
|
|
1834 |
static void dock_sled(bool stow) {
|
|
|
1835 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1836 |
if (DEBUGGING(LEVELING)) {
|
|
|
1837 |
SERIAL_ECHOPAIR("dock_sled(", stow);
|
|
|
1838 |
SERIAL_CHAR(')');
|
|
|
1839 |
SERIAL_EOL();
|
|
|
1840 |
}
|
|
|
1841 |
#endif
|
|
|
1842 |
|
|
|
1843 |
// Dock sled a bit closer to ensure proper capturing
|
|
|
1844 |
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
|
|
|
1845 |
|
|
|
1846 |
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
|
|
|
1847 |
WRITE(SOL1_PIN, !stow); // switch solenoid
|
|
|
1848 |
#endif
|
|
|
1849 |
}
|
|
|
1850 |
|
|
|
1851 |
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
1852 |
|
|
|
1853 |
FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s) {
|
|
|
1854 |
do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
|
|
|
1855 |
}
|
|
|
1856 |
|
|
|
1857 |
void run_deploy_moves_script() {
|
|
|
1858 |
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
|
|
|
1859 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
|
|
|
1860 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
|
|
|
1861 |
#endif
|
|
|
1862 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
|
|
|
1863 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
|
|
|
1864 |
#endif
|
|
|
1865 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
|
|
|
1866 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
|
|
|
1867 |
#endif
|
|
|
1868 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
|
|
|
1869 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
|
|
|
1870 |
#endif
|
|
|
1871 |
const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
|
|
|
1872 |
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
|
|
|
1873 |
#endif
|
|
|
1874 |
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
|
|
|
1875 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
|
|
|
1876 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
|
|
|
1877 |
#endif
|
|
|
1878 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
|
|
|
1879 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
|
|
|
1880 |
#endif
|
|
|
1881 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
|
|
|
1882 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
|
|
|
1883 |
#endif
|
|
|
1884 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
|
|
|
1885 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
|
|
|
1886 |
#endif
|
|
|
1887 |
const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
|
|
|
1888 |
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
|
|
|
1889 |
#endif
|
|
|
1890 |
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
|
|
|
1891 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
|
|
|
1892 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
|
|
|
1893 |
#endif
|
|
|
1894 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
|
|
|
1895 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
|
|
|
1896 |
#endif
|
|
|
1897 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
|
|
|
1898 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
|
|
|
1899 |
#endif
|
|
|
1900 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
|
|
|
1901 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
|
|
|
1902 |
#endif
|
|
|
1903 |
const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
|
|
|
1904 |
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
|
|
|
1905 |
#endif
|
|
|
1906 |
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
|
|
|
1907 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
|
|
|
1908 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
|
|
|
1909 |
#endif
|
|
|
1910 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
|
|
|
1911 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
|
|
|
1912 |
#endif
|
|
|
1913 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
|
|
|
1914 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
|
|
|
1915 |
#endif
|
|
|
1916 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
|
|
|
1917 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
|
|
|
1918 |
#endif
|
|
|
1919 |
const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
|
|
|
1920 |
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
|
|
|
1921 |
#endif
|
|
|
1922 |
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
|
|
|
1923 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
|
|
|
1924 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
|
|
|
1925 |
#endif
|
|
|
1926 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
|
|
|
1927 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
|
|
|
1928 |
#endif
|
|
|
1929 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
|
|
|
1930 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
|
|
|
1931 |
#endif
|
|
|
1932 |
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
|
|
|
1933 |
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
|
|
|
1934 |
#endif
|
|
|
1935 |
const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
|
|
|
1936 |
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
|
|
|
1937 |
#endif
|
|
|
1938 |
}
|
|
|
1939 |
|
|
|
1940 |
void run_stow_moves_script() {
|
|
|
1941 |
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
|
|
|
1942 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
|
|
|
1943 |
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
|
|
|
1944 |
#endif
|
|
|
1945 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
|
|
|
1946 |
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
|
|
|
1947 |
#endif
|
|
|
1948 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
|
|
|
1949 |
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
|
|
|
1950 |
#endif
|
|
|
1951 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
|
|
|
1952 |
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
|
|
|
1953 |
#endif
|
|
|
1954 |
const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
|
|
|
1955 |
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
|
|
|
1956 |
#endif
|
|
|
1957 |
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
|
|
|
1958 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
|
|
|
1959 |
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
|
|
|
1960 |
#endif
|
|
|
1961 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
|
|
|
1962 |
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
|
|
|
1963 |
#endif
|
|
|
1964 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
|
|
|
1965 |
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
|
|
|
1966 |
#endif
|
|
|
1967 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
|
|
|
1968 |
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
|
|
|
1969 |
#endif
|
|
|
1970 |
const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
|
|
|
1971 |
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
|
|
|
1972 |
#endif
|
|
|
1973 |
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
|
|
|
1974 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
|
|
|
1975 |
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
|
|
|
1976 |
#endif
|
|
|
1977 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
|
|
|
1978 |
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
|
|
|
1979 |
#endif
|
|
|
1980 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
|
|
|
1981 |
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
|
|
|
1982 |
#endif
|
|
|
1983 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
|
|
|
1984 |
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
|
|
|
1985 |
#endif
|
|
|
1986 |
const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
|
|
|
1987 |
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
|
|
|
1988 |
#endif
|
|
|
1989 |
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
|
|
|
1990 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
|
|
|
1991 |
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
|
|
|
1992 |
#endif
|
|
|
1993 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
|
|
|
1994 |
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
|
|
|
1995 |
#endif
|
|
|
1996 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
|
|
|
1997 |
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
|
|
|
1998 |
#endif
|
|
|
1999 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
|
|
|
2000 |
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
|
|
|
2001 |
#endif
|
|
|
2002 |
const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
|
|
|
2003 |
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
|
|
|
2004 |
#endif
|
|
|
2005 |
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
|
|
|
2006 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
|
|
|
2007 |
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
|
|
|
2008 |
#endif
|
|
|
2009 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
|
|
|
2010 |
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
|
|
|
2011 |
#endif
|
|
|
2012 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
|
|
|
2013 |
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
|
|
|
2014 |
#endif
|
|
|
2015 |
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
|
|
|
2016 |
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
|
|
|
2017 |
#endif
|
|
|
2018 |
const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
|
|
|
2019 |
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
|
|
|
2020 |
#endif
|
|
|
2021 |
}
|
|
|
2022 |
|
|
|
2023 |
#endif // Z_PROBE_ALLEN_KEY
|
|
|
2024 |
|
|
|
2025 |
#if ENABLED(PROBING_FANS_OFF)
|
|
|
2026 |
|
|
|
2027 |
void fans_pause(const bool p) {
|
|
|
2028 |
if (p != fans_paused) {
|
|
|
2029 |
fans_paused = p;
|
|
|
2030 |
if (p)
|
|
|
2031 |
for (uint8_t x = 0; x < FAN_COUNT; x++) {
|
|
|
2032 |
paused_fanSpeeds[x] = fanSpeeds[x];
|
|
|
2033 |
fanSpeeds[x] = 0;
|
|
|
2034 |
}
|
|
|
2035 |
else
|
|
|
2036 |
for (uint8_t x = 0; x < FAN_COUNT; x++)
|
|
|
2037 |
fanSpeeds[x] = paused_fanSpeeds[x];
|
|
|
2038 |
}
|
|
|
2039 |
}
|
|
|
2040 |
|
|
|
2041 |
#endif // PROBING_FANS_OFF
|
|
|
2042 |
|
|
|
2043 |
#if HAS_BED_PROBE
|
|
|
2044 |
|
|
|
2045 |
// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
|
|
|
2046 |
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
|
|
|
2047 |
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
|
2048 |
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
|
|
|
2049 |
#else
|
|
|
2050 |
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
|
|
|
2051 |
#endif
|
|
|
2052 |
#endif
|
|
|
2053 |
|
|
|
2054 |
#if QUIET_PROBING
|
|
|
2055 |
void probing_pause(const bool p) {
|
|
|
2056 |
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
2057 |
thermalManager.pause(p);
|
|
|
2058 |
#endif
|
|
|
2059 |
#if ENABLED(PROBING_FANS_OFF)
|
|
|
2060 |
fans_pause(p);
|
|
|
2061 |
#endif
|
|
|
2062 |
if (p) safe_delay(
|
|
|
2063 |
#if DELAY_BEFORE_PROBING > 25
|
|
|
2064 |
DELAY_BEFORE_PROBING
|
|
|
2065 |
#else
|
|
|
2066 |
25
|
|
|
2067 |
#endif
|
|
|
2068 |
);
|
|
|
2069 |
}
|
|
|
2070 |
#endif // QUIET_PROBING
|
|
|
2071 |
|
|
|
2072 |
#if ENABLED(BLTOUCH)
|
|
|
2073 |
|
|
|
2074 |
typedef unsigned char BLTCommand;
|
|
|
2075 |
void bltouch_init(const bool set_voltage=false);
|
|
|
2076 |
bool bltouch_last_written_mode; // Initialized by settings.load, 0 = Open Drain; 1 = 5V Drain
|
|
|
2077 |
|
|
|
2078 |
bool bltouch_triggered() {
|
|
|
2079 |
return (
|
|
|
2080 |
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
|
|
2081 |
READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING
|
|
|
2082 |
#else
|
|
|
2083 |
READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING
|
|
|
2084 |
#endif
|
|
|
2085 |
);
|
|
|
2086 |
}
|
|
|
2087 |
|
|
|
2088 |
bool bltouch_command(const BLTCommand cmd, const millis_t &ms) {
|
|
|
2089 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2090 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("BLTouch Command :", cmd);
|
|
|
2091 |
#endif
|
|
|
2092 |
MOVE_SERVO(Z_PROBE_SERVO_NR, cmd);
|
|
|
2093 |
safe_delay(MAX(ms, (uint32_t)BLTOUCH_DELAY)); // BLTOUCH_DELAY is also the *minimum* delay
|
|
|
2094 |
return bltouch_triggered();
|
|
|
2095 |
}
|
|
|
2096 |
|
|
|
2097 |
// Native BLTouch commands ("Underscore"...), used in lcd menus and internally
|
|
|
2098 |
void _bltouch_reset() { bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY); }
|
|
|
2099 |
|
|
|
2100 |
void _bltouch_selftest() { bltouch_command(BLTOUCH_SELFTEST, BLTOUCH_DELAY); }
|
|
|
2101 |
|
|
|
2102 |
void _bltouch_set_SW_mode() { bltouch_command(BLTOUCH_SW_MODE, BLTOUCH_DELAY); }
|
|
|
2103 |
|
|
|
2104 |
void _bltouch_set_5V_mode() { bltouch_command(BLTOUCH_5V_MODE, BLTOUCH_SET5V_DELAY); }
|
|
|
2105 |
void _bltouch_set_OD_mode() { bltouch_command(BLTOUCH_OD_MODE, BLTOUCH_SETOD_DELAY); }
|
|
|
2106 |
void _bltouch_mode_store() { bltouch_command(BLTOUCH_MODE_STORE, BLTOUCH_MODE_STORE_DELAY); }
|
|
|
2107 |
|
|
|
2108 |
void _bltouch_deploy() { bltouch_command(BLTOUCH_DEPLOY, BLTOUCH_DEPLOY_DELAY); }
|
|
|
2109 |
void _bltouch_stow() { bltouch_command(BLTOUCH_STOW, BLTOUCH_STOW_DELAY); }
|
|
|
2110 |
|
|
|
2111 |
void _bltouch_reset_SW_mode() { if (bltouch_triggered()) _bltouch_stow(); else _bltouch_deploy(); }
|
|
|
2112 |
|
|
|
2113 |
bool _bltouch_deploy_query_alarm() { return bltouch_command(BLTOUCH_DEPLOY, BLTOUCH_DEPLOY_DELAY); }
|
|
|
2114 |
bool _bltouch_stow_query_alarm() { return bltouch_command(BLTOUCH_STOW, BLTOUCH_STOW_DELAY); }
|
|
|
2115 |
|
|
|
2116 |
void bltouch_clear() {
|
|
|
2117 |
_bltouch_reset(); // RESET or RESET_SW will clear an alarm condition but...
|
|
|
2118 |
// ...it will not clear a triggered condition in SW mode when the pin is currently up
|
|
|
2119 |
// ANTClabs <-- CODE ERROR
|
|
|
2120 |
_bltouch_stow(); // STOW will pull up the pin and clear any triggered condition unless it fails, don't care
|
|
|
2121 |
_bltouch_deploy(); // DEPLOY to test the probe. Could fail, don't care
|
|
|
2122 |
_bltouch_stow(); // STOW to be ready for meaningful work. Could fail, don't care
|
|
|
2123 |
}
|
|
|
2124 |
|
|
|
2125 |
bool bltouch_deploy_proc() {
|
|
|
2126 |
// Do a DEPLOY
|
|
|
2127 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2128 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch DEPLOY requested");
|
|
|
2129 |
#endif
|
|
|
2130 |
|
|
|
2131 |
// Attempt to DEPLOY, wait for DEPLOY_DELAY or ALARM
|
|
|
2132 |
if (_bltouch_deploy_query_alarm()) {
|
|
|
2133 |
// The deploy might have failed or the probe is already triggered (nozzle too low?)
|
|
|
2134 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2135 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch ALARM or TRIGGER after DEPLOY, recovering");
|
|
|
2136 |
#endif
|
|
|
2137 |
|
|
|
2138 |
bltouch_clear(); // Get the probe into start condition
|
|
|
2139 |
|
|
|
2140 |
// Last attempt to DEPLOY
|
|
|
2141 |
if (_bltouch_deploy_query_alarm()) {
|
|
|
2142 |
// The deploy might have failed or the probe is actually triggered (nozzle too low?) again
|
|
|
2143 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2144 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch Recovery Failed");
|
|
|
2145 |
#endif
|
|
|
2146 |
|
|
|
2147 |
SERIAL_ECHOLN(MSG_STOP_BLTOUCH); // Tell the user something is wrong, needs action
|
|
|
2148 |
stop(); // but it's not too bad, no need to kill, allow restart
|
|
|
2149 |
|
|
|
2150 |
return true; // Tell our caller we goofed in case he cares to know
|
|
|
2151 |
}
|
|
|
2152 |
}
|
|
|
2153 |
|
|
|
2154 |
// One of the recommended ANTClabs ways to probe, using SW MODE
|
|
|
2155 |
#if ENABLED(BLTOUCH_FORCE_SW_MODE)
|
|
|
2156 |
_bltouch_set_SW_mode();
|
|
|
2157 |
#endif
|
|
|
2158 |
|
|
|
2159 |
// Now the probe is ready to issue a 10ms pulse when the pin goes up.
|
|
|
2160 |
// The trigger STOW (see motion.cpp for example) will pull up the probes pin as soon as the pulse
|
|
|
2161 |
// is registered.
|
|
|
2162 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2163 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("bltouch.deploy_proc() end");
|
|
|
2164 |
#endif
|
|
|
2165 |
|
|
|
2166 |
return false; // report success to caller
|
|
|
2167 |
}
|
|
|
2168 |
|
|
|
2169 |
bool bltouch_stow_proc() {
|
|
|
2170 |
// Do a STOW
|
|
|
2171 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2172 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch STOW requested");
|
|
|
2173 |
#endif
|
|
|
2174 |
|
|
|
2175 |
// A STOW will clear a triggered condition in the probe (10ms pulse).
|
|
|
2176 |
// At the moment that we come in here, we might (pulse) or will (SW mode) see the trigger on the pin.
|
|
|
2177 |
// So even though we know a STOW will be ignored if an ALARM condition is active, we will STOW.
|
|
|
2178 |
// Note: If the probe is deployed AND in an ALARM condition, this STOW will not pull up the pin
|
|
|
2179 |
// and the ALARM condition will still be there. --> ANTClabs should change this behavior maybe
|
|
|
2180 |
|
|
|
2181 |
// Attempt to STOW, wait for STOW_DELAY or ALARM
|
|
|
2182 |
if (_bltouch_stow_query_alarm()) {
|
|
|
2183 |
// The stow might have failed
|
|
|
2184 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2185 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch ALARM or TRIGGER after STOW, recovering");
|
|
|
2186 |
#endif
|
|
|
2187 |
|
|
|
2188 |
_bltouch_reset(); // This RESET will then also pull up the pin. If it doesn't
|
|
|
2189 |
// work and the pin is still down, there will no longer be
|
|
|
2190 |
// an ALARM condition though.
|
|
|
2191 |
// But one more STOW will catch that
|
|
|
2192 |
// Last attempt to STOW
|
|
|
2193 |
if (_bltouch_stow_query_alarm()) { // so if there is now STILL an ALARM condition:
|
|
|
2194 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2195 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch Recovery Failed");
|
|
|
2196 |
#endif
|
|
|
2197 |
|
|
|
2198 |
SERIAL_ECHOLN(MSG_STOP_BLTOUCH); // Tell the user something is wrong, needs action
|
|
|
2199 |
stop(); // but it's not too bad, no need to kill, allow restart
|
|
|
2200 |
|
|
|
2201 |
return true; // Tell our caller we goofed in case he cares to know
|
|
|
2202 |
}
|
|
|
2203 |
}
|
|
|
2204 |
|
|
|
2205 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2206 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("bltouch.stow_proc() end");
|
|
|
2207 |
#endif
|
|
|
2208 |
|
|
|
2209 |
return false; // report success to caller
|
|
|
2210 |
}
|
|
|
2211 |
|
|
|
2212 |
bool bltouch_status_proc() {
|
|
|
2213 |
/**
|
|
|
2214 |
* Return a TRUE for "YES, it is DEPLOYED"
|
|
|
2215 |
* This function will ensure switch state is reset after execution
|
|
|
2216 |
*/
|
|
|
2217 |
|
|
|
2218 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2219 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch STATUS requested");
|
|
|
2220 |
#endif
|
|
|
2221 |
|
|
|
2222 |
_bltouch_set_SW_mode(); // Incidentally, _set_SW_mode() will also RESET any active alarm
|
|
|
2223 |
const bool tr = bltouch_triggered(); // If triggered in SW mode, the pin is up, it is STOWED
|
|
|
2224 |
|
|
|
2225 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2226 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("BLTouch is ", (int)tr);
|
|
|
2227 |
#endif
|
|
|
2228 |
|
|
|
2229 |
if (tr) _bltouch_stow(); else _bltouch_deploy(); // Turn off SW mode, reset any trigger, honor pin state
|
|
|
2230 |
return !tr;
|
|
|
2231 |
}
|
|
|
2232 |
|
|
|
2233 |
void bltouch_mode_conv_proc(const bool M5V) {
|
|
|
2234 |
/**
|
|
|
2235 |
* BLTOUCH pre V3.0 and clones: No reaction at all to this sequence apart from a DEPLOY -> STOW
|
|
|
2236 |
* BLTOUCH V3.0: This will set the mode (twice) and sadly, a STOW is needed at the end, because of the deploy
|
|
|
2237 |
* BLTOUCH V3.1: This will set the mode and store it in the eeprom. The STOW is not needed but does not hurt
|
|
|
2238 |
*/
|
|
|
2239 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2240 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("BLTouch Set Mode - ", (int)M5V);
|
|
|
2241 |
#endif
|
|
|
2242 |
_bltouch_deploy();
|
|
|
2243 |
if (M5V) _bltouch_set_5V_mode(); else _bltouch_set_OD_mode();
|
|
|
2244 |
_bltouch_mode_store();
|
|
|
2245 |
if (M5V) _bltouch_set_5V_mode(); else _bltouch_set_OD_mode();
|
|
|
2246 |
_bltouch_stow();
|
|
|
2247 |
bltouch_last_written_mode = M5V;
|
|
|
2248 |
}
|
|
|
2249 |
|
|
|
2250 |
bool set_bltouch_deployed(const bool deploy) {
|
|
|
2251 |
if (deploy) _bltouch_deploy(); else _bltouch_stow();
|
|
|
2252 |
return false;
|
|
|
2253 |
}
|
|
|
2254 |
|
|
|
2255 |
void bltouch_mode_conv_5V() { bltouch_mode_conv_proc(true); }
|
|
|
2256 |
void bltouch_mode_conv_OD() { bltouch_mode_conv_proc(false); }
|
|
|
2257 |
|
|
|
2258 |
// DEPLOY and STOW are wrapped for error handling - these are used by homing and by probing
|
|
|
2259 |
bool bltouch_deploy() { return bltouch_deploy_proc(); }
|
|
|
2260 |
bool bltouch_stow() { return bltouch_stow_proc(); }
|
|
|
2261 |
bool bltouch_status() { return bltouch_status_proc(); }
|
|
|
2262 |
|
|
|
2263 |
// Init the class and device. Call from setup().
|
|
|
2264 |
void bltouch_init(const bool set_voltage/*=false*/) {
|
|
|
2265 |
// Voltage Setting (if enabled). At every Marlin initialization:
|
|
|
2266 |
// BLTOUCH < V3.0 and clones: This will be ignored by the probe
|
|
|
2267 |
// BLTOUCH V3.0: SET_5V_MODE or SET_OD_MODE (if enabled).
|
|
|
2268 |
// OD_MODE is the default on power on, but setting it does not hurt
|
|
|
2269 |
// This mode will stay active until manual SET_OD_MODE or power cycle
|
|
|
2270 |
// BLTOUCH V3.1: SET_5V_MODE or SET_OD_MODE (if enabled).
|
|
|
2271 |
// At power on, the probe will default to the eeprom settings configured by the user
|
|
|
2272 |
_bltouch_reset();
|
|
|
2273 |
_bltouch_stow();
|
|
|
2274 |
|
|
|
2275 |
#if ENABLED(BLTOUCH_FORCE_MODE_SET)
|
|
|
2276 |
|
|
|
2277 |
constexpr bool should_set = true;
|
|
|
2278 |
|
|
|
2279 |
#else
|
|
|
2280 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2281 |
if (DEBUGGING(LEVELING)) {
|
|
|
2282 |
SERIAL_ECHOLNPAIR("last_written_mode - ", int(bltouch_last_written_mode));
|
|
|
2283 |
SERIAL_ECHOLNPGM("config mode - "
|
|
|
2284 |
#if ENABLED(BLTOUCH_SET_5V_MODE)
|
|
|
2285 |
"BLTOUCH_SET_5V_MODE"
|
|
|
2286 |
#else
|
|
|
2287 |
"OD"
|
|
|
2288 |
#endif
|
|
|
2289 |
);
|
|
|
2290 |
}
|
|
|
2291 |
#endif
|
|
|
2292 |
|
|
|
2293 |
const bool should_set = bltouch_last_written_mode != (false
|
|
|
2294 |
#if ENABLED(BLTOUCH_SET_5V_MODE)
|
|
|
2295 |
|| true
|
|
|
2296 |
#endif
|
|
|
2297 |
);
|
|
|
2298 |
|
|
|
2299 |
#endif
|
|
|
2300 |
|
|
|
2301 |
if (should_set && set_voltage)
|
|
|
2302 |
bltouch_mode_conv_proc((false
|
|
|
2303 |
#if ENABLED(BLTOUCH_SET_5V_MODE)
|
|
|
2304 |
|| true
|
|
|
2305 |
#endif
|
|
|
2306 |
));
|
|
|
2307 |
}
|
|
|
2308 |
#endif // BLTOUCH
|
|
|
2309 |
|
|
|
2310 |
/**
|
|
|
2311 |
* Raise Z to a minimum height to make room for a probe to move
|
|
|
2312 |
*/
|
|
|
2313 |
inline void do_probe_raise(const float z_raise) {
|
|
|
2314 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2315 |
if (DEBUGGING(LEVELING)) {
|
|
|
2316 |
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
|
|
|
2317 |
SERIAL_CHAR(')');
|
|
|
2318 |
SERIAL_EOL();
|
|
|
2319 |
}
|
|
|
2320 |
#endif
|
|
|
2321 |
|
|
|
2322 |
float z_dest = z_raise;
|
|
|
2323 |
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
|
|
|
2324 |
|
|
|
2325 |
NOMORE(z_dest, Z_MAX_POS);
|
|
|
2326 |
|
|
|
2327 |
if (z_dest > current_position[Z_AXIS])
|
|
|
2328 |
do_blocking_move_to_z(z_dest);
|
|
|
2329 |
}
|
|
|
2330 |
|
|
|
2331 |
// returns false for ok and true for failure
|
|
|
2332 |
bool set_probe_deployed(const bool deploy) {
|
|
|
2333 |
|
|
|
2334 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2335 |
if (DEBUGGING(LEVELING)) {
|
|
|
2336 |
DEBUG_POS("set_probe_deployed", current_position);
|
|
|
2337 |
SERIAL_ECHOLNPAIR("deploy: ", deploy);
|
|
|
2338 |
}
|
|
|
2339 |
#endif
|
|
|
2340 |
|
|
|
2341 |
if (endstops.z_probe_enabled == deploy) return false;
|
|
|
2342 |
|
|
|
2343 |
// Make room for probe to deploy (or stow)
|
|
|
2344 |
// Fix-mounted probe should only raise for deploy
|
|
|
2345 |
#if ENABLED(FIX_MOUNTED_PROBE)
|
|
|
2346 |
const bool deploy_stow_condition = deploy;
|
|
|
2347 |
#else
|
|
|
2348 |
constexpr bool deploy_stow_condition = true;
|
|
|
2349 |
#endif
|
|
|
2350 |
|
|
|
2351 |
// For beds that fall when Z is powered off only raise for trusted Z
|
|
|
2352 |
#if ENABLED(UNKNOWN_Z_NO_RAISE)
|
|
|
2353 |
const bool unknown_condition = TEST(axis_known_position, Z_AXIS);
|
|
|
2354 |
#else
|
|
|
2355 |
constexpr float unknown_condition = true;
|
|
|
2356 |
#endif
|
|
|
2357 |
|
|
|
2358 |
if (deploy_stow_condition && unknown_condition)
|
|
|
2359 |
do_probe_raise(MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE));
|
|
|
2360 |
|
|
|
2361 |
#if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
2362 |
#if ENABLED(Z_PROBE_SLED)
|
|
|
2363 |
#define _AUE_ARGS true, false, false
|
|
|
2364 |
#else
|
|
|
2365 |
#define _AUE_ARGS
|
|
|
2366 |
#endif
|
|
|
2367 |
if (axis_unhomed_error(_AUE_ARGS)) {
|
|
|
2368 |
SERIAL_ERROR_START();
|
|
|
2369 |
SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
|
|
|
2370 |
stop();
|
|
|
2371 |
return true;
|
|
|
2372 |
}
|
|
|
2373 |
#endif
|
|
|
2374 |
|
|
|
2375 |
const float oldXpos = current_position[X_AXIS],
|
|
|
2376 |
oldYpos = current_position[Y_AXIS];
|
|
|
2377 |
|
|
|
2378 |
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
|
2379 |
|
|
|
2380 |
// If endstop is already false, the Z probe is deployed
|
|
|
2381 |
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
|
|
|
2382 |
// Would a goto be less ugly?
|
|
|
2383 |
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
|
|
|
2384 |
// for a triggered when stowed manual probe.
|
|
|
2385 |
|
|
|
2386 |
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
|
|
|
2387 |
// otherwise an Allen-Key probe can't be stowed.
|
|
|
2388 |
#endif
|
|
|
2389 |
|
|
|
2390 |
#if ENABLED(SOLENOID_PROBE)
|
|
|
2391 |
|
|
|
2392 |
#if HAS_SOLENOID_1
|
|
|
2393 |
WRITE(SOL1_PIN, deploy);
|
|
|
2394 |
#endif
|
|
|
2395 |
|
|
|
2396 |
#elif ENABLED(Z_PROBE_SLED)
|
|
|
2397 |
|
|
|
2398 |
dock_sled(!deploy);
|
|
|
2399 |
|
|
|
2400 |
#elif HAS_Z_SERVO_PROBE && DISABLED(BLTOUCH)
|
|
|
2401 |
|
|
|
2402 |
MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
|
|
|
2403 |
|
|
|
2404 |
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
2405 |
|
|
|
2406 |
deploy ? run_deploy_moves_script() : run_stow_moves_script();
|
|
|
2407 |
|
|
|
2408 |
#endif
|
|
|
2409 |
|
|
|
2410 |
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
|
2411 |
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
2412 |
|
|
|
2413 |
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
|
|
|
2414 |
|
|
|
2415 |
if (IsRunning()) {
|
|
|
2416 |
SERIAL_ERROR_START();
|
|
|
2417 |
SERIAL_ERRORLNPGM("Z-Probe failed");
|
|
|
2418 |
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
|
2419 |
}
|
|
|
2420 |
stop();
|
|
|
2421 |
return true;
|
|
|
2422 |
|
|
|
2423 |
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
2424 |
|
|
|
2425 |
#endif
|
|
|
2426 |
|
|
|
2427 |
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
|
|
|
2428 |
endstops.enable_z_probe(deploy);
|
|
|
2429 |
return false;
|
|
|
2430 |
}
|
|
|
2431 |
|
|
|
2432 |
/**
|
|
|
2433 |
* @brief Used by run_z_probe to do a single Z probe move.
|
|
|
2434 |
*
|
|
|
2435 |
* @param z Z destination
|
|
|
2436 |
* @param fr_mm_s Feedrate in mm/s
|
|
|
2437 |
* @return true to indicate an error
|
|
|
2438 |
*/
|
|
|
2439 |
static bool do_probe_move(const float z, const float fr_mm_s) {
|
|
|
2440 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2441 |
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
|
|
|
2442 |
#endif
|
|
|
2443 |
|
|
|
2444 |
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
|
|
|
2445 |
// Wait for bed to heat back up between probing points
|
|
|
2446 |
if (thermalManager.isHeatingBed()) {
|
|
|
2447 |
serialprintPGM(msg_wait_for_bed_heating);
|
|
|
2448 |
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
|
2449 |
while (thermalManager.isHeatingBed()) safe_delay(200);
|
|
|
2450 |
lcd_reset_status();
|
|
|
2451 |
}
|
|
|
2452 |
#endif
|
|
|
2453 |
|
|
|
2454 |
// Deploy BLTouch at the start of any probe
|
|
|
2455 |
#if ENABLED(BLTOUCH)
|
|
|
2456 |
if (set_bltouch_deployed(true)) return true;
|
|
|
2457 |
#endif
|
|
|
2458 |
|
|
|
2459 |
#if QUIET_PROBING
|
|
|
2460 |
probing_pause(true);
|
|
|
2461 |
#endif
|
|
|
2462 |
|
|
|
2463 |
// Move down until probe triggered
|
|
|
2464 |
do_blocking_move_to_z(z, fr_mm_s);
|
|
|
2465 |
|
|
|
2466 |
// Check to see if the probe was triggered
|
|
|
2467 |
const bool probe_triggered = TEST(endstops.trigger_state(),
|
|
|
2468 |
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
|
|
2469 |
Z_MIN
|
|
|
2470 |
#else
|
|
|
2471 |
Z_MIN_PROBE
|
|
|
2472 |
#endif
|
|
|
2473 |
);
|
|
|
2474 |
|
|
|
2475 |
#if QUIET_PROBING
|
|
|
2476 |
probing_pause(false);
|
|
|
2477 |
#endif
|
|
|
2478 |
|
|
|
2479 |
// Retract BLTouch immediately after a probe if it was triggered
|
|
|
2480 |
#if ENABLED(BLTOUCH)
|
|
|
2481 |
if (probe_triggered && set_bltouch_deployed(false)) return true;
|
|
|
2482 |
#endif
|
|
|
2483 |
|
|
|
2484 |
endstops.hit_on_purpose();
|
|
|
2485 |
|
|
|
2486 |
// Get Z where the steppers were interrupted
|
|
|
2487 |
set_current_from_steppers_for_axis(Z_AXIS);
|
|
|
2488 |
|
|
|
2489 |
// Tell the planner where we actually are
|
|
|
2490 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
2491 |
|
|
|
2492 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2493 |
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
|
|
|
2494 |
#endif
|
|
|
2495 |
|
|
|
2496 |
return !probe_triggered;
|
|
|
2497 |
}
|
|
|
2498 |
|
|
|
2499 |
/**
|
|
|
2500 |
* @details Used by probe_pt to do a single Z probe at the current position.
|
|
|
2501 |
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
|
|
|
2502 |
*
|
|
|
2503 |
* @return The raw Z position where the probe was triggered
|
|
|
2504 |
*/
|
|
|
2505 |
static float run_z_probe() {
|
|
|
2506 |
|
|
|
2507 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2508 |
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
|
|
|
2509 |
#endif
|
|
|
2510 |
|
|
|
2511 |
// Stop the probe before it goes too low to prevent damage.
|
|
|
2512 |
// If Z isn't known then probe to -10mm.
|
|
|
2513 |
const float z_probe_low_point = TEST(axis_known_position, Z_AXIS) ? -zprobe_zoffset + Z_PROBE_LOW_POINT : -10.0;
|
|
|
2514 |
|
|
|
2515 |
// Double-probing does a fast probe followed by a slow probe
|
|
|
2516 |
#if MULTIPLE_PROBING == 2
|
|
|
2517 |
|
|
|
2518 |
// Do a first probe at the fast speed
|
|
|
2519 |
if (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_FAST))) {
|
|
|
2520 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2521 |
if (DEBUGGING(LEVELING)) {
|
|
|
2522 |
SERIAL_ECHOLNPGM("FAST Probe fail!");
|
|
|
2523 |
DEBUG_POS("<<< run_z_probe", current_position);
|
|
|
2524 |
}
|
|
|
2525 |
#endif
|
|
|
2526 |
return NAN;
|
|
|
2527 |
}
|
|
|
2528 |
|
|
|
2529 |
float first_probe_z = current_position[Z_AXIS];
|
|
|
2530 |
|
|
|
2531 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2532 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
|
|
|
2533 |
#endif
|
|
|
2534 |
|
|
|
2535 |
// move up to make clearance for the probe
|
|
|
2536 |
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
2537 |
|
|
|
2538 |
#else
|
|
|
2539 |
|
|
|
2540 |
// If the nozzle is well over the travel height then
|
|
|
2541 |
// move down quickly before doing the slow probe
|
|
|
2542 |
float z = Z_CLEARANCE_DEPLOY_PROBE + 5.0;
|
|
|
2543 |
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
|
|
|
2544 |
|
|
|
2545 |
if (current_position[Z_AXIS] > z) {
|
|
|
2546 |
// If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
|
|
|
2547 |
if (!do_probe_move(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST)))
|
|
|
2548 |
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
2549 |
}
|
|
|
2550 |
#endif
|
|
|
2551 |
|
|
|
2552 |
#if MULTIPLE_PROBING > 2
|
|
|
2553 |
float probes_total = 0;
|
|
|
2554 |
for (uint8_t p = MULTIPLE_PROBING + 1; --p;) {
|
|
|
2555 |
#endif
|
|
|
2556 |
|
|
|
2557 |
// move down slowly to find bed
|
|
|
2558 |
if (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_SLOW))) {
|
|
|
2559 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2560 |
if (DEBUGGING(LEVELING)) {
|
|
|
2561 |
SERIAL_ECHOLNPGM("SLOW Probe fail!");
|
|
|
2562 |
DEBUG_POS("<<< run_z_probe", current_position);
|
|
|
2563 |
}
|
|
|
2564 |
#endif
|
|
|
2565 |
return NAN;
|
|
|
2566 |
}
|
|
|
2567 |
|
|
|
2568 |
#if MULTIPLE_PROBING > 2
|
|
|
2569 |
probes_total += current_position[Z_AXIS];
|
|
|
2570 |
if (p > 1) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
2571 |
}
|
|
|
2572 |
#endif
|
|
|
2573 |
|
|
|
2574 |
#if MULTIPLE_PROBING > 2
|
|
|
2575 |
|
|
|
2576 |
// Return the average value of all probes
|
|
|
2577 |
const float measured_z = probes_total * (1.0f / (MULTIPLE_PROBING));
|
|
|
2578 |
|
|
|
2579 |
#elif MULTIPLE_PROBING == 2
|
|
|
2580 |
|
|
|
2581 |
const float z2 = current_position[Z_AXIS];
|
|
|
2582 |
|
|
|
2583 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2584 |
if (DEBUGGING(LEVELING)) {
|
|
|
2585 |
SERIAL_ECHOPAIR("2nd Probe Z:", z2);
|
|
|
2586 |
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - z2);
|
|
|
2587 |
}
|
|
|
2588 |
#endif
|
|
|
2589 |
|
|
|
2590 |
// Return a weighted average of the fast and slow probes
|
|
|
2591 |
const float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
|
|
|
2592 |
|
|
|
2593 |
#else
|
|
|
2594 |
|
|
|
2595 |
// Return the single probe result
|
|
|
2596 |
const float measured_z = current_position[Z_AXIS];
|
|
|
2597 |
|
|
|
2598 |
#endif
|
|
|
2599 |
|
|
|
2600 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2601 |
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
|
|
|
2602 |
#endif
|
|
|
2603 |
|
|
|
2604 |
return measured_z;
|
|
|
2605 |
}
|
|
|
2606 |
|
|
|
2607 |
/**
|
|
|
2608 |
* - Move to the given XY
|
|
|
2609 |
* - Deploy the probe, if not already deployed
|
|
|
2610 |
* - Probe the bed, get the Z position
|
|
|
2611 |
* - Depending on the 'stow' flag
|
|
|
2612 |
* - Stow the probe, or
|
|
|
2613 |
* - Raise to the BETWEEN height
|
|
|
2614 |
* - Return the probed Z position
|
|
|
2615 |
*/
|
|
|
2616 |
float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/) {
|
|
|
2617 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2618 |
if (DEBUGGING(LEVELING)) {
|
|
|
2619 |
SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
|
|
|
2620 |
SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
|
|
|
2621 |
SERIAL_ECHOPAIR(", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_STOW ? "stow" : "none");
|
|
|
2622 |
SERIAL_ECHOPAIR(", ", int(verbose_level));
|
|
|
2623 |
SERIAL_ECHOPAIR(", ", probe_relative ? "probe" : "nozzle");
|
|
|
2624 |
SERIAL_ECHOLNPGM("_relative)");
|
|
|
2625 |
DEBUG_POS("", current_position);
|
|
|
2626 |
}
|
|
|
2627 |
#endif
|
|
|
2628 |
|
|
|
2629 |
// TODO: Adapt for SCARA, where the offset rotates
|
|
|
2630 |
float nx = rx, ny = ry;
|
|
|
2631 |
if (probe_relative) {
|
|
|
2632 |
if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
|
|
|
2633 |
nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
|
|
|
2634 |
ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
2635 |
}
|
|
|
2636 |
else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
|
|
|
2637 |
|
|
|
2638 |
const float nz =
|
|
|
2639 |
#if ENABLED(DELTA)
|
|
|
2640 |
// Move below clip height or xy move will be aborted by do_blocking_move_to
|
|
|
2641 |
MIN(current_position[Z_AXIS], delta_clip_start_height)
|
|
|
2642 |
#else
|
|
|
2643 |
current_position[Z_AXIS]
|
|
|
2644 |
#endif
|
|
|
2645 |
;
|
|
|
2646 |
|
|
|
2647 |
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
2648 |
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
|
|
|
2649 |
|
|
|
2650 |
// Move the probe to the starting XYZ
|
|
|
2651 |
do_blocking_move_to(nx, ny, nz);
|
|
|
2652 |
|
|
|
2653 |
float measured_z = NAN;
|
|
|
2654 |
if (!DEPLOY_PROBE()) {
|
|
|
2655 |
measured_z = run_z_probe() + zprobe_zoffset;
|
|
|
2656 |
|
|
|
2657 |
const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;
|
|
|
2658 |
if (big_raise || raise_after == PROBE_PT_RAISE)
|
|
|
2659 |
do_blocking_move_to_z(current_position[Z_AXIS] + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
2660 |
else if (raise_after == PROBE_PT_STOW)
|
|
|
2661 |
if (STOW_PROBE()) measured_z = NAN;
|
|
|
2662 |
}
|
|
|
2663 |
|
|
|
2664 |
if (verbose_level > 2) {
|
|
|
2665 |
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
|
2666 |
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
|
|
|
2667 |
SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
2668 |
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
|
|
|
2669 |
SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
2670 |
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
|
2671 |
SERIAL_EOL();
|
|
|
2672 |
}
|
|
|
2673 |
|
|
|
2674 |
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
2675 |
|
|
|
2676 |
if (isnan(measured_z)) {
|
|
|
2677 |
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
|
|
|
2678 |
SERIAL_ERROR_START();
|
|
|
2679 |
SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
|
|
|
2680 |
}
|
|
|
2681 |
|
|
|
2682 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2683 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
|
|
|
2684 |
#endif
|
|
|
2685 |
|
|
|
2686 |
return measured_z;
|
|
|
2687 |
}
|
|
|
2688 |
|
|
|
2689 |
#endif // HAS_BED_PROBE
|
|
|
2690 |
|
|
|
2691 |
#if HAS_LEVELING
|
|
|
2692 |
|
|
|
2693 |
bool leveling_is_valid() {
|
|
|
2694 |
return
|
|
|
2695 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
2696 |
mbl.has_mesh()
|
|
|
2697 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
2698 |
!!bilinear_grid_spacing[X_AXIS]
|
|
|
2699 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
2700 |
ubl.mesh_is_valid()
|
|
|
2701 |
#else // 3POINT, LINEAR
|
|
|
2702 |
true
|
|
|
2703 |
#endif
|
|
|
2704 |
;
|
|
|
2705 |
}
|
|
|
2706 |
|
|
|
2707 |
/**
|
|
|
2708 |
* Turn bed leveling on or off, fixing the current
|
|
|
2709 |
* position as-needed.
|
|
|
2710 |
*
|
|
|
2711 |
* Disable: Current position = physical position
|
|
|
2712 |
* Enable: Current position = "unleveled" physical position
|
|
|
2713 |
*/
|
|
|
2714 |
void set_bed_leveling_enabled(const bool enable/*=true*/) {
|
|
|
2715 |
|
|
|
2716 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
2717 |
const bool can_change = (!enable || leveling_is_valid());
|
|
|
2718 |
#else
|
|
|
2719 |
constexpr bool can_change = true;
|
|
|
2720 |
#endif
|
|
|
2721 |
|
|
|
2722 |
if (can_change && enable != planner.leveling_active) {
|
|
|
2723 |
|
|
|
2724 |
planner.synchronize();
|
|
|
2725 |
|
|
|
2726 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
2727 |
|
|
|
2728 |
if (!enable)
|
|
|
2729 |
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
|
2730 |
|
|
|
2731 |
const bool enabling = enable && leveling_is_valid();
|
|
|
2732 |
planner.leveling_active = enabling;
|
|
|
2733 |
if (enabling) planner.unapply_leveling(current_position);
|
|
|
2734 |
|
|
|
2735 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
2736 |
#if PLANNER_LEVELING
|
|
|
2737 |
if (planner.leveling_active) { // leveling from on to off
|
|
|
2738 |
// change unleveled current_position to physical current_position without moving steppers.
|
|
|
2739 |
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
|
2740 |
planner.leveling_active = false; // disable only AFTER calling apply_leveling
|
|
|
2741 |
}
|
|
|
2742 |
else { // leveling from off to on
|
|
|
2743 |
planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
|
|
|
2744 |
// change physical current_position to unleveled current_position without moving steppers.
|
|
|
2745 |
planner.unapply_leveling(current_position);
|
|
|
2746 |
}
|
|
|
2747 |
#else
|
|
|
2748 |
// UBL equivalents for apply/unapply_leveling
|
|
|
2749 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
2750 |
float pos[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
|
|
2751 |
planner.skew(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS]);
|
|
|
2752 |
#else
|
|
|
2753 |
const float (&pos)[XYZE] = current_position;
|
|
|
2754 |
#endif
|
|
|
2755 |
if (planner.leveling_active) {
|
|
|
2756 |
current_position[Z_AXIS] += ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS]);
|
|
|
2757 |
planner.leveling_active = false;
|
|
|
2758 |
}
|
|
|
2759 |
else {
|
|
|
2760 |
planner.leveling_active = true;
|
|
|
2761 |
current_position[Z_AXIS] -= ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS]);
|
|
|
2762 |
}
|
|
|
2763 |
#endif
|
|
|
2764 |
|
|
|
2765 |
#else // ABL
|
|
|
2766 |
|
|
|
2767 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
2768 |
// Force bilinear_z_offset to re-calculate next time
|
|
|
2769 |
const float reset[XYZ] = { -9999.999, -9999.999, 0 };
|
|
|
2770 |
(void)bilinear_z_offset(reset);
|
|
|
2771 |
#endif
|
|
|
2772 |
|
|
|
2773 |
// Enable or disable leveling compensation in the planner
|
|
|
2774 |
planner.leveling_active = enable;
|
|
|
2775 |
|
|
|
2776 |
if (!enable)
|
|
|
2777 |
// When disabling just get the current position from the steppers.
|
|
|
2778 |
// This will yield the smallest error when first converted back to steps.
|
|
|
2779 |
set_current_from_steppers_for_axis(
|
|
|
2780 |
#if ABL_PLANAR
|
|
|
2781 |
ALL_AXES
|
|
|
2782 |
#else
|
|
|
2783 |
Z_AXIS
|
|
|
2784 |
#endif
|
|
|
2785 |
);
|
|
|
2786 |
else
|
|
|
2787 |
// When enabling, remove compensation from the current position,
|
|
|
2788 |
// so compensation will give the right stepper counts.
|
|
|
2789 |
planner.unapply_leveling(current_position);
|
|
|
2790 |
|
|
|
2791 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
2792 |
|
|
|
2793 |
#endif // ABL
|
|
|
2794 |
}
|
|
|
2795 |
}
|
|
|
2796 |
|
|
|
2797 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
2798 |
|
|
|
2799 |
void set_z_fade_height(const float zfh, const bool do_report/*=true*/) {
|
|
|
2800 |
|
|
|
2801 |
if (planner.z_fade_height == zfh) return;
|
|
|
2802 |
|
|
|
2803 |
const bool leveling_was_active = planner.leveling_active;
|
|
|
2804 |
set_bed_leveling_enabled(false);
|
|
|
2805 |
|
|
|
2806 |
planner.set_z_fade_height(zfh);
|
|
|
2807 |
|
|
|
2808 |
if (leveling_was_active) {
|
|
|
2809 |
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
|
|
2810 |
set_bed_leveling_enabled(true);
|
|
|
2811 |
if (do_report && memcmp(oldpos, current_position, sizeof(oldpos)))
|
|
|
2812 |
report_current_position();
|
|
|
2813 |
}
|
|
|
2814 |
}
|
|
|
2815 |
|
|
|
2816 |
#endif // LEVELING_FADE_HEIGHT
|
|
|
2817 |
|
|
|
2818 |
/**
|
|
|
2819 |
* Reset calibration results to zero.
|
|
|
2820 |
*/
|
|
|
2821 |
void reset_bed_level() {
|
|
|
2822 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2823 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
|
|
|
2824 |
#endif
|
|
|
2825 |
set_bed_leveling_enabled(false);
|
|
|
2826 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
2827 |
mbl.reset();
|
|
|
2828 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
2829 |
ubl.reset();
|
|
|
2830 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
2831 |
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
|
|
|
2832 |
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
|
|
|
2833 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
2834 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
2835 |
z_values[x][y] = NAN;
|
|
|
2836 |
#elif ABL_PLANAR
|
|
|
2837 |
planner.bed_level_matrix.set_to_identity();
|
|
|
2838 |
#endif
|
|
|
2839 |
}
|
|
|
2840 |
|
|
|
2841 |
#endif // HAS_LEVELING
|
|
|
2842 |
|
|
|
2843 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
|
|
|
2844 |
|
|
|
2845 |
/**
|
|
|
2846 |
* Enable to produce output in JSON format suitable
|
|
|
2847 |
* for SCAD or JavaScript mesh visualizers.
|
|
|
2848 |
*
|
|
|
2849 |
* Visualize meshes in OpenSCAD using the included script.
|
|
|
2850 |
*
|
|
|
2851 |
* buildroot/shared/scripts/MarlinMesh.scad
|
|
|
2852 |
*/
|
|
|
2853 |
//#define SCAD_MESH_OUTPUT
|
|
|
2854 |
|
|
|
2855 |
/**
|
|
|
2856 |
* Print calibration results for plotting or manual frame adjustment.
|
|
|
2857 |
*/
|
|
|
2858 |
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn) {
|
|
|
2859 |
#ifndef SCAD_MESH_OUTPUT
|
|
|
2860 |
for (uint8_t x = 0; x < sx; x++) {
|
|
|
2861 |
for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
|
|
|
2862 |
SERIAL_PROTOCOLCHAR(' ');
|
|
|
2863 |
SERIAL_PROTOCOL(int(x));
|
|
|
2864 |
}
|
|
|
2865 |
SERIAL_EOL();
|
|
|
2866 |
#endif
|
|
|
2867 |
#ifdef SCAD_MESH_OUTPUT
|
|
|
2868 |
SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
|
|
|
2869 |
#endif
|
|
|
2870 |
for (uint8_t y = 0; y < sy; y++) {
|
|
|
2871 |
#ifdef SCAD_MESH_OUTPUT
|
|
|
2872 |
SERIAL_PROTOCOLPGM(" ["); // open sub-array
|
|
|
2873 |
#else
|
|
|
2874 |
if (y < 10) SERIAL_PROTOCOLCHAR(' ');
|
|
|
2875 |
SERIAL_PROTOCOL(int(y));
|
|
|
2876 |
#endif
|
|
|
2877 |
for (uint8_t x = 0; x < sx; x++) {
|
|
|
2878 |
SERIAL_PROTOCOLCHAR(' ');
|
|
|
2879 |
const float offset = fn(x, y);
|
|
|
2880 |
if (!isnan(offset)) {
|
|
|
2881 |
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
|
|
|
2882 |
SERIAL_PROTOCOL_F(offset, int(precision));
|
|
|
2883 |
}
|
|
|
2884 |
else {
|
|
|
2885 |
#ifdef SCAD_MESH_OUTPUT
|
|
|
2886 |
for (uint8_t i = 3; i < precision + 3; i++)
|
|
|
2887 |
SERIAL_PROTOCOLCHAR(' ');
|
|
|
2888 |
SERIAL_PROTOCOLPGM("NAN");
|
|
|
2889 |
#else
|
|
|
2890 |
for (uint8_t i = 0; i < precision + 3; i++)
|
|
|
2891 |
SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
|
|
|
2892 |
#endif
|
|
|
2893 |
}
|
|
|
2894 |
#ifdef SCAD_MESH_OUTPUT
|
|
|
2895 |
if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
|
|
|
2896 |
#endif
|
|
|
2897 |
}
|
|
|
2898 |
#ifdef SCAD_MESH_OUTPUT
|
|
|
2899 |
SERIAL_PROTOCOLCHAR(' ');
|
|
|
2900 |
SERIAL_PROTOCOLCHAR(']'); // close sub-array
|
|
|
2901 |
if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
|
|
|
2902 |
#endif
|
|
|
2903 |
SERIAL_EOL();
|
|
|
2904 |
}
|
|
|
2905 |
#ifdef SCAD_MESH_OUTPUT
|
|
|
2906 |
SERIAL_PROTOCOLPGM("];"); // close 2D array
|
|
|
2907 |
#endif
|
|
|
2908 |
SERIAL_EOL();
|
|
|
2909 |
}
|
|
|
2910 |
|
|
|
2911 |
#endif
|
|
|
2912 |
|
|
|
2913 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
2914 |
|
|
|
2915 |
/**
|
|
|
2916 |
* Extrapolate a single point from its neighbors
|
|
|
2917 |
*/
|
|
|
2918 |
static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
|
|
|
2919 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2920 |
if (DEBUGGING(LEVELING)) {
|
|
|
2921 |
SERIAL_ECHOPGM("Extrapolate [");
|
|
|
2922 |
if (x < 10) SERIAL_CHAR(' ');
|
|
|
2923 |
SERIAL_ECHO(int(x));
|
|
|
2924 |
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
|
|
|
2925 |
SERIAL_CHAR(' ');
|
|
|
2926 |
if (y < 10) SERIAL_CHAR(' ');
|
|
|
2927 |
SERIAL_ECHO(int(y));
|
|
|
2928 |
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
|
|
|
2929 |
SERIAL_CHAR(']');
|
|
|
2930 |
}
|
|
|
2931 |
#endif
|
|
|
2932 |
if (!isnan(z_values[x][y])) {
|
|
|
2933 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
2934 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
|
|
|
2935 |
#endif
|
|
|
2936 |
return; // Don't overwrite good values.
|
|
|
2937 |
}
|
|
|
2938 |
SERIAL_EOL();
|
|
|
2939 |
|
|
|
2940 |
// Get X neighbors, Y neighbors, and XY neighbors
|
|
|
2941 |
const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
|
|
|
2942 |
float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
|
|
|
2943 |
b1 = z_values[x ][y1], b2 = z_values[x ][y2],
|
|
|
2944 |
c1 = z_values[x1][y1], c2 = z_values[x2][y2];
|
|
|
2945 |
|
|
|
2946 |
// Treat far unprobed points as zero, near as equal to far
|
|
|
2947 |
if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
|
|
|
2948 |
if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
|
|
|
2949 |
if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
|
|
|
2950 |
|
|
|
2951 |
const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
|
|
|
2952 |
|
|
|
2953 |
// Take the average instead of the median
|
|
|
2954 |
z_values[x][y] = (a + b + c) / 3.0;
|
|
|
2955 |
|
|
|
2956 |
// Median is robust (ignores outliers).
|
|
|
2957 |
// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
|
|
|
2958 |
// : ((c < b) ? b : (a < c) ? a : c);
|
|
|
2959 |
}
|
|
|
2960 |
|
|
|
2961 |
//Enable this if your SCARA uses 180° of total area
|
|
|
2962 |
//#define EXTRAPOLATE_FROM_EDGE
|
|
|
2963 |
|
|
|
2964 |
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
|
|
|
2965 |
#if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
|
|
|
2966 |
#define HALF_IN_X
|
|
|
2967 |
#elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
|
|
|
2968 |
#define HALF_IN_Y
|
|
|
2969 |
#endif
|
|
|
2970 |
#endif
|
|
|
2971 |
|
|
|
2972 |
/**
|
|
|
2973 |
* Fill in the unprobed points (corners of circular print surface)
|
|
|
2974 |
* using linear extrapolation, away from the center.
|
|
|
2975 |
*/
|
|
|
2976 |
static void extrapolate_unprobed_bed_level() {
|
|
|
2977 |
#ifdef HALF_IN_X
|
|
|
2978 |
constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
|
|
|
2979 |
#else
|
|
|
2980 |
constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
|
|
|
2981 |
ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
|
|
|
2982 |
xlen = ctrx1;
|
|
|
2983 |
#endif
|
|
|
2984 |
|
|
|
2985 |
#ifdef HALF_IN_Y
|
|
|
2986 |
constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
|
|
|
2987 |
#else
|
|
|
2988 |
constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
|
|
|
2989 |
ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
|
|
|
2990 |
ylen = ctry1;
|
|
|
2991 |
#endif
|
|
|
2992 |
|
|
|
2993 |
for (uint8_t xo = 0; xo <= xlen; xo++)
|
|
|
2994 |
for (uint8_t yo = 0; yo <= ylen; yo++) {
|
|
|
2995 |
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
|
|
|
2996 |
#ifndef HALF_IN_X
|
|
|
2997 |
const uint8_t x1 = ctrx1 - xo;
|
|
|
2998 |
#endif
|
|
|
2999 |
#ifndef HALF_IN_Y
|
|
|
3000 |
const uint8_t y1 = ctry1 - yo;
|
|
|
3001 |
#ifndef HALF_IN_X
|
|
|
3002 |
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
|
|
|
3003 |
#endif
|
|
|
3004 |
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
|
|
|
3005 |
#endif
|
|
|
3006 |
#ifndef HALF_IN_X
|
|
|
3007 |
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
|
|
|
3008 |
#endif
|
|
|
3009 |
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
|
|
|
3010 |
}
|
|
|
3011 |
|
|
|
3012 |
}
|
|
|
3013 |
|
|
|
3014 |
static void print_bilinear_leveling_grid() {
|
|
|
3015 |
SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
|
|
|
3016 |
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
|
|
|
3017 |
[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
|
|
|
3018 |
);
|
|
|
3019 |
}
|
|
|
3020 |
|
|
|
3021 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
3022 |
|
|
|
3023 |
#define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
|
|
|
3024 |
#define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
|
|
|
3025 |
#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
|
|
|
3026 |
#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
|
|
|
3027 |
float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
|
|
|
3028 |
int bilinear_grid_spacing_virt[2] = { 0 };
|
|
|
3029 |
float bilinear_grid_factor_virt[2] = { 0 };
|
|
|
3030 |
|
|
|
3031 |
static void print_bilinear_leveling_grid_virt() {
|
|
|
3032 |
SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
|
|
|
3033 |
print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
|
|
|
3034 |
[](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
|
|
|
3035 |
);
|
|
|
3036 |
}
|
|
|
3037 |
|
|
|
3038 |
#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
|
|
|
3039 |
float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
|
|
|
3040 |
uint8_t ep = 0, ip = 1;
|
|
|
3041 |
if (!x || x == ABL_TEMP_POINTS_X - 1) {
|
|
|
3042 |
if (x) {
|
|
|
3043 |
ep = GRID_MAX_POINTS_X - 1;
|
|
|
3044 |
ip = GRID_MAX_POINTS_X - 2;
|
|
|
3045 |
}
|
|
|
3046 |
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
|
|
|
3047 |
return LINEAR_EXTRAPOLATION(
|
|
|
3048 |
z_values[ep][y - 1],
|
|
|
3049 |
z_values[ip][y - 1]
|
|
|
3050 |
);
|
|
|
3051 |
else
|
|
|
3052 |
return LINEAR_EXTRAPOLATION(
|
|
|
3053 |
bed_level_virt_coord(ep + 1, y),
|
|
|
3054 |
bed_level_virt_coord(ip + 1, y)
|
|
|
3055 |
);
|
|
|
3056 |
}
|
|
|
3057 |
if (!y || y == ABL_TEMP_POINTS_Y - 1) {
|
|
|
3058 |
if (y) {
|
|
|
3059 |
ep = GRID_MAX_POINTS_Y - 1;
|
|
|
3060 |
ip = GRID_MAX_POINTS_Y - 2;
|
|
|
3061 |
}
|
|
|
3062 |
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
|
|
|
3063 |
return LINEAR_EXTRAPOLATION(
|
|
|
3064 |
z_values[x - 1][ep],
|
|
|
3065 |
z_values[x - 1][ip]
|
|
|
3066 |
);
|
|
|
3067 |
else
|
|
|
3068 |
return LINEAR_EXTRAPOLATION(
|
|
|
3069 |
bed_level_virt_coord(x, ep + 1),
|
|
|
3070 |
bed_level_virt_coord(x, ip + 1)
|
|
|
3071 |
);
|
|
|
3072 |
}
|
|
|
3073 |
return z_values[x - 1][y - 1];
|
|
|
3074 |
}
|
|
|
3075 |
|
|
|
3076 |
static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
|
|
|
3077 |
return (
|
|
|
3078 |
p[i-1] * -t * sq(1 - t)
|
|
|
3079 |
+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
|
|
|
3080 |
+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))
|
|
|
3081 |
- p[i+2] * sq(t) * (1 - t)
|
|
|
3082 |
) * 0.5;
|
|
|
3083 |
}
|
|
|
3084 |
|
|
|
3085 |
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
|
|
|
3086 |
float row[4], column[4];
|
|
|
3087 |
for (uint8_t i = 0; i < 4; i++) {
|
|
|
3088 |
for (uint8_t j = 0; j < 4; j++) {
|
|
|
3089 |
column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
|
|
|
3090 |
}
|
|
|
3091 |
row[i] = bed_level_virt_cmr(column, 1, ty);
|
|
|
3092 |
}
|
|
|
3093 |
return bed_level_virt_cmr(row, 1, tx);
|
|
|
3094 |
}
|
|
|
3095 |
|
|
|
3096 |
void bed_level_virt_interpolate() {
|
|
|
3097 |
bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
|
|
|
3098 |
bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
|
|
|
3099 |
bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
|
|
|
3100 |
bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
|
|
|
3101 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
3102 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
3103 |
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
|
|
|
3104 |
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
|
|
|
3105 |
if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
|
|
|
3106 |
continue;
|
|
|
3107 |
z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
|
|
|
3108 |
bed_level_virt_2cmr(
|
|
|
3109 |
x + 1,
|
|
|
3110 |
y + 1,
|
|
|
3111 |
(float)tx / (BILINEAR_SUBDIVISIONS),
|
|
|
3112 |
(float)ty / (BILINEAR_SUBDIVISIONS)
|
|
|
3113 |
);
|
|
|
3114 |
}
|
|
|
3115 |
}
|
|
|
3116 |
#endif // ABL_BILINEAR_SUBDIVISION
|
|
|
3117 |
|
|
|
3118 |
// Refresh after other values have been updated
|
|
|
3119 |
void refresh_bed_level() {
|
|
|
3120 |
bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
|
|
|
3121 |
bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
|
|
|
3122 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
3123 |
bed_level_virt_interpolate();
|
|
|
3124 |
#endif
|
|
|
3125 |
}
|
|
|
3126 |
|
|
|
3127 |
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
3128 |
|
|
|
3129 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
3130 |
|
|
|
3131 |
/**
|
|
|
3132 |
* Set sensorless homing if the axis has it, accounting for Core Kinematics.
|
|
|
3133 |
*/
|
|
|
3134 |
void sensorless_homing_per_axis(const AxisEnum axis, const bool enable=true) {
|
|
|
3135 |
switch (axis) {
|
|
|
3136 |
#if X_SENSORLESS
|
|
|
3137 |
case X_AXIS:
|
|
|
3138 |
tmc_sensorless_homing(stepperX, enable);
|
|
|
3139 |
#if CORE_IS_XY && Y_SENSORLESS
|
|
|
3140 |
tmc_sensorless_homing(stepperY, enable);
|
|
|
3141 |
#elif CORE_IS_XZ && Z_SENSORLESS
|
|
|
3142 |
tmc_sensorless_homing(stepperZ, enable);
|
|
|
3143 |
#endif
|
|
|
3144 |
break;
|
|
|
3145 |
#endif
|
|
|
3146 |
#if Y_SENSORLESS
|
|
|
3147 |
case Y_AXIS:
|
|
|
3148 |
tmc_sensorless_homing(stepperY, enable);
|
|
|
3149 |
#if CORE_IS_XY && X_SENSORLESS
|
|
|
3150 |
tmc_sensorless_homing(stepperX, enable);
|
|
|
3151 |
#elif CORE_IS_YZ && Z_SENSORLESS
|
|
|
3152 |
tmc_sensorless_homing(stepperZ, enable);
|
|
|
3153 |
#endif
|
|
|
3154 |
break;
|
|
|
3155 |
#endif
|
|
|
3156 |
#if Z_SENSORLESS
|
|
|
3157 |
case Z_AXIS:
|
|
|
3158 |
tmc_sensorless_homing(stepperZ, enable);
|
|
|
3159 |
#if CORE_IS_XZ && X_SENSORLESS
|
|
|
3160 |
tmc_sensorless_homing(stepperX, enable);
|
|
|
3161 |
#elif CORE_IS_YZ && Y_SENSORLESS
|
|
|
3162 |
tmc_sensorless_homing(stepperY, enable);
|
|
|
3163 |
#endif
|
|
|
3164 |
break;
|
|
|
3165 |
#endif
|
|
|
3166 |
default: break;
|
|
|
3167 |
}
|
|
|
3168 |
}
|
|
|
3169 |
|
|
|
3170 |
#endif // SENSORLESS_HOMING
|
|
|
3171 |
|
|
|
3172 |
/**
|
|
|
3173 |
* Home an individual linear axis
|
|
|
3174 |
*/
|
|
|
3175 |
static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0) {
|
|
|
3176 |
|
|
|
3177 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3178 |
if (DEBUGGING(LEVELING)) {
|
|
|
3179 |
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
|
|
|
3180 |
SERIAL_ECHOPAIR(", ", distance);
|
|
|
3181 |
SERIAL_ECHOPGM(", ");
|
|
|
3182 |
if (fr_mm_s)
|
|
|
3183 |
SERIAL_ECHO(fr_mm_s);
|
|
|
3184 |
else {
|
|
|
3185 |
SERIAL_ECHOPAIR("[", homing_feedrate(axis));
|
|
|
3186 |
SERIAL_CHAR(']');
|
|
|
3187 |
}
|
|
|
3188 |
SERIAL_ECHOLNPGM(")");
|
|
|
3189 |
}
|
|
|
3190 |
#endif
|
|
|
3191 |
|
|
|
3192 |
#if HOMING_Z_WITH_PROBE && HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
|
|
|
3193 |
// Wait for bed to heat back up between probing points
|
|
|
3194 |
if (axis == Z_AXIS && distance < 0 && thermalManager.isHeatingBed()) {
|
|
|
3195 |
serialprintPGM(msg_wait_for_bed_heating);
|
|
|
3196 |
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
|
3197 |
while (thermalManager.isHeatingBed()) safe_delay(200);
|
|
|
3198 |
lcd_reset_status();
|
|
|
3199 |
}
|
|
|
3200 |
#endif
|
|
|
3201 |
|
|
|
3202 |
// Only do some things when moving towards an endstop
|
|
|
3203 |
const int8_t axis_home_dir =
|
|
|
3204 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
3205 |
(axis == X_AXIS) ? x_home_dir(active_extruder) :
|
|
|
3206 |
#endif
|
|
|
3207 |
home_dir(axis);
|
|
|
3208 |
const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);
|
|
|
3209 |
|
|
|
3210 |
if (is_home_dir) {
|
|
|
3211 |
|
|
|
3212 |
#if HOMING_Z_WITH_PROBE && QUIET_PROBING
|
|
|
3213 |
if (axis == Z_AXIS) probing_pause(true);
|
|
|
3214 |
#endif
|
|
|
3215 |
|
|
|
3216 |
// Disable stealthChop if used. Enable diag1 pin on driver.
|
|
|
3217 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
3218 |
sensorless_homing_per_axis(axis);
|
|
|
3219 |
#endif
|
|
|
3220 |
}
|
|
|
3221 |
|
|
|
3222 |
// Tell the planner the axis is at 0
|
|
|
3223 |
current_position[axis] = 0;
|
|
|
3224 |
|
|
|
3225 |
// Do the move, which is required to hit an endstop
|
|
|
3226 |
#if IS_SCARA
|
|
|
3227 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
3228 |
current_position[axis] = distance;
|
|
|
3229 |
inverse_kinematics(current_position);
|
|
|
3230 |
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
|
|
|
3231 |
#elif ENABLED(HANGPRINTER) // TODO: Hangprinter homing is not finished (Jan 7, 2018)
|
|
|
3232 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
3233 |
current_position[axis] = distance;
|
|
|
3234 |
inverse_kinematics(current_position);
|
|
|
3235 |
planner.buffer_line(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
|
|
|
3236 |
#else
|
|
|
3237 |
sync_plan_position();
|
|
|
3238 |
current_position[axis] = distance; // Set delta/cartesian axes directly
|
|
|
3239 |
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
|
|
|
3240 |
#endif
|
|
|
3241 |
|
|
|
3242 |
planner.synchronize();
|
|
|
3243 |
|
|
|
3244 |
if (is_home_dir) {
|
|
|
3245 |
|
|
|
3246 |
#if HOMING_Z_WITH_PROBE && QUIET_PROBING
|
|
|
3247 |
if (axis == Z_AXIS) probing_pause(false);
|
|
|
3248 |
#endif
|
|
|
3249 |
|
|
|
3250 |
endstops.validate_homing_move();
|
|
|
3251 |
|
|
|
3252 |
// Re-enable stealthChop if used. Disable diag1 pin on driver.
|
|
|
3253 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
3254 |
sensorless_homing_per_axis(axis, false);
|
|
|
3255 |
#endif
|
|
|
3256 |
}
|
|
|
3257 |
|
|
|
3258 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3259 |
if (DEBUGGING(LEVELING)) {
|
|
|
3260 |
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
|
|
|
3261 |
SERIAL_CHAR(')');
|
|
|
3262 |
SERIAL_EOL();
|
|
|
3263 |
}
|
|
|
3264 |
#endif
|
|
|
3265 |
}
|
|
|
3266 |
|
|
|
3267 |
/**
|
|
|
3268 |
* Home an individual "raw axis" to its endstop.
|
|
|
3269 |
* This applies to XYZ on Cartesian and Core robots, and
|
|
|
3270 |
* to the individual ABC steppers on DELTA and SCARA.
|
|
|
3271 |
*
|
|
|
3272 |
* At the end of the procedure the axis is marked as
|
|
|
3273 |
* homed and the current position of that axis is updated.
|
|
|
3274 |
* Kinematic robots should wait till all axes are homed
|
|
|
3275 |
* before updating the current position.
|
|
|
3276 |
*/
|
|
|
3277 |
|
|
|
3278 |
static void homeaxis(const AxisEnum axis) {
|
|
|
3279 |
|
|
|
3280 |
#if IS_SCARA
|
|
|
3281 |
// Only Z homing (with probe) is permitted
|
|
|
3282 |
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
|
|
|
3283 |
#else
|
|
|
3284 |
#define CAN_HOME(A) \
|
|
|
3285 |
(axis == _AXIS(A) && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
|
|
|
3286 |
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
|
|
|
3287 |
#endif
|
|
|
3288 |
|
|
|
3289 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3290 |
if (DEBUGGING(LEVELING)) {
|
|
|
3291 |
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
|
|
|
3292 |
SERIAL_CHAR(')');
|
|
|
3293 |
SERIAL_EOL();
|
|
|
3294 |
}
|
|
|
3295 |
#endif
|
|
|
3296 |
|
|
|
3297 |
const int axis_home_dir = (
|
|
|
3298 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
3299 |
axis == X_AXIS ? x_home_dir(active_extruder) :
|
|
|
3300 |
#endif
|
|
|
3301 |
home_dir(axis)
|
|
|
3302 |
);
|
|
|
3303 |
|
|
|
3304 |
// Homing Z towards the bed? Deploy the Z probe or endstop.
|
|
|
3305 |
#if HOMING_Z_WITH_PROBE
|
|
|
3306 |
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
|
|
|
3307 |
#endif
|
|
|
3308 |
|
|
|
3309 |
// Set flags for X, Y, Z motor locking
|
|
|
3310 |
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
3311 |
switch (axis) {
|
|
|
3312 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
3313 |
case X_AXIS:
|
|
|
3314 |
#endif
|
|
|
3315 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
3316 |
case Y_AXIS:
|
|
|
3317 |
#endif
|
|
|
3318 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
3319 |
case Z_AXIS:
|
|
|
3320 |
#endif
|
|
|
3321 |
stepper.set_homing_dual_axis(true);
|
|
|
3322 |
default: break;
|
|
|
3323 |
}
|
|
|
3324 |
#endif
|
|
|
3325 |
|
|
|
3326 |
// Fast move towards endstop until triggered
|
|
|
3327 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3328 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
|
|
|
3329 |
#endif
|
|
|
3330 |
|
|
|
3331 |
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
|
3332 |
// BLTOUCH needs to be deployed every time
|
|
|
3333 |
if (axis == Z_AXIS && set_bltouch_deployed(true)) return;
|
|
|
3334 |
#endif
|
|
|
3335 |
|
|
|
3336 |
do_homing_move(axis, 1.5f * max_length(axis) * axis_home_dir);
|
|
|
3337 |
|
|
|
3338 |
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
|
3339 |
// BLTOUCH needs to be stowed after trigger to rearm itself
|
|
|
3340 |
if (axis == Z_AXIS) set_bltouch_deployed(false);
|
|
|
3341 |
#endif
|
|
|
3342 |
|
|
|
3343 |
// When homing Z with probe respect probe clearance
|
|
|
3344 |
const float bump = axis_home_dir * (
|
|
|
3345 |
#if HOMING_Z_WITH_PROBE
|
|
|
3346 |
(axis == Z_AXIS && (Z_HOME_BUMP_MM)) ? MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_HOME_BUMP_MM) :
|
|
|
3347 |
#endif
|
|
|
3348 |
home_bump_mm(axis)
|
|
|
3349 |
);
|
|
|
3350 |
|
|
|
3351 |
// If a second homing move is configured...
|
|
|
3352 |
if (bump) {
|
|
|
3353 |
// Move away from the endstop by the axis HOME_BUMP_MM
|
|
|
3354 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3355 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
|
|
|
3356 |
#endif
|
|
|
3357 |
do_homing_move(axis, -bump
|
|
|
3358 |
#if HOMING_Z_WITH_PROBE
|
|
|
3359 |
, axis == Z_AXIS ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : 0.00
|
|
|
3360 |
#endif
|
|
|
3361 |
);
|
|
|
3362 |
|
|
|
3363 |
// Slow move towards endstop until triggered
|
|
|
3364 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3365 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
|
|
|
3366 |
#endif
|
|
|
3367 |
|
|
|
3368 |
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
|
3369 |
// BLTOUCH needs to be deployed every time
|
|
|
3370 |
if (axis == Z_AXIS && set_bltouch_deployed(true)) return;
|
|
|
3371 |
#endif
|
|
|
3372 |
|
|
|
3373 |
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
|
|
|
3374 |
|
|
|
3375 |
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
|
3376 |
// BLTOUCH needs to be stowed after trigger to rearm itself
|
|
|
3377 |
if (axis == Z_AXIS) set_bltouch_deployed(false);
|
|
|
3378 |
#endif
|
|
|
3379 |
}
|
|
|
3380 |
|
|
|
3381 |
/**
|
|
|
3382 |
* Home axes that have dual endstops... differently
|
|
|
3383 |
*/
|
|
|
3384 |
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
3385 |
const bool pos_dir = axis_home_dir > 0;
|
|
|
3386 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
3387 |
if (axis == X_AXIS) {
|
|
|
3388 |
const float adj = ABS(endstops.x_endstop_adj);
|
|
|
3389 |
if (adj) {
|
|
|
3390 |
if (pos_dir ? (endstops.x_endstop_adj > 0) : (endstops.x_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
|
|
|
3391 |
do_homing_move(axis, pos_dir ? -adj : adj);
|
|
|
3392 |
stepper.set_x_lock(false);
|
|
|
3393 |
stepper.set_x2_lock(false);
|
|
|
3394 |
}
|
|
|
3395 |
}
|
|
|
3396 |
#endif
|
|
|
3397 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
3398 |
if (axis == Y_AXIS) {
|
|
|
3399 |
const float adj = ABS(endstops.y_endstop_adj);
|
|
|
3400 |
if (adj) {
|
|
|
3401 |
if (pos_dir ? (endstops.y_endstop_adj > 0) : (endstops.y_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
|
|
|
3402 |
do_homing_move(axis, pos_dir ? -adj : adj);
|
|
|
3403 |
stepper.set_y_lock(false);
|
|
|
3404 |
stepper.set_y2_lock(false);
|
|
|
3405 |
}
|
|
|
3406 |
}
|
|
|
3407 |
#endif
|
|
|
3408 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
3409 |
if (axis == Z_AXIS) {
|
|
|
3410 |
const float adj = ABS(endstops.z_endstop_adj);
|
|
|
3411 |
if (adj) {
|
|
|
3412 |
if (pos_dir ? (endstops.z_endstop_adj > 0) : (endstops.z_endstop_adj < 0)) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
|
|
|
3413 |
do_homing_move(axis, pos_dir ? -adj : adj);
|
|
|
3414 |
stepper.set_z_lock(false);
|
|
|
3415 |
stepper.set_z2_lock(false);
|
|
|
3416 |
}
|
|
|
3417 |
}
|
|
|
3418 |
#endif
|
|
|
3419 |
stepper.set_homing_dual_axis(false);
|
|
|
3420 |
#endif
|
|
|
3421 |
|
|
|
3422 |
#if IS_SCARA
|
|
|
3423 |
|
|
|
3424 |
set_axis_is_at_home(axis);
|
|
|
3425 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
3426 |
|
|
|
3427 |
#elif ENABLED(DELTA)
|
|
|
3428 |
|
|
|
3429 |
// Delta has already moved all three towers up in G28
|
|
|
3430 |
// so here it re-homes each tower in turn.
|
|
|
3431 |
// Delta homing treats the axes as normal linear axes.
|
|
|
3432 |
|
|
|
3433 |
// retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum steps
|
|
|
3434 |
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
|
|
|
3435 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3436 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
|
|
|
3437 |
#endif
|
|
|
3438 |
do_homing_move(axis, delta_endstop_adj[axis] - (MIN_STEPS_PER_SEGMENT + 1) * planner.steps_to_mm[axis] * Z_HOME_DIR);
|
|
|
3439 |
}
|
|
|
3440 |
|
|
|
3441 |
#else
|
|
|
3442 |
|
|
|
3443 |
// For cartesian/core machines,
|
|
|
3444 |
// set the axis to its home position
|
|
|
3445 |
set_axis_is_at_home(axis);
|
|
|
3446 |
sync_plan_position();
|
|
|
3447 |
|
|
|
3448 |
destination[axis] = current_position[axis];
|
|
|
3449 |
|
|
|
3450 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3451 |
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
|
|
|
3452 |
#endif
|
|
|
3453 |
|
|
|
3454 |
#endif
|
|
|
3455 |
|
|
|
3456 |
// Put away the Z probe
|
|
|
3457 |
#if HOMING_Z_WITH_PROBE
|
|
|
3458 |
if (axis == Z_AXIS && STOW_PROBE()) return;
|
|
|
3459 |
#endif
|
|
|
3460 |
|
|
|
3461 |
// Clear retracted status if homing the Z axis
|
|
|
3462 |
#if ENABLED(FWRETRACT)
|
|
|
3463 |
if (axis == Z_AXIS) fwretract.hop_amount = 0.0;
|
|
|
3464 |
#endif
|
|
|
3465 |
|
|
|
3466 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
3467 |
if (DEBUGGING(LEVELING)) {
|
|
|
3468 |
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
|
|
|
3469 |
SERIAL_CHAR(')');
|
|
|
3470 |
SERIAL_EOL();
|
|
|
3471 |
}
|
|
|
3472 |
#endif
|
|
|
3473 |
} // homeaxis()
|
|
|
3474 |
|
|
|
3475 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
3476 |
|
|
|
3477 |
void normalize_mix() {
|
|
|
3478 |
float mix_total = 0.0;
|
|
|
3479 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += mixing_factor[i];
|
|
|
3480 |
// Scale all values if they don't add up to ~1.0
|
|
|
3481 |
if (!NEAR(mix_total, 1.0)) {
|
|
|
3482 |
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
|
|
|
3483 |
const float inverse_sum = RECIPROCAL(mix_total);
|
|
|
3484 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= inverse_sum;
|
|
|
3485 |
}
|
|
|
3486 |
}
|
|
|
3487 |
|
|
|
3488 |
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
|
3489 |
// Get mixing parameters from the GCode
|
|
|
3490 |
// The total "must" be 1.0 (but it will be normalized)
|
|
|
3491 |
// If no mix factors are given, the old mix is preserved
|
|
|
3492 |
void gcode_get_mix() {
|
|
|
3493 |
const char mixing_codes[] = { 'A', 'B'
|
|
|
3494 |
#if MIXING_STEPPERS > 2
|
|
|
3495 |
, 'C'
|
|
|
3496 |
#if MIXING_STEPPERS > 3
|
|
|
3497 |
, 'D'
|
|
|
3498 |
#if MIXING_STEPPERS > 4
|
|
|
3499 |
, 'H'
|
|
|
3500 |
#if MIXING_STEPPERS > 5
|
|
|
3501 |
, 'I'
|
|
|
3502 |
#endif // MIXING_STEPPERS > 5
|
|
|
3503 |
#endif // MIXING_STEPPERS > 4
|
|
|
3504 |
#endif // MIXING_STEPPERS > 3
|
|
|
3505 |
#endif // MIXING_STEPPERS > 2
|
|
|
3506 |
};
|
|
|
3507 |
byte mix_bits = 0;
|
|
|
3508 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
|
|
|
3509 |
if (parser.seenval(mixing_codes[i])) {
|
|
|
3510 |
SBI(mix_bits, i);
|
|
|
3511 |
mixing_factor[i] = MAX(parser.value_float(), 0.0);
|
|
|
3512 |
}
|
|
|
3513 |
}
|
|
|
3514 |
// If any mixing factors were included, clear the rest
|
|
|
3515 |
// If none were included, preserve the last mix
|
|
|
3516 |
if (mix_bits) {
|
|
|
3517 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
3518 |
if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
|
|
|
3519 |
normalize_mix();
|
|
|
3520 |
}
|
|
|
3521 |
}
|
|
|
3522 |
#endif
|
|
|
3523 |
|
|
|
3524 |
#endif
|
|
|
3525 |
|
|
|
3526 |
/**
|
|
|
3527 |
* ***************************************************************************
|
|
|
3528 |
* ***************************** G-CODE HANDLING *****************************
|
|
|
3529 |
* ***************************************************************************
|
|
|
3530 |
*/
|
|
|
3531 |
|
|
|
3532 |
/**
|
|
|
3533 |
* Set XYZE destination and feedrate from the current GCode command
|
|
|
3534 |
*
|
|
|
3535 |
* - Set destination from included axis codes
|
|
|
3536 |
* - Set to current for missing axis codes
|
|
|
3537 |
* - Set the feedrate, if included
|
|
|
3538 |
*/
|
|
|
3539 |
void gcode_get_destination() {
|
|
|
3540 |
LOOP_XYZE(i) {
|
|
|
3541 |
if (parser.seen(axis_codes[i])) {
|
|
|
3542 |
const float v = parser.value_axis_units((AxisEnum)i);
|
|
|
3543 |
destination[i] = (axis_relative_modes[i] || relative_mode)
|
|
|
3544 |
? current_position[i] + v
|
|
|
3545 |
: (i == E_CART) ? v : LOGICAL_TO_NATIVE(v, i);
|
|
|
3546 |
}
|
|
|
3547 |
else
|
|
|
3548 |
destination[i] = current_position[i];
|
|
|
3549 |
}
|
|
|
3550 |
|
|
|
3551 |
if (parser.linearval('F') > 0)
|
|
|
3552 |
feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
|
|
|
3553 |
|
|
|
3554 |
#if ENABLED(PRINTCOUNTER)
|
|
|
3555 |
if (!DEBUGGING(DRYRUN))
|
|
|
3556 |
print_job_timer.incFilamentUsed(destination[E_CART] - current_position[E_CART]);
|
|
|
3557 |
#endif
|
|
|
3558 |
|
|
|
3559 |
// Get ABCDHI mixing factors
|
|
|
3560 |
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
|
|
|
3561 |
gcode_get_mix();
|
|
|
3562 |
#endif
|
|
|
3563 |
}
|
|
|
3564 |
|
|
|
3565 |
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
3566 |
|
|
|
3567 |
/**
|
|
|
3568 |
* Output a "busy" message at regular intervals
|
|
|
3569 |
* while the machine is not accepting commands.
|
|
|
3570 |
*/
|
|
|
3571 |
void host_keepalive() {
|
|
|
3572 |
const millis_t ms = millis();
|
|
|
3573 |
if (!suspend_auto_report && host_keepalive_interval && busy_state != NOT_BUSY) {
|
|
|
3574 |
if (PENDING(ms, next_busy_signal_ms)) return;
|
|
|
3575 |
switch (busy_state) {
|
|
|
3576 |
case IN_HANDLER:
|
|
|
3577 |
case IN_PROCESS:
|
|
|
3578 |
SERIAL_ECHO_START();
|
|
|
3579 |
SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
|
|
|
3580 |
break;
|
|
|
3581 |
case PAUSED_FOR_USER:
|
|
|
3582 |
SERIAL_ECHO_START();
|
|
|
3583 |
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
|
|
|
3584 |
break;
|
|
|
3585 |
case PAUSED_FOR_INPUT:
|
|
|
3586 |
SERIAL_ECHO_START();
|
|
|
3587 |
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
|
|
|
3588 |
break;
|
|
|
3589 |
default:
|
|
|
3590 |
break;
|
|
|
3591 |
}
|
|
|
3592 |
}
|
|
|
3593 |
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
|
|
|
3594 |
}
|
|
|
3595 |
|
|
|
3596 |
#endif // HOST_KEEPALIVE_FEATURE
|
|
|
3597 |
|
|
|
3598 |
|
|
|
3599 |
/**************************************************
|
|
|
3600 |
***************** GCode Handlers *****************
|
|
|
3601 |
**************************************************/
|
|
|
3602 |
|
|
|
3603 |
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
3604 |
#define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
|
|
|
3605 |
#else
|
|
|
3606 |
#define G0_G1_CONDITION true
|
|
|
3607 |
#endif
|
|
|
3608 |
|
|
|
3609 |
/**
|
|
|
3610 |
* G0, G1: Coordinated movement of X Y Z E axes
|
|
|
3611 |
*/
|
|
|
3612 |
inline void gcode_G0_G1(
|
|
|
3613 |
#if IS_SCARA
|
|
|
3614 |
bool fast_move=false
|
|
|
3615 |
#endif
|
|
|
3616 |
) {
|
|
|
3617 |
if (IsRunning() && G0_G1_CONDITION) {
|
|
|
3618 |
gcode_get_destination(); // For X Y Z E F
|
|
|
3619 |
|
|
|
3620 |
#if ENABLED(FWRETRACT)
|
|
|
3621 |
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
|
|
|
3622 |
// When M209 Autoretract is enabled, convert E-only moves to firmware retract/prime moves
|
|
|
3623 |
if (fwretract.autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
|
|
|
3624 |
const float echange = destination[E_CART] - current_position[E_CART];
|
|
|
3625 |
// Is this a retract or prime move?
|
|
|
3626 |
if (WITHIN(ABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && fwretract.retracted[active_extruder] == (echange > 0.0)) {
|
|
|
3627 |
current_position[E_CART] = destination[E_CART]; // Hide a G1-based retract/prime from calculations
|
|
|
3628 |
sync_plan_position_e(); // AND from the planner
|
|
|
3629 |
return fwretract.retract(echange < 0.0); // Firmware-based retract/prime (double-retract ignored)
|
|
|
3630 |
}
|
|
|
3631 |
}
|
|
|
3632 |
}
|
|
|
3633 |
#endif // FWRETRACT
|
|
|
3634 |
|
|
|
3635 |
#if IS_SCARA
|
|
|
3636 |
fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
|
|
|
3637 |
#else
|
|
|
3638 |
prepare_move_to_destination();
|
|
|
3639 |
#endif
|
|
|
3640 |
|
|
|
3641 |
#if ENABLED(NANODLP_Z_SYNC)
|
|
|
3642 |
#if ENABLED(NANODLP_ALL_AXIS)
|
|
|
3643 |
#define _MOVE_SYNC parser.seenval('X') || parser.seenval('Y') || parser.seenval('Z') // For any move wait and output sync message
|
|
|
3644 |
#else
|
|
|
3645 |
#define _MOVE_SYNC parser.seenval('Z') // Only for Z move
|
|
|
3646 |
#endif
|
|
|
3647 |
if (_MOVE_SYNC) {
|
|
|
3648 |
planner.synchronize();
|
|
|
3649 |
SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
|
|
|
3650 |
}
|
|
|
3651 |
#endif
|
|
|
3652 |
}
|
|
|
3653 |
}
|
|
|
3654 |
|
|
|
3655 |
/**
|
|
|
3656 |
* G2: Clockwise Arc
|
|
|
3657 |
* G3: Counterclockwise Arc
|
|
|
3658 |
*
|
|
|
3659 |
* This command has two forms: IJ-form and R-form.
|
|
|
3660 |
*
|
|
|
3661 |
* - I specifies an X offset. J specifies a Y offset.
|
|
|
3662 |
* At least one of the IJ parameters is required.
|
|
|
3663 |
* X and Y can be omitted to do a complete circle.
|
|
|
3664 |
* The given XY is not error-checked. The arc ends
|
|
|
3665 |
* based on the angle of the destination.
|
|
|
3666 |
* Mixing I or J with R will throw an error.
|
|
|
3667 |
*
|
|
|
3668 |
* - R specifies the radius. X or Y is required.
|
|
|
3669 |
* Omitting both X and Y will throw an error.
|
|
|
3670 |
* X or Y must differ from the current XY.
|
|
|
3671 |
* Mixing R with I or J will throw an error.
|
|
|
3672 |
*
|
|
|
3673 |
* - P specifies the number of full circles to do
|
|
|
3674 |
* before the specified arc move.
|
|
|
3675 |
*
|
|
|
3676 |
* Examples:
|
|
|
3677 |
*
|
|
|
3678 |
* G2 I10 ; CW circle centered at X+10
|
|
|
3679 |
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
|
|
|
3680 |
*/
|
|
|
3681 |
#if ENABLED(ARC_SUPPORT)
|
|
|
3682 |
|
|
|
3683 |
inline void gcode_G2_G3(const bool clockwise) {
|
|
|
3684 |
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
3685 |
if (axis_unhomed_error()) return;
|
|
|
3686 |
#endif
|
|
|
3687 |
|
|
|
3688 |
if (IsRunning()) {
|
|
|
3689 |
|
|
|
3690 |
#if ENABLED(SF_ARC_FIX)
|
|
|
3691 |
const bool relative_mode_backup = relative_mode;
|
|
|
3692 |
relative_mode = true;
|
|
|
3693 |
#endif
|
|
|
3694 |
|
|
|
3695 |
gcode_get_destination();
|
|
|
3696 |
|
|
|
3697 |
#if ENABLED(SF_ARC_FIX)
|
|
|
3698 |
relative_mode = relative_mode_backup;
|
|
|
3699 |
#endif
|
|
|
3700 |
|
|
|
3701 |
float arc_offset[2] = { 0, 0 };
|
|
|
3702 |
if (parser.seenval('R')) {
|
|
|
3703 |
const float r = parser.value_linear_units(),
|
|
|
3704 |
p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
|
|
|
3705 |
p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
|
|
|
3706 |
if (r && (p2 != p1 || q2 != q1)) {
|
|
|
3707 |
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
|
|
|
3708 |
dx = p2 - p1, dy = q2 - q1, // X and Y differences
|
|
|
3709 |
d = HYPOT(dx, dy), // Linear distance between the points
|
|
|
3710 |
h2 = (r - 0.5f * d) * (r + 0.5f * d), // factor to reduce rounding error
|
|
|
3711 |
h = (h2 >= 0) ? SQRT(h2) : 0.0f, // Distance to the arc pivot-point
|
|
|
3712 |
mx = (p1 + p2) * 0.5f, my = (q1 + q2) * 0.5f, // Point between the two points
|
|
|
3713 |
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
|
|
|
3714 |
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
|
|
|
3715 |
arc_offset[0] = cx - p1;
|
|
|
3716 |
arc_offset[1] = cy - q1;
|
|
|
3717 |
}
|
|
|
3718 |
}
|
|
|
3719 |
else {
|
|
|
3720 |
if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
|
|
|
3721 |
if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
|
|
|
3722 |
}
|
|
|
3723 |
|
|
|
3724 |
if (arc_offset[0] || arc_offset[1]) {
|
|
|
3725 |
|
|
|
3726 |
#if ENABLED(ARC_P_CIRCLES)
|
|
|
3727 |
// P indicates number of circles to do
|
|
|
3728 |
int8_t circles_to_do = parser.byteval('P');
|
|
|
3729 |
if (!WITHIN(circles_to_do, 0, 100)) {
|
|
|
3730 |
SERIAL_ERROR_START();
|
|
|
3731 |
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
|
|
3732 |
}
|
|
|
3733 |
while (circles_to_do--)
|
|
|
3734 |
plan_arc(current_position, arc_offset, clockwise);
|
|
|
3735 |
#endif
|
|
|
3736 |
|
|
|
3737 |
// Send the arc to the planner
|
|
|
3738 |
plan_arc(destination, arc_offset, clockwise);
|
|
|
3739 |
}
|
|
|
3740 |
else {
|
|
|
3741 |
// Bad arguments
|
|
|
3742 |
SERIAL_ERROR_START();
|
|
|
3743 |
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
|
|
3744 |
}
|
|
|
3745 |
}
|
|
|
3746 |
}
|
|
|
3747 |
|
|
|
3748 |
#endif // ARC_SUPPORT
|
|
|
3749 |
|
|
|
3750 |
void dwell(millis_t time) {
|
|
|
3751 |
time += millis();
|
|
|
3752 |
while (PENDING(millis(), time)) idle();
|
|
|
3753 |
}
|
|
|
3754 |
|
|
|
3755 |
/**
|
|
|
3756 |
* G4: Dwell S<seconds> or P<milliseconds>
|
|
|
3757 |
*/
|
|
|
3758 |
inline void gcode_G4() {
|
|
|
3759 |
millis_t dwell_ms = 0;
|
|
|
3760 |
|
|
|
3761 |
if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
|
|
|
3762 |
if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
|
|
|
3763 |
|
|
|
3764 |
planner.synchronize();
|
|
|
3765 |
#if ENABLED(NANODLP_Z_SYNC)
|
|
|
3766 |
SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
|
|
|
3767 |
#endif
|
|
|
3768 |
|
|
|
3769 |
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
|
|
|
3770 |
|
|
|
3771 |
dwell(dwell_ms);
|
|
|
3772 |
}
|
|
|
3773 |
|
|
|
3774 |
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
3775 |
|
|
|
3776 |
/**
|
|
|
3777 |
* Parameters interpreted according to:
|
|
|
3778 |
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
|
|
|
3779 |
* However I, J omission is not supported at this point; all
|
|
|
3780 |
* parameters can be omitted and default to zero.
|
|
|
3781 |
*/
|
|
|
3782 |
|
|
|
3783 |
/**
|
|
|
3784 |
* G5: Cubic B-spline
|
|
|
3785 |
*/
|
|
|
3786 |
inline void gcode_G5() {
|
|
|
3787 |
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
3788 |
if (axis_unhomed_error()) return;
|
|
|
3789 |
#endif
|
|
|
3790 |
|
|
|
3791 |
if (IsRunning()) {
|
|
|
3792 |
|
|
|
3793 |
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
3794 |
if (workspace_plane != PLANE_XY) {
|
|
|
3795 |
SERIAL_ERROR_START();
|
|
|
3796 |
SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
|
|
|
3797 |
return;
|
|
|
3798 |
}
|
|
|
3799 |
#endif
|
|
|
3800 |
|
|
|
3801 |
gcode_get_destination();
|
|
|
3802 |
|
|
|
3803 |
const float offset[] = {
|
|
|
3804 |
parser.linearval('I'),
|
|
|
3805 |
parser.linearval('J'),
|
|
|
3806 |
parser.linearval('P'),
|
|
|
3807 |
parser.linearval('Q')
|
|
|
3808 |
};
|
|
|
3809 |
|
|
|
3810 |
plan_cubic_move(destination, offset);
|
|
|
3811 |
}
|
|
|
3812 |
}
|
|
|
3813 |
|
|
|
3814 |
#endif // BEZIER_CURVE_SUPPORT
|
|
|
3815 |
|
|
|
3816 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
3817 |
|
|
|
3818 |
/**
|
|
|
3819 |
* G6 implementation for Hangprinter based on
|
|
|
3820 |
* http://reprap.org/wiki/GCodes#G6:_Direct_Stepper_Move
|
|
|
3821 |
* Accessed Jan 8, 2018
|
|
|
3822 |
*
|
|
|
3823 |
* G6 is used frequently to tighten lines with Hangprinter, so Hangprinter default is relative moves.
|
|
|
3824 |
* Hangprinter uses switches
|
|
|
3825 |
* S1 for absolute moves
|
|
|
3826 |
* S2 for saving recording new line length after unregistered move
|
|
|
3827 |
* (typically used while tuning LINE_BUILDUP_COMPENSATION_FEATURE parameters)
|
|
|
3828 |
*/
|
|
|
3829 |
|
|
|
3830 |
/**
|
|
|
3831 |
* G6: Direct Stepper Move
|
|
|
3832 |
*/
|
|
|
3833 |
inline void gcode_G6() {
|
|
|
3834 |
bool count_it = false;
|
|
|
3835 |
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
3836 |
if (axis_unhomed_error()) return;
|
|
|
3837 |
#endif
|
|
|
3838 |
if (IsRunning()) {
|
|
|
3839 |
float go[MOV_AXIS] = { 0.0 },
|
|
|
3840 |
tmp_fr_mm_s = 0.0;
|
|
|
3841 |
|
|
|
3842 |
LOOP_MOV_AXIS(i)
|
|
|
3843 |
if (parser.seen(RAW_AXIS_CODES(i)))
|
|
|
3844 |
go[i] = parser.value_axis_units((AxisEnum)i);
|
|
|
3845 |
|
|
|
3846 |
#if ENABLED(HANGPRINTER)
|
|
|
3847 |
#define GO_SRC line_lengths
|
|
|
3848 |
#elif ENABLED(DELTA)
|
|
|
3849 |
#define GO_SRC delta
|
|
|
3850 |
#else
|
|
|
3851 |
#define GO_SRC current_position
|
|
|
3852 |
#endif
|
|
|
3853 |
|
|
|
3854 |
if (
|
|
|
3855 |
#if ENABLED(HANGPRINTER) // Sending R to another machine is the same as not sending S1 to Hangprinter
|
|
|
3856 |
parser.byteval('S') != 2
|
|
|
3857 |
#else
|
|
|
3858 |
parser.seen('R')
|
|
|
3859 |
#endif
|
|
|
3860 |
)
|
|
|
3861 |
LOOP_MOV_AXIS(i) go[i] += GO_SRC[i];
|
|
|
3862 |
else
|
|
|
3863 |
LOOP_MOV_AXIS(i) if (!parser.seen(RAW_AXIS_CODES(i))) go[i] += GO_SRC[i];
|
|
|
3864 |
|
|
|
3865 |
tmp_fr_mm_s = parser.linearval('F') > 0.0 ? MMM_TO_MMS(parser.value_feedrate()) : feedrate_mm_s;
|
|
|
3866 |
|
|
|
3867 |
#if ENABLED(HANGPRINTER)
|
|
|
3868 |
if (parser.byteval('S') == 2) {
|
|
|
3869 |
LOOP_MOV_AXIS(i) line_lengths[i] = go[i];
|
|
|
3870 |
count_it = true;
|
|
|
3871 |
}
|
|
|
3872 |
#endif
|
|
|
3873 |
|
|
|
3874 |
planner.buffer_segment(go[A_AXIS], go[B_AXIS], go[C_AXIS]
|
|
|
3875 |
#if ENABLED(HANGPRINTER)
|
|
|
3876 |
, go[D_AXIS]
|
|
|
3877 |
#endif
|
|
|
3878 |
, current_position[E_CART], tmp_fr_mm_s, active_extruder, 0.0, count_it
|
|
|
3879 |
);
|
|
|
3880 |
}
|
|
|
3881 |
}
|
|
|
3882 |
#endif
|
|
|
3883 |
|
|
|
3884 |
#if ENABLED(FWRETRACT)
|
|
|
3885 |
|
|
|
3886 |
/**
|
|
|
3887 |
* G10 - Retract filament according to settings of M207
|
|
|
3888 |
*/
|
|
|
3889 |
inline void gcode_G10() {
|
|
|
3890 |
#if EXTRUDERS > 1
|
|
|
3891 |
const bool rs = parser.boolval('S');
|
|
|
3892 |
#endif
|
|
|
3893 |
fwretract.retract(true
|
|
|
3894 |
#if EXTRUDERS > 1
|
|
|
3895 |
, rs
|
|
|
3896 |
#endif
|
|
|
3897 |
);
|
|
|
3898 |
}
|
|
|
3899 |
|
|
|
3900 |
/**
|
|
|
3901 |
* G11 - Recover filament according to settings of M208
|
|
|
3902 |
*/
|
|
|
3903 |
inline void gcode_G11() { fwretract.retract(false); }
|
|
|
3904 |
|
|
|
3905 |
#endif // FWRETRACT
|
|
|
3906 |
|
|
|
3907 |
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
|
|
3908 |
/**
|
|
|
3909 |
* G12: Clean the nozzle
|
|
|
3910 |
*/
|
|
|
3911 |
inline void gcode_G12() {
|
|
|
3912 |
// Don't allow nozzle cleaning without homing first
|
|
|
3913 |
if (axis_unhomed_error()) return;
|
|
|
3914 |
|
|
|
3915 |
const uint8_t pattern = parser.ushortval('P', 0),
|
|
|
3916 |
strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
|
|
|
3917 |
objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
|
|
|
3918 |
const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
|
|
|
3919 |
|
|
|
3920 |
Nozzle::clean(pattern, strokes, radius, objects);
|
|
|
3921 |
}
|
|
|
3922 |
#endif
|
|
|
3923 |
|
|
|
3924 |
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
3925 |
|
|
|
3926 |
inline void report_workspace_plane() {
|
|
|
3927 |
SERIAL_ECHO_START();
|
|
|
3928 |
SERIAL_ECHOPGM("Workspace Plane ");
|
|
|
3929 |
serialprintPGM(
|
|
|
3930 |
workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
|
|
|
3931 |
workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
|
|
|
3932 |
PSTR("XY\n")
|
|
|
3933 |
);
|
|
|
3934 |
}
|
|
|
3935 |
|
|
|
3936 |
inline void set_workspace_plane(const WorkspacePlane plane) {
|
|
|
3937 |
workspace_plane = plane;
|
|
|
3938 |
if (DEBUGGING(INFO)) report_workspace_plane();
|
|
|
3939 |
}
|
|
|
3940 |
|
|
|
3941 |
/**
|
|
|
3942 |
* G17: Select Plane XY
|
|
|
3943 |
* G18: Select Plane ZX
|
|
|
3944 |
* G19: Select Plane YZ
|
|
|
3945 |
*/
|
|
|
3946 |
inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
|
|
|
3947 |
inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
|
|
|
3948 |
inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
|
|
|
3949 |
|
|
|
3950 |
#endif // CNC_WORKSPACE_PLANES
|
|
|
3951 |
|
|
|
3952 |
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
3953 |
|
|
|
3954 |
/**
|
|
|
3955 |
* Select a coordinate system and update the workspace offset.
|
|
|
3956 |
* System index -1 is used to specify machine-native.
|
|
|
3957 |
*/
|
|
|
3958 |
bool select_coordinate_system(const int8_t _new) {
|
|
|
3959 |
if (active_coordinate_system == _new) return false;
|
|
|
3960 |
float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
|
|
|
3961 |
if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
|
|
|
3962 |
COPY(old_offset, coordinate_system[active_coordinate_system]);
|
|
|
3963 |
if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
|
|
|
3964 |
COPY(new_offset, coordinate_system[_new]);
|
|
|
3965 |
active_coordinate_system = _new;
|
|
|
3966 |
LOOP_XYZ(i) {
|
|
|
3967 |
const float diff = new_offset[i] - old_offset[i];
|
|
|
3968 |
if (diff) {
|
|
|
3969 |
position_shift[i] += diff;
|
|
|
3970 |
update_software_endstops((AxisEnum)i);
|
|
|
3971 |
}
|
|
|
3972 |
}
|
|
|
3973 |
return true;
|
|
|
3974 |
}
|
|
|
3975 |
|
|
|
3976 |
/**
|
|
|
3977 |
* G53: Apply native workspace to the current move
|
|
|
3978 |
*
|
|
|
3979 |
* In CNC G-code G53 is a modifier.
|
|
|
3980 |
* It precedes a movement command (or other modifiers) on the same line.
|
|
|
3981 |
* This is the first command to use parser.chain() to make this possible.
|
|
|
3982 |
*
|
|
|
3983 |
* Marlin also uses G53 on a line by itself to go back to native space.
|
|
|
3984 |
*/
|
|
|
3985 |
inline void gcode_G53() {
|
|
|
3986 |
const int8_t _system = active_coordinate_system;
|
|
|
3987 |
active_coordinate_system = -1;
|
|
|
3988 |
if (parser.chain()) { // If this command has more following...
|
|
|
3989 |
process_parsed_command();
|
|
|
3990 |
active_coordinate_system = _system;
|
|
|
3991 |
}
|
|
|
3992 |
}
|
|
|
3993 |
|
|
|
3994 |
/**
|
|
|
3995 |
* G54-G59.3: Select a new workspace
|
|
|
3996 |
*
|
|
|
3997 |
* A workspace is an XYZ offset to the machine native space.
|
|
|
3998 |
* All workspaces default to 0,0,0 at start, or with EEPROM
|
|
|
3999 |
* support they may be restored from a previous session.
|
|
|
4000 |
*
|
|
|
4001 |
* G92 is used to set the current workspace's offset.
|
|
|
4002 |
*/
|
|
|
4003 |
inline void gcode_G54_59(uint8_t subcode=0) {
|
|
|
4004 |
const int8_t _space = parser.codenum - 54 + subcode;
|
|
|
4005 |
if (select_coordinate_system(_space)) {
|
|
|
4006 |
SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
|
|
|
4007 |
report_current_position();
|
|
|
4008 |
}
|
|
|
4009 |
}
|
|
|
4010 |
FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
|
|
|
4011 |
FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
|
|
|
4012 |
FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
|
|
|
4013 |
FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
|
|
|
4014 |
FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
|
|
|
4015 |
FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
|
|
|
4016 |
|
|
|
4017 |
#endif
|
|
|
4018 |
|
|
|
4019 |
#if ENABLED(INCH_MODE_SUPPORT)
|
|
|
4020 |
/**
|
|
|
4021 |
* G20: Set input mode to inches
|
|
|
4022 |
*/
|
|
|
4023 |
inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
|
|
|
4024 |
|
|
|
4025 |
/**
|
|
|
4026 |
* G21: Set input mode to millimeters
|
|
|
4027 |
*/
|
|
|
4028 |
inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
|
|
|
4029 |
#endif
|
|
|
4030 |
|
|
|
4031 |
#if ENABLED(NOZZLE_PARK_FEATURE)
|
|
|
4032 |
/**
|
|
|
4033 |
* G27: Park the nozzle
|
|
|
4034 |
*/
|
|
|
4035 |
inline void gcode_G27() {
|
|
|
4036 |
// Don't allow nozzle parking without homing first
|
|
|
4037 |
if (axis_unhomed_error()) return;
|
|
|
4038 |
Nozzle::park(parser.ushortval('P'));
|
|
|
4039 |
}
|
|
|
4040 |
#endif // NOZZLE_PARK_FEATURE
|
|
|
4041 |
|
|
|
4042 |
#if ENABLED(QUICK_HOME)
|
|
|
4043 |
|
|
|
4044 |
static void quick_home_xy() {
|
|
|
4045 |
|
|
|
4046 |
// Pretend the current position is 0,0
|
|
|
4047 |
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
|
|
4048 |
sync_plan_position();
|
|
|
4049 |
|
|
|
4050 |
const int x_axis_home_dir =
|
|
|
4051 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
4052 |
x_home_dir(active_extruder)
|
|
|
4053 |
#else
|
|
|
4054 |
home_dir(X_AXIS)
|
|
|
4055 |
#endif
|
|
|
4056 |
;
|
|
|
4057 |
|
|
|
4058 |
const float mlx = max_length(X_AXIS),
|
|
|
4059 |
mly = max_length(Y_AXIS),
|
|
|
4060 |
mlratio = mlx > mly ? mly / mlx : mlx / mly,
|
|
|
4061 |
fr_mm_s = MIN(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
|
|
|
4062 |
|
|
|
4063 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
4064 |
sensorless_homing_per_axis(X_AXIS);
|
|
|
4065 |
sensorless_homing_per_axis(Y_AXIS);
|
|
|
4066 |
#endif
|
|
|
4067 |
|
|
|
4068 |
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
|
|
|
4069 |
|
|
|
4070 |
endstops.validate_homing_move();
|
|
|
4071 |
|
|
|
4072 |
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
|
|
4073 |
|
|
|
4074 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
4075 |
sensorless_homing_per_axis(X_AXIS, false);
|
|
|
4076 |
sensorless_homing_per_axis(Y_AXIS, false);
|
|
|
4077 |
#endif
|
|
|
4078 |
}
|
|
|
4079 |
|
|
|
4080 |
#endif // QUICK_HOME
|
|
|
4081 |
|
|
|
4082 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4083 |
|
|
|
4084 |
void log_machine_info() {
|
|
|
4085 |
SERIAL_ECHOPGM("Machine Type: ");
|
|
|
4086 |
#if ENABLED(DELTA)
|
|
|
4087 |
SERIAL_ECHOLNPGM("Delta");
|
|
|
4088 |
#elif IS_SCARA
|
|
|
4089 |
SERIAL_ECHOLNPGM("SCARA");
|
|
|
4090 |
#elif IS_CORE
|
|
|
4091 |
SERIAL_ECHOLNPGM("Core");
|
|
|
4092 |
#else
|
|
|
4093 |
SERIAL_ECHOLNPGM("Cartesian");
|
|
|
4094 |
#endif
|
|
|
4095 |
|
|
|
4096 |
SERIAL_ECHOPGM("Probe: ");
|
|
|
4097 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
4098 |
SERIAL_ECHOLNPGM("PROBE_MANUALLY");
|
|
|
4099 |
#elif ENABLED(FIX_MOUNTED_PROBE)
|
|
|
4100 |
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
|
|
|
4101 |
#elif ENABLED(BLTOUCH)
|
|
|
4102 |
SERIAL_ECHOLNPGM("BLTOUCH");
|
|
|
4103 |
#elif HAS_Z_SERVO_PROBE
|
|
|
4104 |
SERIAL_ECHOLNPGM("SERVO PROBE");
|
|
|
4105 |
#elif ENABLED(Z_PROBE_SLED)
|
|
|
4106 |
SERIAL_ECHOLNPGM("Z_PROBE_SLED");
|
|
|
4107 |
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
4108 |
SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
|
|
|
4109 |
#else
|
|
|
4110 |
SERIAL_ECHOLNPGM("NONE");
|
|
|
4111 |
#endif
|
|
|
4112 |
|
|
|
4113 |
#if HAS_BED_PROBE
|
|
|
4114 |
SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
4115 |
SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
4116 |
SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
|
|
|
4117 |
#if X_PROBE_OFFSET_FROM_EXTRUDER > 0
|
|
|
4118 |
SERIAL_ECHOPGM(" (Right");
|
|
|
4119 |
#elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
|
|
|
4120 |
SERIAL_ECHOPGM(" (Left");
|
|
|
4121 |
#elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
|
|
|
4122 |
SERIAL_ECHOPGM(" (Middle");
|
|
|
4123 |
#else
|
|
|
4124 |
SERIAL_ECHOPGM(" (Aligned With");
|
|
|
4125 |
#endif
|
|
|
4126 |
#if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
|
|
|
4127 |
#if IS_SCARA
|
|
|
4128 |
SERIAL_ECHOPGM("-Distal");
|
|
|
4129 |
#else
|
|
|
4130 |
SERIAL_ECHOPGM("-Back");
|
|
|
4131 |
#endif
|
|
|
4132 |
#elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
|
|
|
4133 |
#if IS_SCARA
|
|
|
4134 |
SERIAL_ECHOPGM("-Proximal");
|
|
|
4135 |
#else
|
|
|
4136 |
SERIAL_ECHOPGM("-Front");
|
|
|
4137 |
#endif
|
|
|
4138 |
#elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
|
|
|
4139 |
SERIAL_ECHOPGM("-Center");
|
|
|
4140 |
#endif
|
|
|
4141 |
if (zprobe_zoffset < 0)
|
|
|
4142 |
SERIAL_ECHOPGM(" & Below");
|
|
|
4143 |
else if (zprobe_zoffset > 0)
|
|
|
4144 |
SERIAL_ECHOPGM(" & Above");
|
|
|
4145 |
else
|
|
|
4146 |
SERIAL_ECHOPGM(" & Same Z as");
|
|
|
4147 |
SERIAL_ECHOLNPGM(" Nozzle)");
|
|
|
4148 |
#endif
|
|
|
4149 |
|
|
|
4150 |
#if HAS_ABL
|
|
|
4151 |
SERIAL_ECHOPGM("Auto Bed Leveling: ");
|
|
|
4152 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
4153 |
SERIAL_ECHOPGM("LINEAR");
|
|
|
4154 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
4155 |
SERIAL_ECHOPGM("BILINEAR");
|
|
|
4156 |
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
4157 |
SERIAL_ECHOPGM("3POINT");
|
|
|
4158 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
4159 |
SERIAL_ECHOPGM("UBL");
|
|
|
4160 |
#endif
|
|
|
4161 |
if (planner.leveling_active) {
|
|
|
4162 |
SERIAL_ECHOLNPGM(" (enabled)");
|
|
|
4163 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
4164 |
if (planner.z_fade_height)
|
|
|
4165 |
SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height);
|
|
|
4166 |
#endif
|
|
|
4167 |
#if ABL_PLANAR
|
|
|
4168 |
const float diff[XYZ] = {
|
|
|
4169 |
planner.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
|
|
|
4170 |
planner.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
|
|
|
4171 |
planner.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
|
|
|
4172 |
};
|
|
|
4173 |
SERIAL_ECHOPGM("ABL Adjustment X");
|
|
|
4174 |
if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
|
|
|
4175 |
SERIAL_ECHO(diff[X_AXIS]);
|
|
|
4176 |
SERIAL_ECHOPGM(" Y");
|
|
|
4177 |
if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
|
|
|
4178 |
SERIAL_ECHO(diff[Y_AXIS]);
|
|
|
4179 |
SERIAL_ECHOPGM(" Z");
|
|
|
4180 |
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
|
|
|
4181 |
SERIAL_ECHO(diff[Z_AXIS]);
|
|
|
4182 |
#else
|
|
|
4183 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
4184 |
SERIAL_ECHOPGM("UBL Adjustment Z");
|
|
|
4185 |
const float rz = ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
4186 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
4187 |
SERIAL_ECHOPAIR("Bilinear Grid X", bilinear_start[X_AXIS]);
|
|
|
4188 |
SERIAL_ECHOPAIR(" Y", bilinear_start[Y_AXIS]);
|
|
|
4189 |
SERIAL_ECHOPAIR(" W", ABL_BG_SPACING(X_AXIS));
|
|
|
4190 |
SERIAL_ECHOLNPAIR(" H", ABL_BG_SPACING(Y_AXIS));
|
|
|
4191 |
SERIAL_ECHOPGM("ABL Adjustment Z");
|
|
|
4192 |
const float rz = bilinear_z_offset(current_position);
|
|
|
4193 |
#endif
|
|
|
4194 |
SERIAL_ECHO(ftostr43sign(rz, '+'));
|
|
|
4195 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
4196 |
if (planner.z_fade_height) {
|
|
|
4197 |
SERIAL_ECHOPAIR(" (", ftostr43sign(rz * planner.fade_scaling_factor_for_z(current_position[Z_AXIS]), '+'));
|
|
|
4198 |
SERIAL_CHAR(')');
|
|
|
4199 |
}
|
|
|
4200 |
#endif
|
|
|
4201 |
#endif
|
|
|
4202 |
}
|
|
|
4203 |
else
|
|
|
4204 |
SERIAL_ECHOLNPGM(" (disabled)");
|
|
|
4205 |
|
|
|
4206 |
SERIAL_EOL();
|
|
|
4207 |
|
|
|
4208 |
#elif ENABLED(MESH_BED_LEVELING)
|
|
|
4209 |
|
|
|
4210 |
SERIAL_ECHOPGM("Mesh Bed Leveling");
|
|
|
4211 |
if (planner.leveling_active) {
|
|
|
4212 |
SERIAL_ECHOLNPGM(" (enabled)");
|
|
|
4213 |
SERIAL_ECHOPAIR("MBL Adjustment Z", ftostr43sign(mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]
|
|
|
4214 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
4215 |
, 1.0
|
|
|
4216 |
#endif
|
|
|
4217 |
), '+'));
|
|
|
4218 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
4219 |
if (planner.z_fade_height) {
|
|
|
4220 |
SERIAL_ECHOPAIR(" (", ftostr43sign(
|
|
|
4221 |
mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS], planner.fade_scaling_factor_for_z(current_position[Z_AXIS])), '+'
|
|
|
4222 |
));
|
|
|
4223 |
SERIAL_CHAR(')');
|
|
|
4224 |
}
|
|
|
4225 |
#endif
|
|
|
4226 |
}
|
|
|
4227 |
else
|
|
|
4228 |
SERIAL_ECHOPGM(" (disabled)");
|
|
|
4229 |
|
|
|
4230 |
SERIAL_EOL();
|
|
|
4231 |
|
|
|
4232 |
#endif // MESH_BED_LEVELING
|
|
|
4233 |
}
|
|
|
4234 |
|
|
|
4235 |
#endif // DEBUG_LEVELING_FEATURE
|
|
|
4236 |
|
|
|
4237 |
#if ENABLED(DELTA)
|
|
|
4238 |
|
|
|
4239 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
4240 |
inline void delta_sensorless_homing(const bool on=true) {
|
|
|
4241 |
sensorless_homing_per_axis(A_AXIS, on);
|
|
|
4242 |
sensorless_homing_per_axis(B_AXIS, on);
|
|
|
4243 |
sensorless_homing_per_axis(C_AXIS, on);
|
|
|
4244 |
}
|
|
|
4245 |
#endif
|
|
|
4246 |
|
|
|
4247 |
/**
|
|
|
4248 |
* A delta can only safely home all axes at the same time
|
|
|
4249 |
* This is like quick_home_xy() but for 3 towers.
|
|
|
4250 |
*/
|
|
|
4251 |
inline void home_delta() {
|
|
|
4252 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4253 |
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
|
|
|
4254 |
#endif
|
|
|
4255 |
// Init the current position of all carriages to 0,0,0
|
|
|
4256 |
ZERO(current_position);
|
|
|
4257 |
sync_plan_position();
|
|
|
4258 |
|
|
|
4259 |
// Disable stealthChop if used. Enable diag1 pin on driver.
|
|
|
4260 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
4261 |
delta_sensorless_homing();
|
|
|
4262 |
#endif
|
|
|
4263 |
|
|
|
4264 |
// Move all carriages together linearly until an endstop is hit.
|
|
|
4265 |
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10
|
|
|
4266 |
#if HAS_BED_PROBE
|
|
|
4267 |
- zprobe_zoffset
|
|
|
4268 |
#endif
|
|
|
4269 |
);
|
|
|
4270 |
feedrate_mm_s = homing_feedrate(X_AXIS);
|
|
|
4271 |
buffer_line_to_current_position();
|
|
|
4272 |
planner.synchronize();
|
|
|
4273 |
|
|
|
4274 |
// Re-enable stealthChop if used. Disable diag1 pin on driver.
|
|
|
4275 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
4276 |
delta_sensorless_homing(false);
|
|
|
4277 |
#endif
|
|
|
4278 |
|
|
|
4279 |
endstops.validate_homing_move();
|
|
|
4280 |
|
|
|
4281 |
// At least one carriage has reached the top.
|
|
|
4282 |
// Now re-home each carriage separately.
|
|
|
4283 |
homeaxis(A_AXIS);
|
|
|
4284 |
homeaxis(B_AXIS);
|
|
|
4285 |
homeaxis(C_AXIS);
|
|
|
4286 |
|
|
|
4287 |
// Set all carriages to their home positions
|
|
|
4288 |
// Do this here all at once for Delta, because
|
|
|
4289 |
// XYZ isn't ABC. Applying this per-tower would
|
|
|
4290 |
// give the impression that they are the same.
|
|
|
4291 |
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
|
|
|
4292 |
|
|
|
4293 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
4294 |
|
|
|
4295 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4296 |
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
|
|
|
4297 |
#endif
|
|
|
4298 |
}
|
|
|
4299 |
|
|
|
4300 |
#elif ENABLED(HANGPRINTER)
|
|
|
4301 |
/**
|
|
|
4302 |
* A hangprinter cannot home itself
|
|
|
4303 |
*/
|
|
|
4304 |
inline void home_hangprinter() {
|
|
|
4305 |
SERIAL_ECHOLNPGM("Warning: G28 is not implemented for Hangprinter.");
|
|
|
4306 |
}
|
|
|
4307 |
|
|
|
4308 |
#endif
|
|
|
4309 |
|
|
|
4310 |
#ifdef Z_AFTER_PROBING
|
|
|
4311 |
void move_z_after_probing() {
|
|
|
4312 |
if (current_position[Z_AXIS] != Z_AFTER_PROBING) {
|
|
|
4313 |
do_blocking_move_to_z(Z_AFTER_PROBING);
|
|
|
4314 |
current_position[Z_AXIS] = Z_AFTER_PROBING;
|
|
|
4315 |
}
|
|
|
4316 |
}
|
|
|
4317 |
#endif
|
|
|
4318 |
|
|
|
4319 |
#if ENABLED(Z_SAFE_HOMING)
|
|
|
4320 |
|
|
|
4321 |
inline void home_z_safely() {
|
|
|
4322 |
|
|
|
4323 |
// Disallow Z homing if X or Y are unknown
|
|
|
4324 |
if (!TEST(axis_known_position, X_AXIS) || !TEST(axis_known_position, Y_AXIS)) {
|
|
|
4325 |
LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
|
|
|
4326 |
SERIAL_ECHO_START();
|
|
|
4327 |
SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
|
|
|
4328 |
return;
|
|
|
4329 |
}
|
|
|
4330 |
|
|
|
4331 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4332 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
|
|
|
4333 |
#endif
|
|
|
4334 |
|
|
|
4335 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
4336 |
|
|
|
4337 |
/**
|
|
|
4338 |
* Move the Z probe (or just the nozzle) to the safe homing point
|
|
|
4339 |
*/
|
|
|
4340 |
destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
|
|
|
4341 |
destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
|
|
|
4342 |
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
|
|
|
4343 |
|
|
|
4344 |
#if HOMING_Z_WITH_PROBE
|
|
|
4345 |
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
4346 |
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
4347 |
#endif
|
|
|
4348 |
|
|
|
4349 |
if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
|
|
|
4350 |
|
|
|
4351 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4352 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
|
|
|
4353 |
#endif
|
|
|
4354 |
|
|
|
4355 |
// This causes the carriage on Dual X to unpark
|
|
|
4356 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
4357 |
active_extruder_parked = false;
|
|
|
4358 |
#endif
|
|
|
4359 |
|
|
|
4360 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
4361 |
safe_delay(500); // Short delay needed to settle
|
|
|
4362 |
#endif
|
|
|
4363 |
|
|
|
4364 |
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
|
|
|
4365 |
homeaxis(Z_AXIS);
|
|
|
4366 |
}
|
|
|
4367 |
else {
|
|
|
4368 |
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
|
|
4369 |
SERIAL_ECHO_START();
|
|
|
4370 |
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
|
|
4371 |
}
|
|
|
4372 |
|
|
|
4373 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4374 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
|
|
|
4375 |
#endif
|
|
|
4376 |
}
|
|
|
4377 |
|
|
|
4378 |
#endif // Z_SAFE_HOMING
|
|
|
4379 |
|
|
|
4380 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
4381 |
bool g29_in_progress = false;
|
|
|
4382 |
#else
|
|
|
4383 |
constexpr bool g29_in_progress = false;
|
|
|
4384 |
#endif
|
|
|
4385 |
|
|
|
4386 |
/**
|
|
|
4387 |
* G28: Home all axes according to settings
|
|
|
4388 |
*
|
|
|
4389 |
* Parameters
|
|
|
4390 |
*
|
|
|
4391 |
* None Home to all axes with no parameters.
|
|
|
4392 |
* With QUICK_HOME enabled XY will home together, then Z.
|
|
|
4393 |
*
|
|
|
4394 |
* O Home only if position is unknown
|
|
|
4395 |
*
|
|
|
4396 |
* Rn Raise by n mm/inches before homing
|
|
|
4397 |
*
|
|
|
4398 |
* Cartesian parameters
|
|
|
4399 |
*
|
|
|
4400 |
* X Home to the X endstop
|
|
|
4401 |
* Y Home to the Y endstop
|
|
|
4402 |
* Z Home to the Z endstop
|
|
|
4403 |
*
|
|
|
4404 |
*/
|
|
|
4405 |
inline void gcode_G28(const bool always_home_all) {
|
|
|
4406 |
|
|
|
4407 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4408 |
if (DEBUGGING(LEVELING)) {
|
|
|
4409 |
SERIAL_ECHOLNPGM(">>> G28");
|
|
|
4410 |
log_machine_info();
|
|
|
4411 |
}
|
|
|
4412 |
#endif
|
|
|
4413 |
|
|
|
4414 |
#if ENABLED(MARLIN_DEV_MODE)
|
|
|
4415 |
if (parser.seen('S')) {
|
|
|
4416 |
LOOP_XYZ(a) set_axis_is_at_home((AxisEnum)a);
|
|
|
4417 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
4418 |
SERIAL_ECHOLNPGM("Simulated Homing");
|
|
|
4419 |
report_current_position();
|
|
|
4420 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4421 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G28");
|
|
|
4422 |
#endif
|
|
|
4423 |
return;
|
|
|
4424 |
}
|
|
|
4425 |
#endif
|
|
|
4426 |
|
|
|
4427 |
if (all_axes_known() && parser.boolval('O')) { // home only if needed
|
|
|
4428 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4429 |
if (DEBUGGING(LEVELING)) {
|
|
|
4430 |
SERIAL_ECHOLNPGM("> homing not needed, skip");
|
|
|
4431 |
SERIAL_ECHOLNPGM("<<< G28");
|
|
|
4432 |
}
|
|
|
4433 |
#endif
|
|
|
4434 |
return;
|
|
|
4435 |
}
|
|
|
4436 |
|
|
|
4437 |
// Wait for planner moves to finish!
|
|
|
4438 |
planner.synchronize();
|
|
|
4439 |
|
|
|
4440 |
// Cancel the active G29 session
|
|
|
4441 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
4442 |
g29_in_progress = false;
|
|
|
4443 |
#endif
|
|
|
4444 |
|
|
|
4445 |
// Disable the leveling matrix before homing
|
|
|
4446 |
#if HAS_LEVELING
|
|
|
4447 |
#if ENABLED(RESTORE_LEVELING_AFTER_G28)
|
|
|
4448 |
const bool leveling_was_active = planner.leveling_active;
|
|
|
4449 |
#endif
|
|
|
4450 |
set_bed_leveling_enabled(false);
|
|
|
4451 |
#endif
|
|
|
4452 |
|
|
|
4453 |
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
4454 |
workspace_plane = PLANE_XY;
|
|
|
4455 |
#endif
|
|
|
4456 |
|
|
|
4457 |
#if ENABLED(BLTOUCH)
|
|
|
4458 |
// Make sure any BLTouch error condition is cleared
|
|
|
4459 |
bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY);
|
|
|
4460 |
set_bltouch_deployed(false);
|
|
|
4461 |
#endif
|
|
|
4462 |
|
|
|
4463 |
// Always home with tool 0 active
|
|
|
4464 |
#if HOTENDS > 1
|
|
|
4465 |
#if DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
|
|
4466 |
const uint8_t old_tool_index = active_extruder;
|
|
|
4467 |
#endif
|
|
|
4468 |
tool_change(0, 0, true);
|
|
|
4469 |
#endif
|
|
|
4470 |
|
|
|
4471 |
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
4472 |
extruder_duplication_enabled = false;
|
|
|
4473 |
#endif
|
|
|
4474 |
|
|
|
4475 |
setup_for_endstop_or_probe_move();
|
|
|
4476 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4477 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
|
|
4478 |
#endif
|
|
|
4479 |
endstops.enable(true); // Enable endstops for next homing move
|
|
|
4480 |
|
|
|
4481 |
#if ENABLED(DELTA)
|
|
|
4482 |
|
|
|
4483 |
home_delta();
|
|
|
4484 |
UNUSED(always_home_all);
|
|
|
4485 |
|
|
|
4486 |
#elif ENABLED(HANGPRINTER)
|
|
|
4487 |
|
|
|
4488 |
home_hangprinter();
|
|
|
4489 |
UNUSED(always_home_all);
|
|
|
4490 |
|
|
|
4491 |
#else // NOT Delta or Hangprinter
|
|
|
4492 |
|
|
|
4493 |
const bool homeX = always_home_all || parser.seen('X'),
|
|
|
4494 |
homeY = always_home_all || parser.seen('Y'),
|
|
|
4495 |
homeZ = always_home_all || parser.seen('Z'),
|
|
|
4496 |
home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
|
|
|
4497 |
|
|
|
4498 |
set_destination_from_current();
|
|
|
4499 |
|
|
|
4500 |
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
4501 |
|
|
|
4502 |
if (home_all || homeZ) homeaxis(Z_AXIS);
|
|
|
4503 |
|
|
|
4504 |
#endif
|
|
|
4505 |
|
|
|
4506 |
const float z_homing_height = (
|
|
|
4507 |
#if ENABLED(UNKNOWN_Z_NO_RAISE)
|
|
|
4508 |
!TEST(axis_known_position, Z_AXIS) ? 0 :
|
|
|
4509 |
#endif
|
|
|
4510 |
(parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT)
|
|
|
4511 |
);
|
|
|
4512 |
|
|
|
4513 |
if (z_homing_height && (home_all || homeX || homeY)) {
|
|
|
4514 |
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
|
|
4515 |
destination[Z_AXIS] = z_homing_height;
|
|
|
4516 |
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
|
|
|
4517 |
|
|
|
4518 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4519 |
if (DEBUGGING(LEVELING))
|
|
|
4520 |
SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
|
|
|
4521 |
#endif
|
|
|
4522 |
|
|
|
4523 |
do_blocking_move_to_z(destination[Z_AXIS]);
|
|
|
4524 |
}
|
|
|
4525 |
}
|
|
|
4526 |
|
|
|
4527 |
#if ENABLED(QUICK_HOME)
|
|
|
4528 |
|
|
|
4529 |
if (home_all || (homeX && homeY)) quick_home_xy();
|
|
|
4530 |
|
|
|
4531 |
#endif
|
|
|
4532 |
|
|
|
4533 |
// Home Y (before X)
|
|
|
4534 |
#if ENABLED(HOME_Y_BEFORE_X)
|
|
|
4535 |
|
|
|
4536 |
if (home_all || homeY
|
|
|
4537 |
#if ENABLED(CODEPENDENT_XY_HOMING)
|
|
|
4538 |
|| homeX
|
|
|
4539 |
#endif
|
|
|
4540 |
) homeaxis(Y_AXIS);
|
|
|
4541 |
|
|
|
4542 |
#endif
|
|
|
4543 |
|
|
|
4544 |
// Home X
|
|
|
4545 |
if (home_all || homeX
|
|
|
4546 |
#if ENABLED(CODEPENDENT_XY_HOMING) && DISABLED(HOME_Y_BEFORE_X)
|
|
|
4547 |
|| homeY
|
|
|
4548 |
#endif
|
|
|
4549 |
) {
|
|
|
4550 |
|
|
|
4551 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
4552 |
|
|
|
4553 |
// Always home the 2nd (right) extruder first
|
|
|
4554 |
active_extruder = 1;
|
|
|
4555 |
homeaxis(X_AXIS);
|
|
|
4556 |
|
|
|
4557 |
// Remember this extruder's position for later tool change
|
|
|
4558 |
inactive_extruder_x_pos = current_position[X_AXIS];
|
|
|
4559 |
|
|
|
4560 |
// Home the 1st (left) extruder
|
|
|
4561 |
active_extruder = 0;
|
|
|
4562 |
homeaxis(X_AXIS);
|
|
|
4563 |
|
|
|
4564 |
// Consider the active extruder to be parked
|
|
|
4565 |
COPY(raised_parked_position, current_position);
|
|
|
4566 |
delayed_move_time = 0;
|
|
|
4567 |
active_extruder_parked = true;
|
|
|
4568 |
|
|
|
4569 |
#else
|
|
|
4570 |
|
|
|
4571 |
homeaxis(X_AXIS);
|
|
|
4572 |
|
|
|
4573 |
#endif
|
|
|
4574 |
}
|
|
|
4575 |
|
|
|
4576 |
// Home Y (after X)
|
|
|
4577 |
#if DISABLED(HOME_Y_BEFORE_X)
|
|
|
4578 |
if (home_all || homeY) homeaxis(Y_AXIS);
|
|
|
4579 |
#endif
|
|
|
4580 |
|
|
|
4581 |
// Home Z last if homing towards the bed
|
|
|
4582 |
#if Z_HOME_DIR < 0
|
|
|
4583 |
if (home_all || homeZ) {
|
|
|
4584 |
#if ENABLED(Z_SAFE_HOMING)
|
|
|
4585 |
home_z_safely();
|
|
|
4586 |
#else
|
|
|
4587 |
homeaxis(Z_AXIS);
|
|
|
4588 |
#endif
|
|
|
4589 |
|
|
|
4590 |
#if HOMING_Z_WITH_PROBE && defined(Z_AFTER_PROBING)
|
|
|
4591 |
move_z_after_probing();
|
|
|
4592 |
#endif
|
|
|
4593 |
|
|
|
4594 |
} // home_all || homeZ
|
|
|
4595 |
#endif // Z_HOME_DIR < 0
|
|
|
4596 |
|
|
|
4597 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
4598 |
|
|
|
4599 |
#endif // !DELTA (gcode_G28)
|
|
|
4600 |
|
|
|
4601 |
endstops.not_homing();
|
|
|
4602 |
|
|
|
4603 |
#if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
|
|
4604 |
// move to a height where we can use the full xy-area
|
|
|
4605 |
do_blocking_move_to_z(delta_clip_start_height);
|
|
|
4606 |
#endif
|
|
|
4607 |
|
|
|
4608 |
#if ENABLED(RESTORE_LEVELING_AFTER_G28)
|
|
|
4609 |
set_bed_leveling_enabled(leveling_was_active);
|
|
|
4610 |
#endif
|
|
|
4611 |
|
|
|
4612 |
clean_up_after_endstop_or_probe_move();
|
|
|
4613 |
|
|
|
4614 |
// Restore the active tool after homing
|
|
|
4615 |
#if HOTENDS > 1 && (DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE))
|
|
|
4616 |
#if ENABLED(PARKING_EXTRUDER)
|
|
|
4617 |
#define NO_FETCH false // fetch the previous toolhead
|
|
|
4618 |
#else
|
|
|
4619 |
#define NO_FETCH true
|
|
|
4620 |
#endif
|
|
|
4621 |
tool_change(old_tool_index, 0, NO_FETCH);
|
|
|
4622 |
#endif
|
|
|
4623 |
|
|
|
4624 |
lcd_refresh();
|
|
|
4625 |
|
|
|
4626 |
report_current_position();
|
|
|
4627 |
|
|
|
4628 |
#if ENABLED(NANODLP_Z_SYNC)
|
|
|
4629 |
#if ENABLED(NANODLP_ALL_AXIS)
|
|
|
4630 |
#define _HOME_SYNC true // For any axis, output sync text.
|
|
|
4631 |
#else
|
|
|
4632 |
#define _HOME_SYNC (home_all || homeZ) // Only for Z-axis
|
|
|
4633 |
#endif
|
|
|
4634 |
if (_HOME_SYNC)
|
|
|
4635 |
SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
|
|
|
4636 |
#endif
|
|
|
4637 |
|
|
|
4638 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4639 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G28");
|
|
|
4640 |
#endif
|
|
|
4641 |
} // G28
|
|
|
4642 |
|
|
|
4643 |
void home_all_axes() { gcode_G28(true); }
|
|
|
4644 |
|
|
|
4645 |
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
|
|
|
4646 |
|
|
|
4647 |
inline void _manual_goto_xy(const float &rx, const float &ry) {
|
|
|
4648 |
|
|
|
4649 |
#ifdef MANUAL_PROBE_START_Z
|
|
|
4650 |
#if MANUAL_PROBE_HEIGHT > 0
|
|
|
4651 |
do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
|
|
|
4652 |
do_blocking_move_to_z(MAX(0,MANUAL_PROBE_START_Z));
|
|
|
4653 |
#else
|
|
|
4654 |
do_blocking_move_to(rx, ry, MAX(0,MANUAL_PROBE_START_Z));
|
|
|
4655 |
#endif
|
|
|
4656 |
#elif MANUAL_PROBE_HEIGHT > 0
|
|
|
4657 |
const float prev_z = current_position[Z_AXIS];
|
|
|
4658 |
do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
|
|
|
4659 |
do_blocking_move_to_z(prev_z);
|
|
|
4660 |
#else
|
|
|
4661 |
do_blocking_move_to_xy(rx, ry);
|
|
|
4662 |
#endif
|
|
|
4663 |
|
|
|
4664 |
current_position[X_AXIS] = rx;
|
|
|
4665 |
current_position[Y_AXIS] = ry;
|
|
|
4666 |
|
|
|
4667 |
#if ENABLED(LCD_BED_LEVELING)
|
|
|
4668 |
lcd_wait_for_move = false;
|
|
|
4669 |
#endif
|
|
|
4670 |
}
|
|
|
4671 |
|
|
|
4672 |
#endif
|
|
|
4673 |
|
|
|
4674 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
4675 |
|
|
|
4676 |
// Save 130 bytes with non-duplication of PSTR
|
|
|
4677 |
void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
|
|
|
4678 |
|
|
|
4679 |
/**
|
|
|
4680 |
* G29: Mesh-based Z probe, probes a grid and produces a
|
|
|
4681 |
* mesh to compensate for variable bed height
|
|
|
4682 |
*
|
|
|
4683 |
* Parameters With MESH_BED_LEVELING:
|
|
|
4684 |
*
|
|
|
4685 |
* S0 Produce a mesh report
|
|
|
4686 |
* S1 Start probing mesh points
|
|
|
4687 |
* S2 Probe the next mesh point
|
|
|
4688 |
* S3 Xn Yn Zn.nn Manually modify a single point
|
|
|
4689 |
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
|
|
|
4690 |
* S5 Reset and disable mesh
|
|
|
4691 |
*
|
|
|
4692 |
* The S0 report the points as below
|
|
|
4693 |
*
|
|
|
4694 |
* +----> X-axis 1-n
|
|
|
4695 |
* |
|
|
|
4696 |
* |
|
|
|
4697 |
* v Y-axis 1-n
|
|
|
4698 |
*
|
|
|
4699 |
*/
|
|
|
4700 |
inline void gcode_G29() {
|
|
|
4701 |
|
|
|
4702 |
static int mbl_probe_index = -1;
|
|
|
4703 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
4704 |
static bool enable_soft_endstops;
|
|
|
4705 |
#endif
|
|
|
4706 |
|
|
|
4707 |
MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
|
|
|
4708 |
if (!WITHIN(state, 0, 5)) {
|
|
|
4709 |
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
|
|
|
4710 |
return;
|
|
|
4711 |
}
|
|
|
4712 |
|
|
|
4713 |
int8_t px, py;
|
|
|
4714 |
|
|
|
4715 |
switch (state) {
|
|
|
4716 |
case MeshReport:
|
|
|
4717 |
if (leveling_is_valid()) {
|
|
|
4718 |
SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
|
|
|
4719 |
mbl.report_mesh();
|
|
|
4720 |
}
|
|
|
4721 |
else
|
|
|
4722 |
SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
|
|
|
4723 |
break;
|
|
|
4724 |
|
|
|
4725 |
case MeshStart:
|
|
|
4726 |
mbl.reset();
|
|
|
4727 |
mbl_probe_index = 0;
|
|
|
4728 |
if (!lcd_wait_for_move) {
|
|
|
4729 |
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
|
|
|
4730 |
return;
|
|
|
4731 |
}
|
|
|
4732 |
state = MeshNext;
|
|
|
4733 |
|
|
|
4734 |
case MeshNext:
|
|
|
4735 |
if (mbl_probe_index < 0) {
|
|
|
4736 |
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
|
|
|
4737 |
return;
|
|
|
4738 |
}
|
|
|
4739 |
// For each G29 S2...
|
|
|
4740 |
if (mbl_probe_index == 0) {
|
|
|
4741 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
4742 |
// For the initial G29 S2 save software endstop state
|
|
|
4743 |
enable_soft_endstops = soft_endstops_enabled;
|
|
|
4744 |
#endif
|
|
|
4745 |
// Move close to the bed before the first point
|
|
|
4746 |
do_blocking_move_to_z(0);
|
|
|
4747 |
}
|
|
|
4748 |
else {
|
|
|
4749 |
// Save Z for the previous mesh position
|
|
|
4750 |
mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
|
|
|
4751 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
4752 |
soft_endstops_enabled = enable_soft_endstops;
|
|
|
4753 |
#endif
|
|
|
4754 |
}
|
|
|
4755 |
// If there's another point to sample, move there with optional lift.
|
|
|
4756 |
if (mbl_probe_index < GRID_MAX_POINTS) {
|
|
|
4757 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
4758 |
// Disable software endstops to allow manual adjustment
|
|
|
4759 |
// If G29 is not completed, they will not be re-enabled
|
|
|
4760 |
soft_endstops_enabled = false;
|
|
|
4761 |
#endif
|
|
|
4762 |
|
|
|
4763 |
mbl.zigzag(mbl_probe_index++, px, py);
|
|
|
4764 |
_manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
|
|
|
4765 |
}
|
|
|
4766 |
else {
|
|
|
4767 |
// One last "return to the bed" (as originally coded) at completion
|
|
|
4768 |
current_position[Z_AXIS] = MANUAL_PROBE_HEIGHT;
|
|
|
4769 |
buffer_line_to_current_position();
|
|
|
4770 |
planner.synchronize();
|
|
|
4771 |
|
|
|
4772 |
// After recording the last point, activate home and activate
|
|
|
4773 |
mbl_probe_index = -1;
|
|
|
4774 |
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
|
|
4775 |
BUZZ(100, 659);
|
|
|
4776 |
BUZZ(100, 698);
|
|
|
4777 |
|
|
|
4778 |
home_all_axes();
|
|
|
4779 |
set_bed_leveling_enabled(true);
|
|
|
4780 |
|
|
|
4781 |
#if ENABLED(MESH_G28_REST_ORIGIN)
|
|
|
4782 |
current_position[Z_AXIS] = 0;
|
|
|
4783 |
set_destination_from_current();
|
|
|
4784 |
buffer_line_to_destination(homing_feedrate(Z_AXIS));
|
|
|
4785 |
planner.synchronize();
|
|
|
4786 |
#endif
|
|
|
4787 |
|
|
|
4788 |
#if ENABLED(LCD_BED_LEVELING)
|
|
|
4789 |
lcd_wait_for_move = false;
|
|
|
4790 |
#endif
|
|
|
4791 |
}
|
|
|
4792 |
break;
|
|
|
4793 |
|
|
|
4794 |
case MeshSet:
|
|
|
4795 |
if (parser.seenval('X')) {
|
|
|
4796 |
px = parser.value_int() - 1;
|
|
|
4797 |
if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
|
|
|
4798 |
SERIAL_PROTOCOLPAIR("X out of range (1-", int(GRID_MAX_POINTS_X));
|
|
|
4799 |
SERIAL_PROTOCOLLNPGM(")");
|
|
|
4800 |
return;
|
|
|
4801 |
}
|
|
|
4802 |
}
|
|
|
4803 |
else {
|
|
|
4804 |
SERIAL_CHAR('X'); echo_not_entered();
|
|
|
4805 |
return;
|
|
|
4806 |
}
|
|
|
4807 |
|
|
|
4808 |
if (parser.seenval('Y')) {
|
|
|
4809 |
py = parser.value_int() - 1;
|
|
|
4810 |
if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
4811 |
SERIAL_PROTOCOLPAIR("Y out of range (1-", int(GRID_MAX_POINTS_Y));
|
|
|
4812 |
SERIAL_PROTOCOLLNPGM(")");
|
|
|
4813 |
return;
|
|
|
4814 |
}
|
|
|
4815 |
}
|
|
|
4816 |
else {
|
|
|
4817 |
SERIAL_CHAR('Y'); echo_not_entered();
|
|
|
4818 |
return;
|
|
|
4819 |
}
|
|
|
4820 |
|
|
|
4821 |
if (parser.seenval('Z'))
|
|
|
4822 |
mbl.z_values[px][py] = parser.value_linear_units();
|
|
|
4823 |
else {
|
|
|
4824 |
SERIAL_CHAR('Z'); echo_not_entered();
|
|
|
4825 |
return;
|
|
|
4826 |
}
|
|
|
4827 |
break;
|
|
|
4828 |
|
|
|
4829 |
case MeshSetZOffset:
|
|
|
4830 |
if (parser.seenval('Z'))
|
|
|
4831 |
mbl.z_offset = parser.value_linear_units();
|
|
|
4832 |
else {
|
|
|
4833 |
SERIAL_CHAR('Z'); echo_not_entered();
|
|
|
4834 |
return;
|
|
|
4835 |
}
|
|
|
4836 |
break;
|
|
|
4837 |
|
|
|
4838 |
case MeshReset:
|
|
|
4839 |
reset_bed_level();
|
|
|
4840 |
break;
|
|
|
4841 |
|
|
|
4842 |
} // switch (state)
|
|
|
4843 |
|
|
|
4844 |
if (state == MeshNext) {
|
|
|
4845 |
SERIAL_PROTOCOLPAIR("MBL G29 point ", MIN(mbl_probe_index, GRID_MAX_POINTS));
|
|
|
4846 |
SERIAL_PROTOCOLLNPAIR(" of ", int(GRID_MAX_POINTS));
|
|
|
4847 |
}
|
|
|
4848 |
|
|
|
4849 |
report_current_position();
|
|
|
4850 |
}
|
|
|
4851 |
|
|
|
4852 |
#elif OLDSCHOOL_ABL
|
|
|
4853 |
|
|
|
4854 |
#if ABL_GRID
|
|
|
4855 |
#if ENABLED(PROBE_Y_FIRST)
|
|
|
4856 |
#define PR_OUTER_VAR xCount
|
|
|
4857 |
#define PR_OUTER_END abl_grid_points_x
|
|
|
4858 |
#define PR_INNER_VAR yCount
|
|
|
4859 |
#define PR_INNER_END abl_grid_points_y
|
|
|
4860 |
#else
|
|
|
4861 |
#define PR_OUTER_VAR yCount
|
|
|
4862 |
#define PR_OUTER_END abl_grid_points_y
|
|
|
4863 |
#define PR_INNER_VAR xCount
|
|
|
4864 |
#define PR_INNER_END abl_grid_points_x
|
|
|
4865 |
#endif
|
|
|
4866 |
#endif
|
|
|
4867 |
|
|
|
4868 |
/**
|
|
|
4869 |
* G29: Detailed Z probe, probes the bed at 3 or more points.
|
|
|
4870 |
* Will fail if the printer has not been homed with G28.
|
|
|
4871 |
*
|
|
|
4872 |
* Enhanced G29 Auto Bed Leveling Probe Routine
|
|
|
4873 |
*
|
|
|
4874 |
* O Auto-level only if needed
|
|
|
4875 |
*
|
|
|
4876 |
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
|
|
4877 |
* or alter the bed level data. Useful to check the topology
|
|
|
4878 |
* after a first run of G29.
|
|
|
4879 |
*
|
|
|
4880 |
* J Jettison current bed leveling data
|
|
|
4881 |
*
|
|
|
4882 |
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
|
4883 |
*
|
|
|
4884 |
* Parameters With LINEAR leveling only:
|
|
|
4885 |
*
|
|
|
4886 |
* P Set the size of the grid that will be probed (P x P points).
|
|
|
4887 |
* Example: "G29 P4"
|
|
|
4888 |
*
|
|
|
4889 |
* X Set the X size of the grid that will be probed (X x Y points).
|
|
|
4890 |
* Example: "G29 X7 Y5"
|
|
|
4891 |
*
|
|
|
4892 |
* Y Set the Y size of the grid that will be probed (X x Y points).
|
|
|
4893 |
*
|
|
|
4894 |
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
|
|
4895 |
* This is useful for manual bed leveling and finding flaws in the bed (to
|
|
|
4896 |
* assist with part placement).
|
|
|
4897 |
* Not supported by non-linear delta printer bed leveling.
|
|
|
4898 |
*
|
|
|
4899 |
* Parameters With LINEAR and BILINEAR leveling only:
|
|
|
4900 |
*
|
|
|
4901 |
* S Set the XY travel speed between probe points (in units/min)
|
|
|
4902 |
*
|
|
|
4903 |
* F Set the Front limit of the probing grid
|
|
|
4904 |
* B Set the Back limit of the probing grid
|
|
|
4905 |
* L Set the Left limit of the probing grid
|
|
|
4906 |
* R Set the Right limit of the probing grid
|
|
|
4907 |
*
|
|
|
4908 |
* Parameters with DEBUG_LEVELING_FEATURE only:
|
|
|
4909 |
*
|
|
|
4910 |
* C Make a totally fake grid with no actual probing.
|
|
|
4911 |
* For use in testing when no probing is possible.
|
|
|
4912 |
*
|
|
|
4913 |
* Parameters with BILINEAR leveling only:
|
|
|
4914 |
*
|
|
|
4915 |
* Z Supply an additional Z probe offset
|
|
|
4916 |
*
|
|
|
4917 |
* Extra parameters with PROBE_MANUALLY:
|
|
|
4918 |
*
|
|
|
4919 |
* To do manual probing simply repeat G29 until the procedure is complete.
|
|
|
4920 |
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
|
|
|
4921 |
*
|
|
|
4922 |
* Q Query leveling and G29 state
|
|
|
4923 |
*
|
|
|
4924 |
* A Abort current leveling procedure
|
|
|
4925 |
*
|
|
|
4926 |
* Extra parameters with BILINEAR only:
|
|
|
4927 |
*
|
|
|
4928 |
* W Write a mesh point. (If G29 is idle.)
|
|
|
4929 |
* I X index for mesh point
|
|
|
4930 |
* J Y index for mesh point
|
|
|
4931 |
* X X for mesh point, overrides I
|
|
|
4932 |
* Y Y for mesh point, overrides J
|
|
|
4933 |
* Z Z for mesh point. Otherwise, raw current Z.
|
|
|
4934 |
*
|
|
|
4935 |
* Without PROBE_MANUALLY:
|
|
|
4936 |
*
|
|
|
4937 |
* E By default G29 will engage the Z probe, test the bed, then disengage.
|
|
|
4938 |
* Include "E" to engage/disengage the Z probe for each sample.
|
|
|
4939 |
* There's no extra effect if you have a fixed Z probe.
|
|
|
4940 |
*
|
|
|
4941 |
*/
|
|
|
4942 |
inline void gcode_G29() {
|
|
|
4943 |
|
|
|
4944 |
#if ENABLED(DEBUG_LEVELING_FEATURE) || ENABLED(PROBE_MANUALLY)
|
|
|
4945 |
const bool seenQ = parser.seen('Q');
|
|
|
4946 |
#else
|
|
|
4947 |
constexpr bool seenQ = false;
|
|
|
4948 |
#endif
|
|
|
4949 |
|
|
|
4950 |
// G29 Q is also available if debugging
|
|
|
4951 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4952 |
const uint8_t old_debug_flags = marlin_debug_flags;
|
|
|
4953 |
if (seenQ) marlin_debug_flags |= DEBUG_LEVELING;
|
|
|
4954 |
if (DEBUGGING(LEVELING)) {
|
|
|
4955 |
DEBUG_POS(">>> G29", current_position);
|
|
|
4956 |
log_machine_info();
|
|
|
4957 |
}
|
|
|
4958 |
marlin_debug_flags = old_debug_flags;
|
|
|
4959 |
#if DISABLED(PROBE_MANUALLY)
|
|
|
4960 |
if (seenQ) return;
|
|
|
4961 |
#endif
|
|
|
4962 |
#endif
|
|
|
4963 |
|
|
|
4964 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
4965 |
const bool seenA = parser.seen('A');
|
|
|
4966 |
#else
|
|
|
4967 |
constexpr bool seenA = false;
|
|
|
4968 |
#endif
|
|
|
4969 |
|
|
|
4970 |
const bool no_action = seenA || seenQ,
|
|
|
4971 |
faux =
|
|
|
4972 |
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
|
|
|
4973 |
parser.boolval('C')
|
|
|
4974 |
#else
|
|
|
4975 |
no_action
|
|
|
4976 |
#endif
|
|
|
4977 |
;
|
|
|
4978 |
|
|
|
4979 |
// Don't allow auto-leveling without homing first
|
|
|
4980 |
if (axis_unhomed_error()) return;
|
|
|
4981 |
|
|
|
4982 |
if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
|
|
|
4983 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
4984 |
if (DEBUGGING(LEVELING)) {
|
|
|
4985 |
SERIAL_ECHOLNPGM("> Auto-level not needed, skip");
|
|
|
4986 |
SERIAL_ECHOLNPGM("<<< G29");
|
|
|
4987 |
}
|
|
|
4988 |
#endif
|
|
|
4989 |
return;
|
|
|
4990 |
}
|
|
|
4991 |
|
|
|
4992 |
// Define local vars 'static' for manual probing, 'auto' otherwise
|
|
|
4993 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
4994 |
#define ABL_VAR static
|
|
|
4995 |
#else
|
|
|
4996 |
#define ABL_VAR
|
|
|
4997 |
#endif
|
|
|
4998 |
|
|
|
4999 |
ABL_VAR int verbose_level;
|
|
|
5000 |
ABL_VAR float xProbe, yProbe, measured_z;
|
|
|
5001 |
ABL_VAR bool dryrun, abl_should_enable;
|
|
|
5002 |
|
|
|
5003 |
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5004 |
ABL_VAR int16_t abl_probe_index;
|
|
|
5005 |
#endif
|
|
|
5006 |
|
|
|
5007 |
#if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
|
|
|
5008 |
ABL_VAR bool enable_soft_endstops = true;
|
|
|
5009 |
#endif
|
|
|
5010 |
|
|
|
5011 |
#if ABL_GRID
|
|
|
5012 |
|
|
|
5013 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
5014 |
ABL_VAR uint8_t PR_OUTER_VAR;
|
|
|
5015 |
ABL_VAR int8_t PR_INNER_VAR;
|
|
|
5016 |
#endif
|
|
|
5017 |
|
|
|
5018 |
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
|
|
|
5019 |
ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
|
|
|
5020 |
|
|
|
5021 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5022 |
ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
|
|
|
5023 |
abl_grid_points_y = GRID_MAX_POINTS_Y;
|
|
|
5024 |
ABL_VAR bool do_topography_map;
|
|
|
5025 |
#else // Bilinear
|
|
|
5026 |
uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
|
|
|
5027 |
abl_grid_points_y = GRID_MAX_POINTS_Y;
|
|
|
5028 |
#endif
|
|
|
5029 |
|
|
|
5030 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5031 |
ABL_VAR int16_t abl_points;
|
|
|
5032 |
#elif ENABLED(PROBE_MANUALLY) // Bilinear
|
|
|
5033 |
int16_t constexpr abl_points = GRID_MAX_POINTS;
|
|
|
5034 |
#endif
|
|
|
5035 |
|
|
|
5036 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5037 |
|
|
|
5038 |
ABL_VAR float zoffset;
|
|
|
5039 |
|
|
|
5040 |
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5041 |
|
|
|
5042 |
ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
5043 |
|
|
|
5044 |
ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
|
|
|
5045 |
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
|
|
|
5046 |
mean;
|
|
|
5047 |
#endif
|
|
|
5048 |
|
|
|
5049 |
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
5050 |
|
|
|
5051 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
5052 |
int8_t constexpr abl_points = 3; // used to show total points
|
|
|
5053 |
#endif
|
|
|
5054 |
|
|
|
5055 |
// Probe at 3 arbitrary points
|
|
|
5056 |
ABL_VAR vector_3 points[3] = {
|
|
|
5057 |
vector_3(PROBE_PT_1_X, PROBE_PT_1_Y, 0),
|
|
|
5058 |
vector_3(PROBE_PT_2_X, PROBE_PT_2_Y, 0),
|
|
|
5059 |
vector_3(PROBE_PT_3_X, PROBE_PT_3_Y, 0)
|
|
|
5060 |
};
|
|
|
5061 |
|
|
|
5062 |
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
5063 |
|
|
|
5064 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5065 |
struct linear_fit_data lsf_results;
|
|
|
5066 |
incremental_LSF_reset(&lsf_results);
|
|
|
5067 |
#endif
|
|
|
5068 |
|
|
|
5069 |
/**
|
|
|
5070 |
* On the initial G29 fetch command parameters.
|
|
|
5071 |
*/
|
|
|
5072 |
if (!g29_in_progress) {
|
|
|
5073 |
|
|
|
5074 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
5075 |
if (active_extruder != 0) tool_change(0);
|
|
|
5076 |
#endif
|
|
|
5077 |
|
|
|
5078 |
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5079 |
abl_probe_index = -1;
|
|
|
5080 |
#endif
|
|
|
5081 |
|
|
|
5082 |
abl_should_enable = planner.leveling_active;
|
|
|
5083 |
|
|
|
5084 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5085 |
|
|
|
5086 |
const bool seen_w = parser.seen('W');
|
|
|
5087 |
if (seen_w) {
|
|
|
5088 |
if (!leveling_is_valid()) {
|
|
|
5089 |
SERIAL_ERROR_START();
|
|
|
5090 |
SERIAL_ERRORLNPGM("No bilinear grid");
|
|
|
5091 |
return;
|
|
|
5092 |
}
|
|
|
5093 |
|
|
|
5094 |
const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
|
|
|
5095 |
if (!WITHIN(rz, -10, 10)) {
|
|
|
5096 |
SERIAL_ERROR_START();
|
|
|
5097 |
SERIAL_ERRORLNPGM("Bad Z value");
|
|
|
5098 |
return;
|
|
|
5099 |
}
|
|
|
5100 |
|
|
|
5101 |
const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
|
|
|
5102 |
ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
|
|
|
5103 |
int8_t i = parser.byteval('I', -1),
|
|
|
5104 |
j = parser.byteval('J', -1);
|
|
|
5105 |
|
|
|
5106 |
if (!isnan(rx) && !isnan(ry)) {
|
|
|
5107 |
// Get nearest i / j from rx / ry
|
|
|
5108 |
i = (rx - bilinear_start[X_AXIS] + 0.5f * xGridSpacing) / xGridSpacing;
|
|
|
5109 |
j = (ry - bilinear_start[Y_AXIS] + 0.5f * yGridSpacing) / yGridSpacing;
|
|
|
5110 |
i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
|
|
|
5111 |
j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
|
|
|
5112 |
}
|
|
|
5113 |
if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
|
|
|
5114 |
set_bed_leveling_enabled(false);
|
|
|
5115 |
z_values[i][j] = rz;
|
|
|
5116 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
5117 |
bed_level_virt_interpolate();
|
|
|
5118 |
#endif
|
|
|
5119 |
set_bed_leveling_enabled(abl_should_enable);
|
|
|
5120 |
if (abl_should_enable) report_current_position();
|
|
|
5121 |
}
|
|
|
5122 |
return;
|
|
|
5123 |
} // parser.seen('W')
|
|
|
5124 |
|
|
|
5125 |
#else
|
|
|
5126 |
|
|
|
5127 |
constexpr bool seen_w = false;
|
|
|
5128 |
|
|
|
5129 |
#endif
|
|
|
5130 |
|
|
|
5131 |
// Jettison bed leveling data
|
|
|
5132 |
if (!seen_w && parser.seen('J')) {
|
|
|
5133 |
reset_bed_level();
|
|
|
5134 |
return;
|
|
|
5135 |
}
|
|
|
5136 |
|
|
|
5137 |
verbose_level = parser.intval('V');
|
|
|
5138 |
if (!WITHIN(verbose_level, 0, 4)) {
|
|
|
5139 |
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
|
|
|
5140 |
return;
|
|
|
5141 |
}
|
|
|
5142 |
|
|
|
5143 |
dryrun = parser.boolval('D')
|
|
|
5144 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
5145 |
|| no_action
|
|
|
5146 |
#endif
|
|
|
5147 |
;
|
|
|
5148 |
|
|
|
5149 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5150 |
|
|
|
5151 |
do_topography_map = verbose_level > 2 || parser.boolval('T');
|
|
|
5152 |
|
|
|
5153 |
// X and Y specify points in each direction, overriding the default
|
|
|
5154 |
// These values may be saved with the completed mesh
|
|
|
5155 |
abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
|
|
|
5156 |
abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
|
|
|
5157 |
if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
|
|
|
5158 |
|
|
|
5159 |
if (!WITHIN(abl_grid_points_x, 2, GRID_MAX_POINTS_X)) {
|
|
|
5160 |
SERIAL_PROTOCOLLNPGM("?Probe points (X) is implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
|
|
|
5161 |
return;
|
|
|
5162 |
}
|
|
|
5163 |
if (!WITHIN(abl_grid_points_y, 2, GRID_MAX_POINTS_Y)) {
|
|
|
5164 |
SERIAL_PROTOCOLLNPGM("?Probe points (Y) is implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
|
|
|
5165 |
return;
|
|
|
5166 |
}
|
|
|
5167 |
|
|
|
5168 |
abl_points = abl_grid_points_x * abl_grid_points_y;
|
|
|
5169 |
mean = 0;
|
|
|
5170 |
|
|
|
5171 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5172 |
|
|
|
5173 |
zoffset = parser.linearval('Z');
|
|
|
5174 |
|
|
|
5175 |
#endif
|
|
|
5176 |
|
|
|
5177 |
#if ABL_GRID
|
|
|
5178 |
|
|
|
5179 |
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
|
|
|
5180 |
|
|
|
5181 |
left_probe_bed_position = parser.seenval('L') ? int(RAW_X_POSITION(parser.value_linear_units())) : LEFT_PROBE_BED_POSITION;
|
|
|
5182 |
right_probe_bed_position = parser.seenval('R') ? int(RAW_X_POSITION(parser.value_linear_units())) : RIGHT_PROBE_BED_POSITION;
|
|
|
5183 |
front_probe_bed_position = parser.seenval('F') ? int(RAW_Y_POSITION(parser.value_linear_units())) : FRONT_PROBE_BED_POSITION;
|
|
|
5184 |
back_probe_bed_position = parser.seenval('B') ? int(RAW_Y_POSITION(parser.value_linear_units())) : BACK_PROBE_BED_POSITION;
|
|
|
5185 |
|
|
|
5186 |
if (
|
|
|
5187 |
#if IS_SCARA || ENABLED(DELTA)
|
|
|
5188 |
!position_is_reachable_by_probe(left_probe_bed_position, 0)
|
|
|
5189 |
|| !position_is_reachable_by_probe(right_probe_bed_position, 0)
|
|
|
5190 |
|| !position_is_reachable_by_probe(0, front_probe_bed_position)
|
|
|
5191 |
|| !position_is_reachable_by_probe(0, back_probe_bed_position)
|
|
|
5192 |
#else
|
|
|
5193 |
!position_is_reachable_by_probe(left_probe_bed_position, front_probe_bed_position)
|
|
|
5194 |
|| !position_is_reachable_by_probe(right_probe_bed_position, back_probe_bed_position)
|
|
|
5195 |
#endif
|
|
|
5196 |
) {
|
|
|
5197 |
SERIAL_PROTOCOLLNPGM("? (L,R,F,B) out of bounds.");
|
|
|
5198 |
return;
|
|
|
5199 |
}
|
|
|
5200 |
|
|
|
5201 |
// probe at the points of a lattice grid
|
|
|
5202 |
xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
|
|
|
5203 |
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
|
|
|
5204 |
|
|
|
5205 |
#endif // ABL_GRID
|
|
|
5206 |
|
|
|
5207 |
if (verbose_level > 0) {
|
|
|
5208 |
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling");
|
|
|
5209 |
if (dryrun) SERIAL_PROTOCOLPGM(" (DRYRUN)");
|
|
|
5210 |
SERIAL_EOL();
|
|
|
5211 |
}
|
|
|
5212 |
|
|
|
5213 |
planner.synchronize();
|
|
|
5214 |
|
|
|
5215 |
// Disable auto bed leveling during G29.
|
|
|
5216 |
// Be formal so G29 can be done successively without G28.
|
|
|
5217 |
if (!no_action) set_bed_leveling_enabled(false);
|
|
|
5218 |
|
|
|
5219 |
#if HAS_BED_PROBE
|
|
|
5220 |
// Deploy the probe. Probe will raise if needed.
|
|
|
5221 |
if (DEPLOY_PROBE()) {
|
|
|
5222 |
set_bed_leveling_enabled(abl_should_enable);
|
|
|
5223 |
return;
|
|
|
5224 |
}
|
|
|
5225 |
#endif
|
|
|
5226 |
|
|
|
5227 |
if (!faux) setup_for_endstop_or_probe_move();
|
|
|
5228 |
|
|
|
5229 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5230 |
|
|
|
5231 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
5232 |
if (!no_action)
|
|
|
5233 |
#endif
|
|
|
5234 |
if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
|
|
|
5235 |
|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]
|
|
|
5236 |
|| left_probe_bed_position != bilinear_start[X_AXIS]
|
|
|
5237 |
|| front_probe_bed_position != bilinear_start[Y_AXIS]
|
|
|
5238 |
) {
|
|
|
5239 |
// Reset grid to 0.0 or "not probed". (Also disables ABL)
|
|
|
5240 |
reset_bed_level();
|
|
|
5241 |
|
|
|
5242 |
// Initialize a grid with the given dimensions
|
|
|
5243 |
bilinear_grid_spacing[X_AXIS] = xGridSpacing;
|
|
|
5244 |
bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
|
|
|
5245 |
bilinear_start[X_AXIS] = left_probe_bed_position;
|
|
|
5246 |
bilinear_start[Y_AXIS] = front_probe_bed_position;
|
|
|
5247 |
|
|
|
5248 |
// Can't re-enable (on error) until the new grid is written
|
|
|
5249 |
abl_should_enable = false;
|
|
|
5250 |
}
|
|
|
5251 |
|
|
|
5252 |
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
5253 |
|
|
|
5254 |
#if ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
5255 |
|
|
|
5256 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5257 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
|
|
|
5258 |
#endif
|
|
|
5259 |
|
|
|
5260 |
// Probe at 3 arbitrary points
|
|
|
5261 |
points[0].z = points[1].z = points[2].z = 0;
|
|
|
5262 |
|
|
|
5263 |
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
5264 |
|
|
|
5265 |
} // !g29_in_progress
|
|
|
5266 |
|
|
|
5267 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
5268 |
|
|
|
5269 |
// For manual probing, get the next index to probe now.
|
|
|
5270 |
// On the first probe this will be incremented to 0.
|
|
|
5271 |
if (!no_action) {
|
|
|
5272 |
++abl_probe_index;
|
|
|
5273 |
g29_in_progress = true;
|
|
|
5274 |
}
|
|
|
5275 |
|
|
|
5276 |
// Abort current G29 procedure, go back to idle state
|
|
|
5277 |
if (seenA && g29_in_progress) {
|
|
|
5278 |
SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
|
|
|
5279 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
5280 |
soft_endstops_enabled = enable_soft_endstops;
|
|
|
5281 |
#endif
|
|
|
5282 |
set_bed_leveling_enabled(abl_should_enable);
|
|
|
5283 |
g29_in_progress = false;
|
|
|
5284 |
#if ENABLED(LCD_BED_LEVELING)
|
|
|
5285 |
lcd_wait_for_move = false;
|
|
|
5286 |
#endif
|
|
|
5287 |
}
|
|
|
5288 |
|
|
|
5289 |
// Query G29 status
|
|
|
5290 |
if (verbose_level || seenQ) {
|
|
|
5291 |
SERIAL_PROTOCOLPGM("Manual G29 ");
|
|
|
5292 |
if (g29_in_progress) {
|
|
|
5293 |
SERIAL_PROTOCOLPAIR("point ", MIN(abl_probe_index + 1, abl_points));
|
|
|
5294 |
SERIAL_PROTOCOLLNPAIR(" of ", abl_points);
|
|
|
5295 |
}
|
|
|
5296 |
else
|
|
|
5297 |
SERIAL_PROTOCOLLNPGM("idle");
|
|
|
5298 |
}
|
|
|
5299 |
|
|
|
5300 |
if (no_action) return;
|
|
|
5301 |
|
|
|
5302 |
if (abl_probe_index == 0) {
|
|
|
5303 |
// For the initial G29 save software endstop state
|
|
|
5304 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
5305 |
enable_soft_endstops = soft_endstops_enabled;
|
|
|
5306 |
#endif
|
|
|
5307 |
// Move close to the bed before the first point
|
|
|
5308 |
do_blocking_move_to_z(0);
|
|
|
5309 |
}
|
|
|
5310 |
else {
|
|
|
5311 |
|
|
|
5312 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
5313 |
const uint16_t index = abl_probe_index - 1;
|
|
|
5314 |
#endif
|
|
|
5315 |
|
|
|
5316 |
// For G29 after adjusting Z.
|
|
|
5317 |
// Save the previous Z before going to the next point
|
|
|
5318 |
measured_z = current_position[Z_AXIS];
|
|
|
5319 |
|
|
|
5320 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5321 |
|
|
|
5322 |
mean += measured_z;
|
|
|
5323 |
eqnBVector[index] = measured_z;
|
|
|
5324 |
eqnAMatrix[index + 0 * abl_points] = xProbe;
|
|
|
5325 |
eqnAMatrix[index + 1 * abl_points] = yProbe;
|
|
|
5326 |
eqnAMatrix[index + 2 * abl_points] = 1;
|
|
|
5327 |
|
|
|
5328 |
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
|
|
|
5329 |
|
|
|
5330 |
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
5331 |
|
|
|
5332 |
points[index].z = measured_z;
|
|
|
5333 |
|
|
|
5334 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5335 |
|
|
|
5336 |
z_values[xCount][yCount] = measured_z + zoffset;
|
|
|
5337 |
|
|
|
5338 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5339 |
if (DEBUGGING(LEVELING)) {
|
|
|
5340 |
SERIAL_PROTOCOLPAIR("Save X", xCount);
|
|
|
5341 |
SERIAL_PROTOCOLPAIR(" Y", yCount);
|
|
|
5342 |
SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
|
|
|
5343 |
}
|
|
|
5344 |
#endif
|
|
|
5345 |
|
|
|
5346 |
#endif
|
|
|
5347 |
}
|
|
|
5348 |
|
|
|
5349 |
//
|
|
|
5350 |
// If there's another point to sample, move there with optional lift.
|
|
|
5351 |
//
|
|
|
5352 |
|
|
|
5353 |
#if ABL_GRID
|
|
|
5354 |
|
|
|
5355 |
// Skip any unreachable points
|
|
|
5356 |
while (abl_probe_index < abl_points) {
|
|
|
5357 |
|
|
|
5358 |
// Set xCount, yCount based on abl_probe_index, with zig-zag
|
|
|
5359 |
PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
|
|
|
5360 |
PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
|
|
|
5361 |
|
|
|
5362 |
// Probe in reverse order for every other row/column
|
|
|
5363 |
bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
|
|
|
5364 |
|
|
|
5365 |
if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
|
|
|
5366 |
|
|
|
5367 |
const float xBase = xCount * xGridSpacing + left_probe_bed_position,
|
|
|
5368 |
yBase = yCount * yGridSpacing + front_probe_bed_position;
|
|
|
5369 |
|
|
|
5370 |
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
|
|
|
5371 |
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
|
|
|
5372 |
|
|
|
5373 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5374 |
indexIntoAB[xCount][yCount] = abl_probe_index;
|
|
|
5375 |
#endif
|
|
|
5376 |
|
|
|
5377 |
// Keep looping till a reachable point is found
|
|
|
5378 |
if (position_is_reachable(xProbe, yProbe)) break;
|
|
|
5379 |
++abl_probe_index;
|
|
|
5380 |
}
|
|
|
5381 |
|
|
|
5382 |
// Is there a next point to move to?
|
|
|
5383 |
if (abl_probe_index < abl_points) {
|
|
|
5384 |
_manual_goto_xy(xProbe, yProbe); // Can be used here too!
|
|
|
5385 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
5386 |
// Disable software endstops to allow manual adjustment
|
|
|
5387 |
// If G29 is not completed, they will not be re-enabled
|
|
|
5388 |
soft_endstops_enabled = false;
|
|
|
5389 |
#endif
|
|
|
5390 |
return;
|
|
|
5391 |
}
|
|
|
5392 |
else {
|
|
|
5393 |
|
|
|
5394 |
// Leveling done! Fall through to G29 finishing code below
|
|
|
5395 |
|
|
|
5396 |
SERIAL_PROTOCOLLNPGM("Grid probing done.");
|
|
|
5397 |
|
|
|
5398 |
// Re-enable software endstops, if needed
|
|
|
5399 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
5400 |
soft_endstops_enabled = enable_soft_endstops;
|
|
|
5401 |
#endif
|
|
|
5402 |
}
|
|
|
5403 |
|
|
|
5404 |
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
5405 |
|
|
|
5406 |
// Probe at 3 arbitrary points
|
|
|
5407 |
if (abl_probe_index < abl_points) {
|
|
|
5408 |
xProbe = points[abl_probe_index].x;
|
|
|
5409 |
yProbe = points[abl_probe_index].y;
|
|
|
5410 |
_manual_goto_xy(xProbe, yProbe);
|
|
|
5411 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
5412 |
// Disable software endstops to allow manual adjustment
|
|
|
5413 |
// If G29 is not completed, they will not be re-enabled
|
|
|
5414 |
soft_endstops_enabled = false;
|
|
|
5415 |
#endif
|
|
|
5416 |
return;
|
|
|
5417 |
}
|
|
|
5418 |
else {
|
|
|
5419 |
|
|
|
5420 |
SERIAL_PROTOCOLLNPGM("3-point probing done.");
|
|
|
5421 |
|
|
|
5422 |
// Re-enable software endstops, if needed
|
|
|
5423 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
5424 |
soft_endstops_enabled = enable_soft_endstops;
|
|
|
5425 |
#endif
|
|
|
5426 |
|
|
|
5427 |
if (!dryrun) {
|
|
|
5428 |
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
|
|
5429 |
if (planeNormal.z < 0) {
|
|
|
5430 |
planeNormal.x *= -1;
|
|
|
5431 |
planeNormal.y *= -1;
|
|
|
5432 |
planeNormal.z *= -1;
|
|
|
5433 |
}
|
|
|
5434 |
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
5435 |
|
|
|
5436 |
// Can't re-enable (on error) until the new grid is written
|
|
|
5437 |
abl_should_enable = false;
|
|
|
5438 |
}
|
|
|
5439 |
|
|
|
5440 |
}
|
|
|
5441 |
|
|
|
5442 |
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
5443 |
|
|
|
5444 |
#else // !PROBE_MANUALLY
|
|
|
5445 |
{
|
|
|
5446 |
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
|
|
|
5447 |
|
|
|
5448 |
measured_z = 0;
|
|
|
5449 |
|
|
|
5450 |
#if ABL_GRID
|
|
|
5451 |
|
|
|
5452 |
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
|
|
|
5453 |
|
|
|
5454 |
measured_z = 0;
|
|
|
5455 |
|
|
|
5456 |
// Outer loop is Y with PROBE_Y_FIRST disabled
|
|
|
5457 |
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
|
|
|
5458 |
|
|
|
5459 |
int8_t inStart, inStop, inInc;
|
|
|
5460 |
|
|
|
5461 |
if (zig) { // away from origin
|
|
|
5462 |
inStart = 0;
|
|
|
5463 |
inStop = PR_INNER_END;
|
|
|
5464 |
inInc = 1;
|
|
|
5465 |
}
|
|
|
5466 |
else { // towards origin
|
|
|
5467 |
inStart = PR_INNER_END - 1;
|
|
|
5468 |
inStop = -1;
|
|
|
5469 |
inInc = -1;
|
|
|
5470 |
}
|
|
|
5471 |
|
|
|
5472 |
zig ^= true; // zag
|
|
|
5473 |
|
|
|
5474 |
// Inner loop is Y with PROBE_Y_FIRST enabled
|
|
|
5475 |
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
|
|
|
5476 |
|
|
|
5477 |
float xBase = left_probe_bed_position + xGridSpacing * xCount,
|
|
|
5478 |
yBase = front_probe_bed_position + yGridSpacing * yCount;
|
|
|
5479 |
|
|
|
5480 |
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
|
|
|
5481 |
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
|
|
|
5482 |
|
|
|
5483 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5484 |
indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
|
|
|
5485 |
#endif
|
|
|
5486 |
|
|
|
5487 |
#if IS_KINEMATIC
|
|
|
5488 |
// Avoid probing outside the round or hexagonal area
|
|
|
5489 |
if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
|
|
|
5490 |
#endif
|
|
|
5491 |
|
|
|
5492 |
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, raise_after, verbose_level);
|
|
|
5493 |
|
|
|
5494 |
if (isnan(measured_z)) {
|
|
|
5495 |
set_bed_leveling_enabled(abl_should_enable);
|
|
|
5496 |
break;
|
|
|
5497 |
}
|
|
|
5498 |
|
|
|
5499 |
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5500 |
|
|
|
5501 |
mean += measured_z;
|
|
|
5502 |
eqnBVector[abl_probe_index] = measured_z;
|
|
|
5503 |
eqnAMatrix[abl_probe_index + 0 * abl_points] = xProbe;
|
|
|
5504 |
eqnAMatrix[abl_probe_index + 1 * abl_points] = yProbe;
|
|
|
5505 |
eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
|
|
|
5506 |
|
|
|
5507 |
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
|
|
|
5508 |
|
|
|
5509 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5510 |
|
|
|
5511 |
z_values[xCount][yCount] = measured_z + zoffset;
|
|
|
5512 |
|
|
|
5513 |
#endif
|
|
|
5514 |
|
|
|
5515 |
abl_should_enable = false;
|
|
|
5516 |
idle();
|
|
|
5517 |
|
|
|
5518 |
} // inner
|
|
|
5519 |
} // outer
|
|
|
5520 |
|
|
|
5521 |
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
5522 |
|
|
|
5523 |
// Probe at 3 arbitrary points
|
|
|
5524 |
|
|
|
5525 |
for (uint8_t i = 0; i < 3; ++i) {
|
|
|
5526 |
// Retain the last probe position
|
|
|
5527 |
xProbe = points[i].x;
|
|
|
5528 |
yProbe = points[i].y;
|
|
|
5529 |
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, raise_after, verbose_level);
|
|
|
5530 |
if (isnan(measured_z)) {
|
|
|
5531 |
set_bed_leveling_enabled(abl_should_enable);
|
|
|
5532 |
break;
|
|
|
5533 |
}
|
|
|
5534 |
points[i].z = measured_z;
|
|
|
5535 |
}
|
|
|
5536 |
|
|
|
5537 |
if (!dryrun && !isnan(measured_z)) {
|
|
|
5538 |
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
|
|
5539 |
if (planeNormal.z < 0) {
|
|
|
5540 |
planeNormal.x *= -1;
|
|
|
5541 |
planeNormal.y *= -1;
|
|
|
5542 |
planeNormal.z *= -1;
|
|
|
5543 |
}
|
|
|
5544 |
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
5545 |
|
|
|
5546 |
// Can't re-enable (on error) until the new grid is written
|
|
|
5547 |
abl_should_enable = false;
|
|
|
5548 |
}
|
|
|
5549 |
|
|
|
5550 |
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
5551 |
|
|
|
5552 |
// Stow the probe. No raise for FIX_MOUNTED_PROBE.
|
|
|
5553 |
if (STOW_PROBE()) {
|
|
|
5554 |
set_bed_leveling_enabled(abl_should_enable);
|
|
|
5555 |
measured_z = NAN;
|
|
|
5556 |
}
|
|
|
5557 |
}
|
|
|
5558 |
#endif // !PROBE_MANUALLY
|
|
|
5559 |
|
|
|
5560 |
//
|
|
|
5561 |
// G29 Finishing Code
|
|
|
5562 |
//
|
|
|
5563 |
// Unless this is a dry run, auto bed leveling will
|
|
|
5564 |
// definitely be enabled after this point.
|
|
|
5565 |
//
|
|
|
5566 |
// If code above wants to continue leveling, it should
|
|
|
5567 |
// return or loop before this point.
|
|
|
5568 |
//
|
|
|
5569 |
|
|
|
5570 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5571 |
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
|
|
|
5572 |
#endif
|
|
|
5573 |
|
|
|
5574 |
#if ENABLED(PROBE_MANUALLY)
|
|
|
5575 |
g29_in_progress = false;
|
|
|
5576 |
#if ENABLED(LCD_BED_LEVELING)
|
|
|
5577 |
lcd_wait_for_move = false;
|
|
|
5578 |
#endif
|
|
|
5579 |
#endif
|
|
|
5580 |
|
|
|
5581 |
// Calculate leveling, print reports, correct the position
|
|
|
5582 |
if (!isnan(measured_z)) {
|
|
|
5583 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5584 |
|
|
|
5585 |
if (!dryrun) extrapolate_unprobed_bed_level();
|
|
|
5586 |
print_bilinear_leveling_grid();
|
|
|
5587 |
|
|
|
5588 |
refresh_bed_level();
|
|
|
5589 |
|
|
|
5590 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
5591 |
print_bilinear_leveling_grid_virt();
|
|
|
5592 |
#endif
|
|
|
5593 |
|
|
|
5594 |
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
5595 |
|
|
|
5596 |
// For LINEAR leveling calculate matrix, print reports, correct the position
|
|
|
5597 |
|
|
|
5598 |
/**
|
|
|
5599 |
* solve the plane equation ax + by + d = z
|
|
|
5600 |
* A is the matrix with rows [x y 1] for all the probed points
|
|
|
5601 |
* B is the vector of the Z positions
|
|
|
5602 |
* the normal vector to the plane is formed by the coefficients of the
|
|
|
5603 |
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
|
5604 |
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
5605 |
*/
|
|
|
5606 |
float plane_equation_coefficients[3];
|
|
|
5607 |
|
|
|
5608 |
finish_incremental_LSF(&lsf_results);
|
|
|
5609 |
plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
|
|
|
5610 |
plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
|
|
|
5611 |
plane_equation_coefficients[2] = -lsf_results.D;
|
|
|
5612 |
|
|
|
5613 |
mean /= abl_points;
|
|
|
5614 |
|
|
|
5615 |
if (verbose_level) {
|
|
|
5616 |
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
|
5617 |
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
|
|
5618 |
SERIAL_PROTOCOLPGM(" b: ");
|
|
|
5619 |
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
|
5620 |
SERIAL_PROTOCOLPGM(" d: ");
|
|
|
5621 |
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
|
5622 |
SERIAL_EOL();
|
|
|
5623 |
if (verbose_level > 2) {
|
|
|
5624 |
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
|
5625 |
SERIAL_PROTOCOL_F(mean, 8);
|
|
|
5626 |
SERIAL_EOL();
|
|
|
5627 |
}
|
|
|
5628 |
}
|
|
|
5629 |
|
|
|
5630 |
// Create the matrix but don't correct the position yet
|
|
|
5631 |
if (!dryrun)
|
|
|
5632 |
planner.bed_level_matrix = matrix_3x3::create_look_at(
|
|
|
5633 |
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
|
|
|
5634 |
);
|
|
|
5635 |
|
|
|
5636 |
// Show the Topography map if enabled
|
|
|
5637 |
if (do_topography_map) {
|
|
|
5638 |
|
|
|
5639 |
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
|
|
|
5640 |
" +--- BACK --+\n"
|
|
|
5641 |
" | |\n"
|
|
|
5642 |
" L | (+) | R\n"
|
|
|
5643 |
" E | | I\n"
|
|
|
5644 |
" F | (-) N (+) | G\n"
|
|
|
5645 |
" T | | H\n"
|
|
|
5646 |
" | (-) | T\n"
|
|
|
5647 |
" | |\n"
|
|
|
5648 |
" O-- FRONT --+\n"
|
|
|
5649 |
" (0,0)");
|
|
|
5650 |
|
|
|
5651 |
float min_diff = 999;
|
|
|
5652 |
|
|
|
5653 |
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
|
|
5654 |
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
|
|
5655 |
int ind = indexIntoAB[xx][yy];
|
|
|
5656 |
float diff = eqnBVector[ind] - mean,
|
|
|
5657 |
x_tmp = eqnAMatrix[ind + 0 * abl_points],
|
|
|
5658 |
y_tmp = eqnAMatrix[ind + 1 * abl_points],
|
|
|
5659 |
z_tmp = 0;
|
|
|
5660 |
|
|
|
5661 |
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
5662 |
|
|
|
5663 |
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
|
|
|
5664 |
|
|
|
5665 |
if (diff >= 0.0)
|
|
|
5666 |
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
|
5667 |
else
|
|
|
5668 |
SERIAL_PROTOCOLCHAR(' ');
|
|
|
5669 |
SERIAL_PROTOCOL_F(diff, 5);
|
|
|
5670 |
} // xx
|
|
|
5671 |
SERIAL_EOL();
|
|
|
5672 |
} // yy
|
|
|
5673 |
SERIAL_EOL();
|
|
|
5674 |
|
|
|
5675 |
if (verbose_level > 3) {
|
|
|
5676 |
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
|
|
|
5677 |
|
|
|
5678 |
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
|
|
5679 |
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
|
|
5680 |
int ind = indexIntoAB[xx][yy];
|
|
|
5681 |
float x_tmp = eqnAMatrix[ind + 0 * abl_points],
|
|
|
5682 |
y_tmp = eqnAMatrix[ind + 1 * abl_points],
|
|
|
5683 |
z_tmp = 0;
|
|
|
5684 |
|
|
|
5685 |
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
5686 |
|
|
|
5687 |
float diff = eqnBVector[ind] - z_tmp - min_diff;
|
|
|
5688 |
if (diff >= 0.0)
|
|
|
5689 |
SERIAL_PROTOCOLPGM(" +");
|
|
|
5690 |
// Include + for column alignment
|
|
|
5691 |
else
|
|
|
5692 |
SERIAL_PROTOCOLCHAR(' ');
|
|
|
5693 |
SERIAL_PROTOCOL_F(diff, 5);
|
|
|
5694 |
} // xx
|
|
|
5695 |
SERIAL_EOL();
|
|
|
5696 |
} // yy
|
|
|
5697 |
SERIAL_EOL();
|
|
|
5698 |
}
|
|
|
5699 |
} //do_topography_map
|
|
|
5700 |
|
|
|
5701 |
#endif // AUTO_BED_LEVELING_LINEAR
|
|
|
5702 |
|
|
|
5703 |
#if ABL_PLANAR
|
|
|
5704 |
|
|
|
5705 |
// For LINEAR and 3POINT leveling correct the current position
|
|
|
5706 |
|
|
|
5707 |
if (verbose_level > 0)
|
|
|
5708 |
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
|
|
|
5709 |
|
|
|
5710 |
if (!dryrun) {
|
|
|
5711 |
//
|
|
|
5712 |
// Correct the current XYZ position based on the tilted plane.
|
|
|
5713 |
//
|
|
|
5714 |
|
|
|
5715 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5716 |
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
|
|
|
5717 |
#endif
|
|
|
5718 |
|
|
|
5719 |
float converted[XYZ];
|
|
|
5720 |
COPY(converted, current_position);
|
|
|
5721 |
|
|
|
5722 |
planner.leveling_active = true;
|
|
|
5723 |
planner.unapply_leveling(converted); // use conversion machinery
|
|
|
5724 |
planner.leveling_active = false;
|
|
|
5725 |
|
|
|
5726 |
// Use the last measured distance to the bed, if possible
|
|
|
5727 |
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
|
|
|
5728 |
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
|
|
5729 |
) {
|
|
|
5730 |
const float simple_z = current_position[Z_AXIS] - measured_z;
|
|
|
5731 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5732 |
if (DEBUGGING(LEVELING)) {
|
|
|
5733 |
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
|
|
|
5734 |
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
|
|
|
5735 |
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
|
|
|
5736 |
}
|
|
|
5737 |
#endif
|
|
|
5738 |
converted[Z_AXIS] = simple_z;
|
|
|
5739 |
}
|
|
|
5740 |
|
|
|
5741 |
// The rotated XY and corrected Z are now current_position
|
|
|
5742 |
COPY(current_position, converted);
|
|
|
5743 |
|
|
|
5744 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5745 |
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
|
|
|
5746 |
#endif
|
|
|
5747 |
}
|
|
|
5748 |
|
|
|
5749 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
5750 |
|
|
|
5751 |
if (!dryrun) {
|
|
|
5752 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5753 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
|
|
|
5754 |
#endif
|
|
|
5755 |
|
|
|
5756 |
// Unapply the offset because it is going to be immediately applied
|
|
|
5757 |
// and cause compensation movement in Z
|
|
|
5758 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
5759 |
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(current_position[Z_AXIS]);
|
|
|
5760 |
#else
|
|
|
5761 |
constexpr float fade_scaling_factor = 1.0f;
|
|
|
5762 |
#endif
|
|
|
5763 |
current_position[Z_AXIS] -= fade_scaling_factor * bilinear_z_offset(current_position);
|
|
|
5764 |
|
|
|
5765 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5766 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
|
|
|
5767 |
#endif
|
|
|
5768 |
}
|
|
|
5769 |
|
|
|
5770 |
#endif // ABL_PLANAR
|
|
|
5771 |
|
|
|
5772 |
#ifdef Z_PROBE_END_SCRIPT
|
|
|
5773 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5774 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
|
|
|
5775 |
#endif
|
|
|
5776 |
planner.synchronize();
|
|
|
5777 |
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
|
|
|
5778 |
#endif
|
|
|
5779 |
|
|
|
5780 |
// Auto Bed Leveling is complete! Enable if possible.
|
|
|
5781 |
planner.leveling_active = dryrun ? abl_should_enable : true;
|
|
|
5782 |
} // !isnan(measured_z)
|
|
|
5783 |
|
|
|
5784 |
// Restore state after probing
|
|
|
5785 |
if (!faux) clean_up_after_endstop_or_probe_move();
|
|
|
5786 |
|
|
|
5787 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
5788 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G29");
|
|
|
5789 |
#endif
|
|
|
5790 |
|
|
|
5791 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
5792 |
|
|
|
5793 |
if (planner.leveling_active)
|
|
|
5794 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
5795 |
|
|
|
5796 |
#if HAS_BED_PROBE && defined(Z_AFTER_PROBING)
|
|
|
5797 |
move_z_after_probing();
|
|
|
5798 |
#endif
|
|
|
5799 |
|
|
|
5800 |
report_current_position();
|
|
|
5801 |
}
|
|
|
5802 |
|
|
|
5803 |
#endif // OLDSCHOOL_ABL
|
|
|
5804 |
|
|
|
5805 |
#if HAS_BED_PROBE
|
|
|
5806 |
|
|
|
5807 |
/**
|
|
|
5808 |
* G30: Do a single Z probe at the current XY
|
|
|
5809 |
*
|
|
|
5810 |
* Parameters:
|
|
|
5811 |
*
|
|
|
5812 |
* X Probe X position (default current X)
|
|
|
5813 |
* Y Probe Y position (default current Y)
|
|
|
5814 |
* E Engage the probe for each probe (default 1)
|
|
|
5815 |
*/
|
|
|
5816 |
inline void gcode_G30() {
|
|
|
5817 |
const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
|
5818 |
ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
5819 |
|
|
|
5820 |
if (!position_is_reachable_by_probe(xpos, ypos)) return;
|
|
|
5821 |
|
|
|
5822 |
// Disable leveling so the planner won't mess with us
|
|
|
5823 |
#if HAS_LEVELING
|
|
|
5824 |
set_bed_leveling_enabled(false);
|
|
|
5825 |
#endif
|
|
|
5826 |
|
|
|
5827 |
setup_for_endstop_or_probe_move();
|
|
|
5828 |
|
|
|
5829 |
const ProbePtRaise raise_after = parser.boolval('E', true) ? PROBE_PT_STOW : PROBE_PT_NONE;
|
|
|
5830 |
const float measured_z = probe_pt(xpos, ypos, raise_after, parser.intval('V', 1));
|
|
|
5831 |
|
|
|
5832 |
if (!isnan(measured_z)) {
|
|
|
5833 |
SERIAL_PROTOCOLPAIR_F("Bed X: ", xpos);
|
|
|
5834 |
SERIAL_PROTOCOLPAIR_F(" Y: ", ypos);
|
|
|
5835 |
SERIAL_PROTOCOLLNPAIR_F(" Z: ", measured_z);
|
|
|
5836 |
}
|
|
|
5837 |
|
|
|
5838 |
clean_up_after_endstop_or_probe_move();
|
|
|
5839 |
|
|
|
5840 |
#ifdef Z_AFTER_PROBING
|
|
|
5841 |
if (raise_after == PROBE_PT_STOW) move_z_after_probing();
|
|
|
5842 |
#endif
|
|
|
5843 |
|
|
|
5844 |
report_current_position();
|
|
|
5845 |
}
|
|
|
5846 |
|
|
|
5847 |
#if ENABLED(Z_PROBE_SLED)
|
|
|
5848 |
|
|
|
5849 |
/**
|
|
|
5850 |
* G31: Deploy the Z probe
|
|
|
5851 |
*/
|
|
|
5852 |
inline void gcode_G31() { DEPLOY_PROBE(); }
|
|
|
5853 |
|
|
|
5854 |
/**
|
|
|
5855 |
* G32: Stow the Z probe
|
|
|
5856 |
*/
|
|
|
5857 |
inline void gcode_G32() { STOW_PROBE(); }
|
|
|
5858 |
|
|
|
5859 |
#endif // Z_PROBE_SLED
|
|
|
5860 |
|
|
|
5861 |
#endif // HAS_BED_PROBE
|
|
|
5862 |
|
|
|
5863 |
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
5864 |
|
|
|
5865 |
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
|
|
|
5866 |
_4P_STEP = _7P_STEP * 2, // 4-point step
|
|
|
5867 |
NPP = _7P_STEP * 6; // number of calibration points on the radius
|
|
|
5868 |
enum CalEnum : char { // the 7 main calibration points - add definitions if needed
|
|
|
5869 |
CEN = 0,
|
|
|
5870 |
__A = 1,
|
|
|
5871 |
_AB = __A + _7P_STEP,
|
|
|
5872 |
__B = _AB + _7P_STEP,
|
|
|
5873 |
_BC = __B + _7P_STEP,
|
|
|
5874 |
__C = _BC + _7P_STEP,
|
|
|
5875 |
_CA = __C + _7P_STEP,
|
|
|
5876 |
};
|
|
|
5877 |
|
|
|
5878 |
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
|
|
|
5879 |
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
|
|
|
5880 |
#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
|
|
|
5881 |
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
|
|
|
5882 |
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
|
|
|
5883 |
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
|
|
|
5884 |
|
|
|
5885 |
#if HOTENDS > 1
|
|
|
5886 |
const uint8_t old_tool_index = active_extruder;
|
|
|
5887 |
#define AC_CLEANUP() ac_cleanup(old_tool_index)
|
|
|
5888 |
#else
|
|
|
5889 |
#define AC_CLEANUP() ac_cleanup()
|
|
|
5890 |
#endif
|
|
|
5891 |
|
|
|
5892 |
float lcd_probe_pt(const float &rx, const float &ry);
|
|
|
5893 |
|
|
|
5894 |
void ac_home() {
|
|
|
5895 |
endstops.enable(true);
|
|
|
5896 |
home_delta();
|
|
|
5897 |
endstops.not_homing();
|
|
|
5898 |
}
|
|
|
5899 |
|
|
|
5900 |
void ac_setup(const bool reset_bed) {
|
|
|
5901 |
#if HOTENDS > 1
|
|
|
5902 |
tool_change(0, 0, true);
|
|
|
5903 |
#endif
|
|
|
5904 |
|
|
|
5905 |
planner.synchronize();
|
|
|
5906 |
setup_for_endstop_or_probe_move();
|
|
|
5907 |
|
|
|
5908 |
#if HAS_LEVELING
|
|
|
5909 |
if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
|
|
|
5910 |
#endif
|
|
|
5911 |
}
|
|
|
5912 |
|
|
|
5913 |
void ac_cleanup(
|
|
|
5914 |
#if HOTENDS > 1
|
|
|
5915 |
const uint8_t old_tool_index
|
|
|
5916 |
#endif
|
|
|
5917 |
) {
|
|
|
5918 |
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
|
|
5919 |
do_blocking_move_to_z(delta_clip_start_height);
|
|
|
5920 |
#endif
|
|
|
5921 |
#if HAS_BED_PROBE
|
|
|
5922 |
STOW_PROBE();
|
|
|
5923 |
#endif
|
|
|
5924 |
clean_up_after_endstop_or_probe_move();
|
|
|
5925 |
#if HOTENDS > 1
|
|
|
5926 |
tool_change(old_tool_index, 0, true);
|
|
|
5927 |
#endif
|
|
|
5928 |
}
|
|
|
5929 |
|
|
|
5930 |
void print_signed_float(const char * const prefix, const float &f) {
|
|
|
5931 |
SERIAL_PROTOCOLPGM(" ");
|
|
|
5932 |
serialprintPGM(prefix);
|
|
|
5933 |
SERIAL_PROTOCOLCHAR(':');
|
|
|
5934 |
if (f >= 0) SERIAL_CHAR('+');
|
|
|
5935 |
SERIAL_PROTOCOL_F(f, 2);
|
|
|
5936 |
}
|
|
|
5937 |
|
|
|
5938 |
/**
|
|
|
5939 |
* - Print the delta settings
|
|
|
5940 |
*/
|
|
|
5941 |
static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
|
|
|
5942 |
SERIAL_PROTOCOLPAIR(".Height:", delta_height);
|
|
|
5943 |
if (end_stops) {
|
|
|
5944 |
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
|
|
|
5945 |
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
|
|
|
5946 |
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
|
|
|
5947 |
}
|
|
|
5948 |
if (end_stops && tower_angles) {
|
|
|
5949 |
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
|
5950 |
SERIAL_EOL();
|
|
|
5951 |
SERIAL_CHAR('.');
|
|
|
5952 |
SERIAL_PROTOCOL_SP(13);
|
|
|
5953 |
}
|
|
|
5954 |
if (tower_angles) {
|
|
|
5955 |
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
|
|
|
5956 |
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
|
|
|
5957 |
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
|
|
|
5958 |
}
|
|
|
5959 |
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
|
|
|
5960 |
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
|
5961 |
}
|
|
|
5962 |
SERIAL_EOL();
|
|
|
5963 |
}
|
|
|
5964 |
|
|
|
5965 |
/**
|
|
|
5966 |
* - Print the probe results
|
|
|
5967 |
*/
|
|
|
5968 |
static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
|
|
|
5969 |
SERIAL_PROTOCOLPGM(". ");
|
|
|
5970 |
print_signed_float(PSTR("c"), z_pt[CEN]);
|
|
|
5971 |
if (tower_points) {
|
|
|
5972 |
print_signed_float(PSTR(" x"), z_pt[__A]);
|
|
|
5973 |
print_signed_float(PSTR(" y"), z_pt[__B]);
|
|
|
5974 |
print_signed_float(PSTR(" z"), z_pt[__C]);
|
|
|
5975 |
}
|
|
|
5976 |
if (tower_points && opposite_points) {
|
|
|
5977 |
SERIAL_EOL();
|
|
|
5978 |
SERIAL_CHAR('.');
|
|
|
5979 |
SERIAL_PROTOCOL_SP(13);
|
|
|
5980 |
}
|
|
|
5981 |
if (opposite_points) {
|
|
|
5982 |
print_signed_float(PSTR("yz"), z_pt[_BC]);
|
|
|
5983 |
print_signed_float(PSTR("zx"), z_pt[_CA]);
|
|
|
5984 |
print_signed_float(PSTR("xy"), z_pt[_AB]);
|
|
|
5985 |
}
|
|
|
5986 |
SERIAL_EOL();
|
|
|
5987 |
}
|
|
|
5988 |
|
|
|
5989 |
/**
|
|
|
5990 |
* - Calculate the standard deviation from the zero plane
|
|
|
5991 |
*/
|
|
|
5992 |
static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
|
|
|
5993 |
if (!_0p_cal) {
|
|
|
5994 |
float S2 = sq(z_pt[CEN]);
|
|
|
5995 |
int16_t N = 1;
|
|
|
5996 |
if (!_1p_cal) { // std dev from zero plane
|
|
|
5997 |
LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
|
|
|
5998 |
S2 += sq(z_pt[rad]);
|
|
|
5999 |
N++;
|
|
|
6000 |
}
|
|
|
6001 |
return LROUND(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
|
|
6002 |
}
|
|
|
6003 |
}
|
|
|
6004 |
return 0.00001;
|
|
|
6005 |
}
|
|
|
6006 |
|
|
|
6007 |
/**
|
|
|
6008 |
* - Probe a point
|
|
|
6009 |
*/
|
|
|
6010 |
static float calibration_probe(const float &nx, const float &ny, const bool stow) {
|
|
|
6011 |
#if HAS_BED_PROBE
|
|
|
6012 |
return probe_pt(nx, ny, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, false);
|
|
|
6013 |
#else
|
|
|
6014 |
UNUSED(stow);
|
|
|
6015 |
return lcd_probe_pt(nx, ny);
|
|
|
6016 |
#endif
|
|
|
6017 |
}
|
|
|
6018 |
|
|
|
6019 |
/**
|
|
|
6020 |
* - Probe a grid
|
|
|
6021 |
*/
|
|
|
6022 |
static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
|
|
|
6023 |
const bool _0p_calibration = probe_points == 0,
|
|
|
6024 |
_1p_calibration = probe_points == 1 || probe_points == -1,
|
|
|
6025 |
_4p_calibration = probe_points == 2,
|
|
|
6026 |
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
|
6027 |
_7p_calibration = probe_points >= 3,
|
|
|
6028 |
_7p_no_intermediates = probe_points == 3,
|
|
|
6029 |
_7p_1_intermediates = probe_points == 4,
|
|
|
6030 |
_7p_2_intermediates = probe_points == 5,
|
|
|
6031 |
_7p_4_intermediates = probe_points == 6,
|
|
|
6032 |
_7p_6_intermediates = probe_points == 7,
|
|
|
6033 |
_7p_8_intermediates = probe_points == 8,
|
|
|
6034 |
_7p_11_intermediates = probe_points == 9,
|
|
|
6035 |
_7p_14_intermediates = probe_points == 10,
|
|
|
6036 |
_7p_intermed_points = probe_points >= 4,
|
|
|
6037 |
_7p_6_center = probe_points >= 5 && probe_points <= 7,
|
|
|
6038 |
_7p_9_center = probe_points >= 8;
|
|
|
6039 |
|
|
|
6040 |
LOOP_CAL_ALL(rad) z_pt[rad] = 0.0;
|
|
|
6041 |
|
|
|
6042 |
if (!_0p_calibration) {
|
|
|
6043 |
|
|
|
6044 |
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
|
|
|
6045 |
z_pt[CEN] += calibration_probe(0, 0, stow_after_each);
|
|
|
6046 |
if (isnan(z_pt[CEN])) return false;
|
|
|
6047 |
}
|
|
|
6048 |
|
|
|
6049 |
if (_7p_calibration) { // probe extra center points
|
|
|
6050 |
const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0 : _7p_6_center ? float(_CA) : float(__C),
|
|
|
6051 |
steps = _7p_9_center ? _4P_STEP / 3.0 : _7p_6_center ? _7P_STEP : _4P_STEP;
|
|
|
6052 |
I_LOOP_CAL_PT(rad, start, steps) {
|
|
|
6053 |
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
|
|
|
6054 |
r = delta_calibration_radius * 0.1;
|
|
|
6055 |
z_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
|
|
|
6056 |
if (isnan(z_pt[CEN])) return false;
|
|
|
6057 |
}
|
|
|
6058 |
z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
|
|
|
6059 |
}
|
|
|
6060 |
|
|
|
6061 |
if (!_1p_calibration) { // probe the radius
|
|
|
6062 |
const CalEnum start = _4p_opposite_points ? _AB : __A;
|
|
|
6063 |
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
|
|
|
6064 |
_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
|
|
|
6065 |
_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
|
|
|
6066 |
_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
|
|
|
6067 |
_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
|
|
|
6068 |
_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
|
|
|
6069 |
_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
|
|
|
6070 |
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
|
|
|
6071 |
_4P_STEP; // .5r * 6 + 1c = 4
|
|
|
6072 |
bool zig_zag = true;
|
|
|
6073 |
F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
|
|
|
6074 |
const int8_t offset = _7p_9_center ? 2 : 0;
|
|
|
6075 |
for (int8_t circle = 0; circle <= offset; circle++) {
|
|
|
6076 |
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
|
|
|
6077 |
r = delta_calibration_radius * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
|
|
|
6078 |
interpol = fmod(rad, 1);
|
|
|
6079 |
const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
|
|
|
6080 |
if (isnan(z_temp)) return false;
|
|
|
6081 |
// split probe point to neighbouring calibration points
|
|
|
6082 |
z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
|
|
|
6083 |
z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
|
|
|
6084 |
}
|
|
|
6085 |
zig_zag = !zig_zag;
|
|
|
6086 |
}
|
|
|
6087 |
if (_7p_intermed_points)
|
|
|
6088 |
LOOP_CAL_RAD(rad)
|
|
|
6089 |
z_pt[rad] /= _7P_STEP / steps;
|
|
|
6090 |
|
|
|
6091 |
do_blocking_move_to_xy(0.0, 0.0);
|
|
|
6092 |
}
|
|
|
6093 |
}
|
|
|
6094 |
return true;
|
|
|
6095 |
}
|
|
|
6096 |
|
|
|
6097 |
/**
|
|
|
6098 |
* kinematics routines and auto tune matrix scaling parameters:
|
|
|
6099 |
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
|
|
|
6100 |
* - formulae for approximative forward kinematics in the end-stop displacement matrix
|
|
|
6101 |
* - definition of the matrix scaling parameters
|
|
|
6102 |
*/
|
|
|
6103 |
static void reverse_kinematics_probe_points(float z_pt[NPP + 1], float mm_at_pt_axis[NPP + 1][ABC]) {
|
|
|
6104 |
float pos[XYZ] = { 0.0 };
|
|
|
6105 |
|
|
|
6106 |
LOOP_CAL_ALL(rad) {
|
|
|
6107 |
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
|
|
|
6108 |
r = (rad == CEN ? 0.0 : delta_calibration_radius);
|
|
|
6109 |
pos[X_AXIS] = cos(a) * r;
|
|
|
6110 |
pos[Y_AXIS] = sin(a) * r;
|
|
|
6111 |
pos[Z_AXIS] = z_pt[rad];
|
|
|
6112 |
inverse_kinematics(pos);
|
|
|
6113 |
LOOP_XYZ(axis) mm_at_pt_axis[rad][axis] = delta[axis];
|
|
|
6114 |
}
|
|
|
6115 |
}
|
|
|
6116 |
|
|
|
6117 |
static void forward_kinematics_probe_points(float mm_at_pt_axis[NPP + 1][ABC], float z_pt[NPP + 1]) {
|
|
|
6118 |
const float r_quot = delta_calibration_radius / delta_radius;
|
|
|
6119 |
|
|
|
6120 |
#define ZPP(N,I,A) ((1 / 3.0 + r_quot * (N) / 3.0 ) * mm_at_pt_axis[I][A])
|
|
|
6121 |
#define Z00(I, A) ZPP( 0, I, A)
|
|
|
6122 |
#define Zp1(I, A) ZPP(+1, I, A)
|
|
|
6123 |
#define Zm1(I, A) ZPP(-1, I, A)
|
|
|
6124 |
#define Zp2(I, A) ZPP(+2, I, A)
|
|
|
6125 |
#define Zm2(I, A) ZPP(-2, I, A)
|
|
|
6126 |
|
|
|
6127 |
z_pt[CEN] = Z00(CEN, A_AXIS) + Z00(CEN, B_AXIS) + Z00(CEN, C_AXIS);
|
|
|
6128 |
z_pt[__A] = Zp2(__A, A_AXIS) + Zm1(__A, B_AXIS) + Zm1(__A, C_AXIS);
|
|
|
6129 |
z_pt[__B] = Zm1(__B, A_AXIS) + Zp2(__B, B_AXIS) + Zm1(__B, C_AXIS);
|
|
|
6130 |
z_pt[__C] = Zm1(__C, A_AXIS) + Zm1(__C, B_AXIS) + Zp2(__C, C_AXIS);
|
|
|
6131 |
z_pt[_BC] = Zm2(_BC, A_AXIS) + Zp1(_BC, B_AXIS) + Zp1(_BC, C_AXIS);
|
|
|
6132 |
z_pt[_CA] = Zp1(_CA, A_AXIS) + Zm2(_CA, B_AXIS) + Zp1(_CA, C_AXIS);
|
|
|
6133 |
z_pt[_AB] = Zp1(_AB, A_AXIS) + Zp1(_AB, B_AXIS) + Zm2(_AB, C_AXIS);
|
|
|
6134 |
}
|
|
|
6135 |
|
|
|
6136 |
static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], float delta_e[ABC], float delta_r, float delta_t[ABC]) {
|
|
|
6137 |
const float z_center = z_pt[CEN];
|
|
|
6138 |
float diff_mm_at_pt_axis[NPP + 1][ABC],
|
|
|
6139 |
new_mm_at_pt_axis[NPP + 1][ABC];
|
|
|
6140 |
|
|
|
6141 |
reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
|
|
|
6142 |
|
|
|
6143 |
delta_radius += delta_r;
|
|
|
6144 |
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += delta_t[axis];
|
|
|
6145 |
recalc_delta_settings();
|
|
|
6146 |
reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
|
|
|
6147 |
|
|
|
6148 |
LOOP_XYZ(axis) LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad][axis] -= new_mm_at_pt_axis[rad][axis] + delta_e[axis];
|
|
|
6149 |
forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
|
|
|
6150 |
|
|
|
6151 |
LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
|
|
|
6152 |
z_pt[CEN] = z_center;
|
|
|
6153 |
|
|
|
6154 |
delta_radius -= delta_r;
|
|
|
6155 |
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= delta_t[axis];
|
|
|
6156 |
recalc_delta_settings();
|
|
|
6157 |
}
|
|
|
6158 |
|
|
|
6159 |
static float auto_tune_h() {
|
|
|
6160 |
const float r_quot = delta_calibration_radius / delta_radius;
|
|
|
6161 |
float h_fac = 0.0;
|
|
|
6162 |
|
|
|
6163 |
h_fac = r_quot / (2.0 / 3.0);
|
|
|
6164 |
h_fac = 1.0f / h_fac; // (2/3)/CR
|
|
|
6165 |
return h_fac;
|
|
|
6166 |
}
|
|
|
6167 |
|
|
|
6168 |
static float auto_tune_r() {
|
|
|
6169 |
const float diff = 0.01;
|
|
|
6170 |
float r_fac = 0.0,
|
|
|
6171 |
z_pt[NPP + 1] = { 0.0 },
|
|
|
6172 |
delta_e[ABC] = {0.0},
|
|
|
6173 |
delta_r = {0.0},
|
|
|
6174 |
delta_t[ABC] = {0.0};
|
|
|
6175 |
|
|
|
6176 |
delta_r = diff;
|
|
|
6177 |
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
|
|
|
6178 |
r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0;
|
|
|
6179 |
r_fac = diff / r_fac / 3.0; // 1/(3*delta_Z)
|
|
|
6180 |
return r_fac;
|
|
|
6181 |
}
|
|
|
6182 |
|
|
|
6183 |
static float auto_tune_a() {
|
|
|
6184 |
const float diff = 0.01;
|
|
|
6185 |
float a_fac = 0.0,
|
|
|
6186 |
z_pt[NPP + 1] = { 0.0 },
|
|
|
6187 |
delta_e[ABC] = {0.0},
|
|
|
6188 |
delta_r = {0.0},
|
|
|
6189 |
delta_t[ABC] = {0.0};
|
|
|
6190 |
|
|
|
6191 |
LOOP_XYZ(axis) {
|
|
|
6192 |
LOOP_XYZ(axis_2) delta_t[axis_2] = 0.0;
|
|
|
6193 |
delta_t[axis] = diff;
|
|
|
6194 |
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
|
|
|
6195 |
a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0;
|
|
|
6196 |
a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0;
|
|
|
6197 |
}
|
|
|
6198 |
a_fac = diff / a_fac / 3.0; // 1/(3*delta_Z)
|
|
|
6199 |
return a_fac;
|
|
|
6200 |
}
|
|
|
6201 |
|
|
|
6202 |
/**
|
|
|
6203 |
* G33 - Delta '1-4-7-point' Auto-Calibration
|
|
|
6204 |
* Calibrate height, z_offset, endstops, delta radius, and tower angles.
|
|
|
6205 |
*
|
|
|
6206 |
* Parameters:
|
|
|
6207 |
*
|
|
|
6208 |
* Pn Number of probe points:
|
|
|
6209 |
* P0 Normalizes calibration.
|
|
|
6210 |
* P1 Calibrates height only with center probe.
|
|
|
6211 |
* P2 Probe center and towers. Calibrate height, endstops and delta radius.
|
|
|
6212 |
* P3 Probe all positions: center, towers and opposite towers. Calibrate all.
|
|
|
6213 |
* P4-P10 Probe all positions at different intermediate locations and average them.
|
|
|
6214 |
*
|
|
|
6215 |
* T Don't calibrate tower angle corrections
|
|
|
6216 |
*
|
|
|
6217 |
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
|
|
|
6218 |
*
|
|
|
6219 |
* Fn Force to run at least n iterations and take the best result
|
|
|
6220 |
*
|
|
|
6221 |
* Vn Verbose level:
|
|
|
6222 |
* V0 Dry-run mode. Report settings and probe results. No calibration.
|
|
|
6223 |
* V1 Report start and end settings only
|
|
|
6224 |
* V2 Report settings at each iteration
|
|
|
6225 |
* V3 Report settings and probe results
|
|
|
6226 |
*
|
|
|
6227 |
* E Engage the probe for each point
|
|
|
6228 |
*/
|
|
|
6229 |
inline void gcode_G33() {
|
|
|
6230 |
|
|
|
6231 |
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
|
|
6232 |
if (!WITHIN(probe_points, 0, 10)) {
|
|
|
6233 |
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
|
|
|
6234 |
return;
|
|
|
6235 |
}
|
|
|
6236 |
|
|
|
6237 |
const bool towers_set = !parser.seen('T');
|
|
|
6238 |
|
|
|
6239 |
const float calibration_precision = parser.floatval('C', 0.0);
|
|
|
6240 |
if (calibration_precision < 0) {
|
|
|
6241 |
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
|
|
|
6242 |
return;
|
|
|
6243 |
}
|
|
|
6244 |
|
|
|
6245 |
const int8_t force_iterations = parser.intval('F', 0);
|
|
|
6246 |
if (!WITHIN(force_iterations, 0, 30)) {
|
|
|
6247 |
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
|
|
|
6248 |
return;
|
|
|
6249 |
}
|
|
|
6250 |
|
|
|
6251 |
const int8_t verbose_level = parser.byteval('V', 1);
|
|
|
6252 |
if (!WITHIN(verbose_level, 0, 3)) {
|
|
|
6253 |
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
|
|
|
6254 |
return;
|
|
|
6255 |
}
|
|
|
6256 |
|
|
|
6257 |
const bool stow_after_each = parser.seen('E');
|
|
|
6258 |
|
|
|
6259 |
const bool _0p_calibration = probe_points == 0,
|
|
|
6260 |
_1p_calibration = probe_points == 1 || probe_points == -1,
|
|
|
6261 |
_4p_calibration = probe_points == 2,
|
|
|
6262 |
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
|
6263 |
_7p_9_center = probe_points >= 8,
|
|
|
6264 |
_tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
|
|
|
6265 |
_opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
|
|
|
6266 |
_endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
|
|
|
6267 |
_angle_results = probe_points >= 3 && towers_set;
|
|
|
6268 |
static const char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
|
|
|
6269 |
int8_t iterations = 0;
|
|
|
6270 |
float test_precision,
|
|
|
6271 |
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
|
|
6272 |
zero_std_dev_min = zero_std_dev,
|
|
|
6273 |
zero_std_dev_old = zero_std_dev,
|
|
|
6274 |
h_factor,
|
|
|
6275 |
r_factor,
|
|
|
6276 |
a_factor,
|
|
|
6277 |
e_old[ABC] = {
|
|
|
6278 |
delta_endstop_adj[A_AXIS],
|
|
|
6279 |
delta_endstop_adj[B_AXIS],
|
|
|
6280 |
delta_endstop_adj[C_AXIS]
|
|
|
6281 |
},
|
|
|
6282 |
r_old = delta_radius,
|
|
|
6283 |
h_old = delta_height,
|
|
|
6284 |
a_old[ABC] = {
|
|
|
6285 |
delta_tower_angle_trim[A_AXIS],
|
|
|
6286 |
delta_tower_angle_trim[B_AXIS],
|
|
|
6287 |
delta_tower_angle_trim[C_AXIS]
|
|
|
6288 |
};
|
|
|
6289 |
|
|
|
6290 |
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
|
|
6291 |
|
|
|
6292 |
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
|
|
6293 |
LOOP_CAL_RAD(axis) {
|
|
|
6294 |
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
|
6295 |
r = delta_calibration_radius;
|
|
|
6296 |
if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
|
|
|
6297 |
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
|
|
|
6298 |
return;
|
|
|
6299 |
}
|
|
|
6300 |
}
|
|
|
6301 |
}
|
|
|
6302 |
|
|
|
6303 |
// Report settings
|
|
|
6304 |
const char *checkingac = PSTR("Checking... AC");
|
|
|
6305 |
serialprintPGM(checkingac);
|
|
|
6306 |
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
|
|
|
6307 |
SERIAL_EOL();
|
|
|
6308 |
lcd_setstatusPGM(checkingac);
|
|
|
6309 |
|
|
|
6310 |
print_calibration_settings(_endstop_results, _angle_results);
|
|
|
6311 |
|
|
|
6312 |
ac_setup(!_0p_calibration && !_1p_calibration);
|
|
|
6313 |
|
|
|
6314 |
if (!_0p_calibration) ac_home();
|
|
|
6315 |
|
|
|
6316 |
do { // start iterations
|
|
|
6317 |
|
|
|
6318 |
float z_at_pt[NPP + 1] = { 0.0 };
|
|
|
6319 |
|
|
|
6320 |
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
|
|
6321 |
iterations++;
|
|
|
6322 |
|
|
|
6323 |
// Probe the points
|
|
|
6324 |
zero_std_dev_old = zero_std_dev;
|
|
|
6325 |
if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) {
|
|
|
6326 |
SERIAL_PROTOCOLLNPGM("Correct delta settings with M665 and M666");
|
|
|
6327 |
return AC_CLEANUP();
|
|
|
6328 |
}
|
|
|
6329 |
zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
|
|
|
6330 |
|
|
|
6331 |
// Solve matrices
|
|
|
6332 |
|
|
|
6333 |
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
|
|
|
6334 |
|
|
|
6335 |
#if !HAS_BED_PROBE
|
|
|
6336 |
test_precision = 0.00; // forced end
|
|
|
6337 |
#endif
|
|
|
6338 |
|
|
|
6339 |
if (zero_std_dev < zero_std_dev_min) {
|
|
|
6340 |
// set roll-back point
|
|
|
6341 |
COPY(e_old, delta_endstop_adj);
|
|
|
6342 |
r_old = delta_radius;
|
|
|
6343 |
h_old = delta_height;
|
|
|
6344 |
COPY(a_old, delta_tower_angle_trim);
|
|
|
6345 |
}
|
|
|
6346 |
|
|
|
6347 |
float e_delta[ABC] = { 0.0 },
|
|
|
6348 |
r_delta = 0.0,
|
|
|
6349 |
t_delta[ABC] = { 0.0 };
|
|
|
6350 |
|
|
|
6351 |
/**
|
|
|
6352 |
* convergence matrices:
|
|
|
6353 |
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
|
|
|
6354 |
* - definition of the matrix scaling parameters
|
|
|
6355 |
* - matrices for 4 and 7 point calibration
|
|
|
6356 |
*/
|
|
|
6357 |
#define ZP(N,I) ((N) * z_at_pt[I] / 4.0) // 4.0 = divider to normalize to integers
|
|
|
6358 |
#define Z12(I) ZP(12, I)
|
|
|
6359 |
#define Z4(I) ZP(4, I)
|
|
|
6360 |
#define Z2(I) ZP(2, I)
|
|
|
6361 |
#define Z1(I) ZP(1, I)
|
|
|
6362 |
#define Z0(I) ZP(0, I)
|
|
|
6363 |
|
|
|
6364 |
// calculate factors
|
|
|
6365 |
const float cr_old = delta_calibration_radius;
|
|
|
6366 |
if (_7p_9_center) delta_calibration_radius *= 0.9;
|
|
|
6367 |
h_factor = auto_tune_h();
|
|
|
6368 |
r_factor = auto_tune_r();
|
|
|
6369 |
a_factor = auto_tune_a();
|
|
|
6370 |
delta_calibration_radius = cr_old;
|
|
|
6371 |
|
|
|
6372 |
switch (probe_points) {
|
|
|
6373 |
case 0:
|
|
|
6374 |
test_precision = 0.00; // forced end
|
|
|
6375 |
break;
|
|
|
6376 |
|
|
|
6377 |
case 1:
|
|
|
6378 |
test_precision = 0.00; // forced end
|
|
|
6379 |
LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
|
|
|
6380 |
break;
|
|
|
6381 |
|
|
|
6382 |
case 2:
|
|
|
6383 |
if (towers_set) { // see 4 point calibration (towers) matrix
|
|
|
6384 |
e_delta[A_AXIS] = (+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN);
|
|
|
6385 |
e_delta[B_AXIS] = (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN);
|
|
|
6386 |
e_delta[C_AXIS] = (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN);
|
|
|
6387 |
r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
|
|
|
6388 |
}
|
|
|
6389 |
else { // see 4 point calibration (opposites) matrix
|
|
|
6390 |
e_delta[A_AXIS] = (-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
|
|
|
6391 |
e_delta[B_AXIS] = (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
|
|
|
6392 |
e_delta[C_AXIS] = (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN);
|
|
|
6393 |
r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
|
|
|
6394 |
}
|
|
|
6395 |
break;
|
|
|
6396 |
|
|
|
6397 |
default: // see 7 point calibration (towers & opposites) matrix
|
|
|
6398 |
e_delta[A_AXIS] = (+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
|
|
|
6399 |
e_delta[B_AXIS] = (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
|
|
|
6400 |
e_delta[C_AXIS] = (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN);
|
|
|
6401 |
r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
|
|
|
6402 |
|
|
|
6403 |
if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
|
|
|
6404 |
t_delta[A_AXIS] = (+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor;
|
|
|
6405 |
t_delta[B_AXIS] = (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor;
|
|
|
6406 |
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor;
|
|
|
6407 |
}
|
|
|
6408 |
break;
|
|
|
6409 |
}
|
|
|
6410 |
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
|
|
|
6411 |
delta_radius += r_delta;
|
|
|
6412 |
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
|
|
|
6413 |
}
|
|
|
6414 |
else if (zero_std_dev >= test_precision) {
|
|
|
6415 |
// roll back
|
|
|
6416 |
COPY(delta_endstop_adj, e_old);
|
|
|
6417 |
delta_radius = r_old;
|
|
|
6418 |
delta_height = h_old;
|
|
|
6419 |
COPY(delta_tower_angle_trim, a_old);
|
|
|
6420 |
}
|
|
|
6421 |
|
|
|
6422 |
if (verbose_level != 0) { // !dry run
|
|
|
6423 |
|
|
|
6424 |
// normalise angles to least squares
|
|
|
6425 |
if (_angle_results) {
|
|
|
6426 |
float a_sum = 0.0;
|
|
|
6427 |
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
|
|
6428 |
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
|
|
|
6429 |
}
|
|
|
6430 |
|
|
|
6431 |
// adjust delta_height and endstops by the max amount
|
|
|
6432 |
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
6433 |
delta_height -= z_temp;
|
|
|
6434 |
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
6435 |
}
|
|
|
6436 |
recalc_delta_settings();
|
|
|
6437 |
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
6438 |
|
|
|
6439 |
// print report
|
|
|
6440 |
|
|
|
6441 |
if (verbose_level == 3)
|
|
|
6442 |
print_calibration_results(z_at_pt, _tower_results, _opposite_results);
|
|
|
6443 |
|
|
|
6444 |
if (verbose_level != 0) { // !dry run
|
|
|
6445 |
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
|
|
|
6446 |
SERIAL_PROTOCOLPGM("Calibration OK");
|
|
|
6447 |
SERIAL_PROTOCOL_SP(32);
|
|
|
6448 |
#if HAS_BED_PROBE
|
|
|
6449 |
if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
|
|
|
6450 |
SERIAL_PROTOCOLPGM("rolling back.");
|
|
|
6451 |
else
|
|
|
6452 |
#endif
|
|
|
6453 |
{
|
|
|
6454 |
SERIAL_PROTOCOLPGM("std dev:");
|
|
|
6455 |
SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
|
|
|
6456 |
}
|
|
|
6457 |
SERIAL_EOL();
|
|
|
6458 |
char mess[21];
|
|
|
6459 |
strcpy_P(mess, PSTR("Calibration sd:"));
|
|
|
6460 |
if (zero_std_dev_min < 1)
|
|
|
6461 |
sprintf_P(&mess[15], PSTR("0.%03i"), int(LROUND(zero_std_dev_min * 1000.0)));
|
|
|
6462 |
else
|
|
|
6463 |
sprintf_P(&mess[15], PSTR("%03i.x"), int(LROUND(zero_std_dev_min)));
|
|
|
6464 |
lcd_setstatus(mess);
|
|
|
6465 |
print_calibration_settings(_endstop_results, _angle_results);
|
|
|
6466 |
serialprintPGM(save_message);
|
|
|
6467 |
SERIAL_EOL();
|
|
|
6468 |
}
|
|
|
6469 |
else { // !end iterations
|
|
|
6470 |
char mess[15];
|
|
|
6471 |
if (iterations < 31)
|
|
|
6472 |
sprintf_P(mess, PSTR("Iteration : %02i"), int(iterations));
|
|
|
6473 |
else
|
|
|
6474 |
strcpy_P(mess, PSTR("No convergence"));
|
|
|
6475 |
SERIAL_PROTOCOL(mess);
|
|
|
6476 |
SERIAL_PROTOCOL_SP(32);
|
|
|
6477 |
SERIAL_PROTOCOLPGM("std dev:");
|
|
|
6478 |
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
|
6479 |
SERIAL_EOL();
|
|
|
6480 |
lcd_setstatus(mess);
|
|
|
6481 |
if (verbose_level > 1)
|
|
|
6482 |
print_calibration_settings(_endstop_results, _angle_results);
|
|
|
6483 |
}
|
|
|
6484 |
}
|
|
|
6485 |
else { // dry run
|
|
|
6486 |
const char *enddryrun = PSTR("End DRY-RUN");
|
|
|
6487 |
serialprintPGM(enddryrun);
|
|
|
6488 |
SERIAL_PROTOCOL_SP(35);
|
|
|
6489 |
SERIAL_PROTOCOLPGM("std dev:");
|
|
|
6490 |
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
|
6491 |
SERIAL_EOL();
|
|
|
6492 |
|
|
|
6493 |
char mess[21];
|
|
|
6494 |
strcpy_P(mess, enddryrun);
|
|
|
6495 |
strcpy_P(&mess[11], PSTR(" sd:"));
|
|
|
6496 |
if (zero_std_dev < 1)
|
|
|
6497 |
sprintf_P(&mess[15], PSTR("0.%03i"), int(LROUND(zero_std_dev * 1000.0)));
|
|
|
6498 |
else
|
|
|
6499 |
sprintf_P(&mess[15], PSTR("%03i.x"), int(LROUND(zero_std_dev)));
|
|
|
6500 |
lcd_setstatus(mess);
|
|
|
6501 |
}
|
|
|
6502 |
ac_home();
|
|
|
6503 |
}
|
|
|
6504 |
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
|
|
|
6505 |
|
|
|
6506 |
AC_CLEANUP();
|
|
|
6507 |
}
|
|
|
6508 |
|
|
|
6509 |
#endif // DELTA_AUTO_CALIBRATION
|
|
|
6510 |
|
|
|
6511 |
#if ENABLED(G38_PROBE_TARGET)
|
|
|
6512 |
|
|
|
6513 |
static bool G38_run_probe() {
|
|
|
6514 |
|
|
|
6515 |
bool G38_pass_fail = false;
|
|
|
6516 |
|
|
|
6517 |
#if MULTIPLE_PROBING > 1
|
|
|
6518 |
// Get direction of move and retract
|
|
|
6519 |
float retract_mm[XYZ];
|
|
|
6520 |
LOOP_XYZ(i) {
|
|
|
6521 |
float dist = destination[i] - current_position[i];
|
|
|
6522 |
retract_mm[i] = ABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
|
|
|
6523 |
}
|
|
|
6524 |
#endif
|
|
|
6525 |
|
|
|
6526 |
// Move until destination reached or target hit
|
|
|
6527 |
planner.synchronize();
|
|
|
6528 |
endstops.enable(true);
|
|
|
6529 |
G38_move = true;
|
|
|
6530 |
G38_endstop_hit = false;
|
|
|
6531 |
prepare_move_to_destination();
|
|
|
6532 |
planner.synchronize();
|
|
|
6533 |
G38_move = false;
|
|
|
6534 |
|
|
|
6535 |
endstops.hit_on_purpose();
|
|
|
6536 |
set_current_from_steppers_for_axis(ALL_AXES);
|
|
|
6537 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
6538 |
|
|
|
6539 |
if (G38_endstop_hit) {
|
|
|
6540 |
|
|
|
6541 |
G38_pass_fail = true;
|
|
|
6542 |
|
|
|
6543 |
#if MULTIPLE_PROBING > 1
|
|
|
6544 |
// Move away by the retract distance
|
|
|
6545 |
set_destination_from_current();
|
|
|
6546 |
LOOP_XYZ(i) destination[i] += retract_mm[i];
|
|
|
6547 |
endstops.enable(false);
|
|
|
6548 |
prepare_move_to_destination();
|
|
|
6549 |
|
|
|
6550 |
feedrate_mm_s /= 4;
|
|
|
6551 |
|
|
|
6552 |
// Bump the target more slowly
|
|
|
6553 |
LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
|
|
|
6554 |
|
|
|
6555 |
planner.synchronize();
|
|
|
6556 |
endstops.enable(true);
|
|
|
6557 |
G38_move = true;
|
|
|
6558 |
prepare_move_to_destination();
|
|
|
6559 |
planner.synchronize();
|
|
|
6560 |
G38_move = false;
|
|
|
6561 |
|
|
|
6562 |
set_current_from_steppers_for_axis(ALL_AXES);
|
|
|
6563 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
6564 |
#endif
|
|
|
6565 |
}
|
|
|
6566 |
|
|
|
6567 |
endstops.hit_on_purpose();
|
|
|
6568 |
endstops.not_homing();
|
|
|
6569 |
return G38_pass_fail;
|
|
|
6570 |
}
|
|
|
6571 |
|
|
|
6572 |
/**
|
|
|
6573 |
* G38.2 - probe toward workpiece, stop on contact, signal error if failure
|
|
|
6574 |
* G38.3 - probe toward workpiece, stop on contact
|
|
|
6575 |
*
|
|
|
6576 |
* Like G28 except uses Z min probe for all axes
|
|
|
6577 |
*/
|
|
|
6578 |
inline void gcode_G38(bool is_38_2) {
|
|
|
6579 |
// Get X Y Z E F
|
|
|
6580 |
gcode_get_destination();
|
|
|
6581 |
|
|
|
6582 |
setup_for_endstop_or_probe_move();
|
|
|
6583 |
|
|
|
6584 |
// If any axis has enough movement, do the move
|
|
|
6585 |
LOOP_XYZ(i)
|
|
|
6586 |
if (ABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
|
|
|
6587 |
if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
|
|
|
6588 |
// If G38.2 fails throw an error
|
|
|
6589 |
if (!G38_run_probe() && is_38_2) {
|
|
|
6590 |
SERIAL_ERROR_START();
|
|
|
6591 |
SERIAL_ERRORLNPGM("Failed to reach target");
|
|
|
6592 |
}
|
|
|
6593 |
break;
|
|
|
6594 |
}
|
|
|
6595 |
|
|
|
6596 |
clean_up_after_endstop_or_probe_move();
|
|
|
6597 |
}
|
|
|
6598 |
|
|
|
6599 |
#endif // G38_PROBE_TARGET
|
|
|
6600 |
|
|
|
6601 |
#if HAS_MESH
|
|
|
6602 |
|
|
|
6603 |
/**
|
|
|
6604 |
* G42: Move X & Y axes to mesh coordinates (I & J)
|
|
|
6605 |
*/
|
|
|
6606 |
inline void gcode_G42() {
|
|
|
6607 |
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
6608 |
if (axis_unhomed_error()) return;
|
|
|
6609 |
#endif
|
|
|
6610 |
|
|
|
6611 |
if (IsRunning()) {
|
|
|
6612 |
const bool hasI = parser.seenval('I');
|
|
|
6613 |
const int8_t ix = hasI ? parser.value_int() : 0;
|
|
|
6614 |
const bool hasJ = parser.seenval('J');
|
|
|
6615 |
const int8_t iy = hasJ ? parser.value_int() : 0;
|
|
|
6616 |
|
|
|
6617 |
if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
|
|
|
6618 |
SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
|
|
|
6619 |
return;
|
|
|
6620 |
}
|
|
|
6621 |
|
|
|
6622 |
set_destination_from_current();
|
|
|
6623 |
if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
|
|
|
6624 |
if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
|
|
|
6625 |
if (parser.boolval('P')) {
|
|
|
6626 |
if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
6627 |
if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
6628 |
}
|
|
|
6629 |
|
|
|
6630 |
const float fval = parser.linearval('F');
|
|
|
6631 |
if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
|
|
|
6632 |
|
|
|
6633 |
// SCARA kinematic has "safe" XY raw moves
|
|
|
6634 |
#if IS_SCARA
|
|
|
6635 |
prepare_uninterpolated_move_to_destination();
|
|
|
6636 |
#else
|
|
|
6637 |
prepare_move_to_destination();
|
|
|
6638 |
#endif
|
|
|
6639 |
}
|
|
|
6640 |
}
|
|
|
6641 |
|
|
|
6642 |
#endif // HAS_MESH
|
|
|
6643 |
|
|
|
6644 |
/**
|
|
|
6645 |
* G92: Set current position to given X Y Z E
|
|
|
6646 |
*/
|
|
|
6647 |
inline void gcode_G92() {
|
|
|
6648 |
|
|
|
6649 |
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
6650 |
switch (parser.subcode) {
|
|
|
6651 |
case 1:
|
|
|
6652 |
// Zero the G92 values and restore current position
|
|
|
6653 |
#if !IS_SCARA
|
|
|
6654 |
LOOP_XYZ(i) {
|
|
|
6655 |
const float v = position_shift[i];
|
|
|
6656 |
if (v) {
|
|
|
6657 |
position_shift[i] = 0;
|
|
|
6658 |
update_software_endstops((AxisEnum)i);
|
|
|
6659 |
}
|
|
|
6660 |
}
|
|
|
6661 |
#endif // Not SCARA
|
|
|
6662 |
return;
|
|
|
6663 |
}
|
|
|
6664 |
#endif
|
|
|
6665 |
|
|
|
6666 |
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
6667 |
#define IS_G92_0 (parser.subcode == 0)
|
|
|
6668 |
#else
|
|
|
6669 |
#define IS_G92_0 true
|
|
|
6670 |
#endif
|
|
|
6671 |
|
|
|
6672 |
bool didE = false;
|
|
|
6673 |
#if IS_SCARA || !HAS_POSITION_SHIFT || ENABLED(HANGPRINTER)
|
|
|
6674 |
bool didXYZ = false;
|
|
|
6675 |
#else
|
|
|
6676 |
constexpr bool didXYZ = false;
|
|
|
6677 |
#endif
|
|
|
6678 |
|
|
|
6679 |
if (IS_G92_0) LOOP_XYZE(i) {
|
|
|
6680 |
if (parser.seenval(axis_codes[i])) {
|
|
|
6681 |
const float l = parser.value_axis_units((AxisEnum)i),
|
|
|
6682 |
v = i == E_CART ? l : LOGICAL_TO_NATIVE(l, i),
|
|
|
6683 |
d = v - current_position[i];
|
|
|
6684 |
if (!NEAR_ZERO(d)
|
|
|
6685 |
#if ENABLED(HANGPRINTER)
|
|
|
6686 |
|| true // Hangprinter needs to update its line lengths whether current_position changed or not
|
|
|
6687 |
#endif
|
|
|
6688 |
) {
|
|
|
6689 |
#if IS_SCARA || !HAS_POSITION_SHIFT || ENABLED(HANGPRINTER)
|
|
|
6690 |
if (i == E_CART) didE = true; else didXYZ = true;
|
|
|
6691 |
current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
|
|
|
6692 |
#elif HAS_POSITION_SHIFT
|
|
|
6693 |
if (i == E_CART) {
|
|
|
6694 |
didE = true;
|
|
|
6695 |
current_position[E_CART] = v; // When using coordinate spaces, only E is set directly
|
|
|
6696 |
}
|
|
|
6697 |
else {
|
|
|
6698 |
position_shift[i] += d; // Other axes simply offset the coordinate space
|
|
|
6699 |
update_software_endstops((AxisEnum)i);
|
|
|
6700 |
}
|
|
|
6701 |
#endif
|
|
|
6702 |
}
|
|
|
6703 |
}
|
|
|
6704 |
}
|
|
|
6705 |
|
|
|
6706 |
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
6707 |
// Apply workspace offset to the active coordinate system
|
|
|
6708 |
if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
|
|
|
6709 |
COPY(coordinate_system[active_coordinate_system], position_shift);
|
|
|
6710 |
#endif
|
|
|
6711 |
|
|
|
6712 |
// Update planner/steppers only if the native coordinates changed
|
|
|
6713 |
if (didXYZ) SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
6714 |
else if (didE) sync_plan_position_e();
|
|
|
6715 |
|
|
|
6716 |
report_current_position();
|
|
|
6717 |
}
|
|
|
6718 |
|
|
|
6719 |
#if ENABLED(MECHADUINO_I2C_COMMANDS)
|
|
|
6720 |
/**
|
|
|
6721 |
* G95: Set torque mode
|
|
|
6722 |
*/
|
|
|
6723 |
inline void gcode_G95() {
|
|
|
6724 |
i2cFloat torques[NUM_AXIS]; // Assumes 4-byte floats here and in Mechaduino firmware
|
|
|
6725 |
LOOP_NUM_AXIS(i)
|
|
|
6726 |
torques[i].fval = parser.floatval(RAW_AXIS_CODES(i), 999.9); // 999.9 chosen to satisfy fabs(999.9) > 255.0
|
|
|
6727 |
|
|
|
6728 |
// 0x5f == 95
|
|
|
6729 |
#define G95_SEND(LETTER) do { \
|
|
|
6730 |
if (fabs(torques[_AXIS(LETTER)].fval) < 255.0){ \
|
|
|
6731 |
torques[_AXIS(LETTER)].fval = -fabs(torques[_AXIS(LETTER)].fval); \
|
|
|
6732 |
if(!INVERT_##LETTER##_DIR) torques[_AXIS(LETTER)].fval = -torques[_AXIS(LETTER)].fval; \
|
|
|
6733 |
i2c.address(LETTER##_MOTOR_I2C_ADDR); \
|
|
|
6734 |
i2c.reset(); \
|
|
|
6735 |
i2c.addbyte(0x5f); \
|
|
|
6736 |
i2c.addbytes(torques[_AXIS(LETTER)].bval, sizeof(float)); \
|
|
|
6737 |
i2c.send(); \
|
|
|
6738 |
}} while(0)
|
|
|
6739 |
|
|
|
6740 |
#if ENABLED(HANGPRINTER)
|
|
|
6741 |
#if ENABLED(A_IS_MECHADUINO)
|
|
|
6742 |
G95_SEND(A);
|
|
|
6743 |
#endif
|
|
|
6744 |
#if ENABLED(B_IS_MECHADUINO)
|
|
|
6745 |
G95_SEND(B);
|
|
|
6746 |
#endif
|
|
|
6747 |
#if ENABLED(C_IS_MECHADUINO)
|
|
|
6748 |
G95_SEND(C);
|
|
|
6749 |
#endif
|
|
|
6750 |
#if ENABLED(D_IS_MECHADUINO)
|
|
|
6751 |
G95_SEND(D);
|
|
|
6752 |
#endif
|
|
|
6753 |
#else
|
|
|
6754 |
#if ENABLED(X_IS_MECHADUINO)
|
|
|
6755 |
G95_SEND(X);
|
|
|
6756 |
#endif
|
|
|
6757 |
#if ENABLED(Y_IS_MECHADUINO)
|
|
|
6758 |
G95_SEND(Y);
|
|
|
6759 |
#endif
|
|
|
6760 |
#if ENABLED(Z_IS_MECHADUINO)
|
|
|
6761 |
G95_SEND(Z);
|
|
|
6762 |
#endif
|
|
|
6763 |
#endif
|
|
|
6764 |
#if ENABLED(E_IS_MECHADUINO)
|
|
|
6765 |
G95_SEND(E);
|
|
|
6766 |
#endif
|
|
|
6767 |
}
|
|
|
6768 |
|
|
|
6769 |
/**
|
|
|
6770 |
* G96: Mark encoder reference point
|
|
|
6771 |
*/
|
|
|
6772 |
inline void gcode_G96() {
|
|
|
6773 |
bool mark[NUM_AXIS] = { false };
|
|
|
6774 |
if (!parser.seen_any())
|
|
|
6775 |
LOOP_NUM_AXIS(i)
|
|
|
6776 |
mark[i] = true;
|
|
|
6777 |
else
|
|
|
6778 |
LOOP_NUM_AXIS(i)
|
|
|
6779 |
if (parser.seen(RAW_AXIS_CODES(i)))
|
|
|
6780 |
mark[i] = true;
|
|
|
6781 |
|
|
|
6782 |
// 0x60 == 96
|
|
|
6783 |
#define G96_SEND(LETTER) do {\
|
|
|
6784 |
if (mark[LETTER##_AXIS]){ \
|
|
|
6785 |
i2c.address(LETTER##_MOTOR_I2C_ADDR); \
|
|
|
6786 |
i2c.reset(); \
|
|
|
6787 |
i2c.addbyte(0x60); \
|
|
|
6788 |
i2c.send(); \
|
|
|
6789 |
}} while(0)
|
|
|
6790 |
|
|
|
6791 |
#if ENABLED(HANGPRINTER)
|
|
|
6792 |
#if ENABLED(A_IS_MECHADUINO)
|
|
|
6793 |
G96_SEND(A);
|
|
|
6794 |
#endif
|
|
|
6795 |
#if ENABLED(B_IS_MECHADUINO)
|
|
|
6796 |
G96_SEND(B);
|
|
|
6797 |
#endif
|
|
|
6798 |
#if ENABLED(C_IS_MECHADUINO)
|
|
|
6799 |
G96_SEND(C);
|
|
|
6800 |
#endif
|
|
|
6801 |
#if ENABLED(D_IS_MECHADUINO)
|
|
|
6802 |
G96_SEND(D);
|
|
|
6803 |
#endif
|
|
|
6804 |
#else
|
|
|
6805 |
#if ENABLED(X_IS_MECHADUINO)
|
|
|
6806 |
G96_SEND(X);
|
|
|
6807 |
#endif
|
|
|
6808 |
#if ENABLED(Y_IS_MECHADUINO)
|
|
|
6809 |
G96_SEND(Y);
|
|
|
6810 |
#endif
|
|
|
6811 |
#if ENABLED(Z_IS_MECHADUINO)
|
|
|
6812 |
G96_SEND(Z);
|
|
|
6813 |
#endif
|
|
|
6814 |
#endif
|
|
|
6815 |
#if ENABLED(E_IS_MECHADUINO)
|
|
|
6816 |
G96_SEND(E); // E ref point not used by any other commands (Feb 7, 2018)
|
|
|
6817 |
#endif
|
|
|
6818 |
}
|
|
|
6819 |
|
|
|
6820 |
float ang_to_mm(float ang, const AxisEnum axis) {
|
|
|
6821 |
const float abs_step_in_origin =
|
|
|
6822 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
6823 |
planner.k0[axis] * (SQRT(planner.k1[axis] + planner.k2[axis] * line_lengths_origin[axis]) - planner.sqrtk1[axis])
|
|
|
6824 |
#else
|
|
|
6825 |
line_lengths_origin[axis] * planner.axis_steps_per_mm[axis]
|
|
|
6826 |
#endif
|
|
|
6827 |
;
|
|
|
6828 |
const float c = abs_step_in_origin + ang * float(STEPS_PER_MOTOR_REVOLUTION) / 360.0; // current step count
|
|
|
6829 |
return
|
|
|
6830 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
6831 |
// Inverse function found in planner.cpp, where target[AXIS_A] is calculated
|
|
|
6832 |
((c / planner.k0[axis] + planner.sqrtk1[axis]) * (c / planner.k0[axis] + planner.sqrtk1[axis]) - planner.k1[axis]) / planner.k2[axis] - line_lengths_origin[axis]
|
|
|
6833 |
#else
|
|
|
6834 |
c / planner.axis_steps_per_mm[axis] - line_lengths_origin[axis]
|
|
|
6835 |
#endif
|
|
|
6836 |
;
|
|
|
6837 |
}
|
|
|
6838 |
|
|
|
6839 |
void report_axis_position_from_encoder_data() {
|
|
|
6840 |
i2cFloat ang;
|
|
|
6841 |
|
|
|
6842 |
#define M114_S1_RECEIVE(LETTER) do { \
|
|
|
6843 |
i2c.address(LETTER##_MOTOR_I2C_ADDR); \
|
|
|
6844 |
i2c.request(sizeof(float)); \
|
|
|
6845 |
i2c.capture(ang.bval, sizeof(float)); \
|
|
|
6846 |
if(LETTER##_INVERT_REPORTED_ANGLE == INVERT_##LETTER##_DIR) ang.fval = -ang.fval; \
|
|
|
6847 |
SERIAL_PROTOCOL(ang_to_mm(ang.fval, LETTER##_AXIS)); \
|
|
|
6848 |
} while(0)
|
|
|
6849 |
|
|
|
6850 |
SERIAL_CHAR('[');
|
|
|
6851 |
#if ENABLED(HANGPRINTER)
|
|
|
6852 |
#if ENABLED(A_IS_MECHADUINO)
|
|
|
6853 |
M114_S1_RECEIVE(A);
|
|
|
6854 |
#endif
|
|
|
6855 |
#if ENABLED(B_IS_MECHADUINO)
|
|
|
6856 |
SERIAL_PROTOCOLPGM(", ");
|
|
|
6857 |
M114_S1_RECEIVE(B);
|
|
|
6858 |
#endif
|
|
|
6859 |
#if ENABLED(C_IS_MECHADUINO)
|
|
|
6860 |
SERIAL_PROTOCOLPGM(", ");
|
|
|
6861 |
M114_S1_RECEIVE(C);
|
|
|
6862 |
#endif
|
|
|
6863 |
#if ENABLED(D_IS_MECHADUINO)
|
|
|
6864 |
SERIAL_PROTOCOLPGM(", ");
|
|
|
6865 |
M114_S1_RECEIVE(D);
|
|
|
6866 |
#endif
|
|
|
6867 |
#else
|
|
|
6868 |
#if ENABLED(X_IS_MECHADUINO)
|
|
|
6869 |
M114_S1_RECEIVE(X);
|
|
|
6870 |
#endif
|
|
|
6871 |
#if ENABLED(Y_IS_MECHADUINO)
|
|
|
6872 |
SERIAL_PROTOCOLPGM(", ");
|
|
|
6873 |
M114_S1_RECEIVE(Y);
|
|
|
6874 |
#endif
|
|
|
6875 |
#if ENABLED(Z_IS_MECHADUINO)
|
|
|
6876 |
SERIAL_PROTOCOLPGM(", ");
|
|
|
6877 |
M114_S1_RECEIVE(Z);
|
|
|
6878 |
#endif
|
|
|
6879 |
#endif
|
|
|
6880 |
SERIAL_CHAR(']');
|
|
|
6881 |
SERIAL_EOL();
|
|
|
6882 |
}
|
|
|
6883 |
|
|
|
6884 |
#endif // MECHADUINO_I2C_COMMANDS
|
|
|
6885 |
|
|
|
6886 |
|
|
|
6887 |
void report_xyz_from_stepper_position() {
|
|
|
6888 |
get_cartesian_from_steppers(); // writes to cartes[XYZ]
|
|
|
6889 |
SERIAL_CHAR('[');
|
|
|
6890 |
SERIAL_PROTOCOL(cartes[X_AXIS]);
|
|
|
6891 |
SERIAL_PROTOCOLPAIR(", ", cartes[Y_AXIS]);
|
|
|
6892 |
SERIAL_PROTOCOLPAIR(", ", cartes[Z_AXIS]);
|
|
|
6893 |
SERIAL_CHAR(']');
|
|
|
6894 |
SERIAL_EOL();
|
|
|
6895 |
}
|
|
|
6896 |
|
|
|
6897 |
#if HAS_RESUME_CONTINUE
|
|
|
6898 |
|
|
|
6899 |
/**
|
|
|
6900 |
* M0: Unconditional stop - Wait for user button press on LCD
|
|
|
6901 |
* M1: Conditional stop - Wait for user button press on LCD
|
|
|
6902 |
*/
|
|
|
6903 |
inline void gcode_M0_M1() {
|
|
|
6904 |
const char * const args = parser.string_arg;
|
|
|
6905 |
|
|
|
6906 |
millis_t ms = 0;
|
|
|
6907 |
bool hasP = false, hasS = false;
|
|
|
6908 |
if (parser.seenval('P')) {
|
|
|
6909 |
ms = parser.value_millis(); // milliseconds to wait
|
|
|
6910 |
hasP = ms > 0;
|
|
|
6911 |
}
|
|
|
6912 |
if (parser.seenval('S')) {
|
|
|
6913 |
ms = parser.value_millis_from_seconds(); // seconds to wait
|
|
|
6914 |
hasS = ms > 0;
|
|
|
6915 |
}
|
|
|
6916 |
|
|
|
6917 |
const bool has_message = !hasP && !hasS && args && *args;
|
|
|
6918 |
|
|
|
6919 |
planner.synchronize();
|
|
|
6920 |
|
|
|
6921 |
#if ENABLED(ULTIPANEL)
|
|
|
6922 |
|
|
|
6923 |
if (has_message)
|
|
|
6924 |
lcd_setstatus(args, true);
|
|
|
6925 |
else {
|
|
|
6926 |
LCD_MESSAGEPGM(MSG_USERWAIT);
|
|
|
6927 |
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
|
|
|
6928 |
dontExpireStatus();
|
|
|
6929 |
#endif
|
|
|
6930 |
}
|
|
|
6931 |
|
|
|
6932 |
#else
|
|
|
6933 |
|
|
|
6934 |
if (has_message) {
|
|
|
6935 |
SERIAL_ECHO_START();
|
|
|
6936 |
SERIAL_ECHOLN(args);
|
|
|
6937 |
}
|
|
|
6938 |
|
|
|
6939 |
#endif
|
|
|
6940 |
|
|
|
6941 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
6942 |
wait_for_user = true;
|
|
|
6943 |
|
|
|
6944 |
if (ms > 0) {
|
|
|
6945 |
ms += millis(); // wait until this time for a click
|
|
|
6946 |
while (PENDING(millis(), ms) && wait_for_user) idle();
|
|
|
6947 |
}
|
|
|
6948 |
else
|
|
|
6949 |
while (wait_for_user) idle();
|
|
|
6950 |
|
|
|
6951 |
|
|
|
6952 |
#if ENABLED(PRINTER_EVENT_LEDS) && ENABLED(SDSUPPORT)
|
|
|
6953 |
if (lights_off_after_print) {
|
|
|
6954 |
leds.set_off();
|
|
|
6955 |
lights_off_after_print = false;
|
|
|
6956 |
}
|
|
|
6957 |
#endif
|
|
|
6958 |
|
|
|
6959 |
lcd_reset_status();
|
|
|
6960 |
|
|
|
6961 |
wait_for_user = false;
|
|
|
6962 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
6963 |
}
|
|
|
6964 |
|
|
|
6965 |
#endif // HAS_RESUME_CONTINUE
|
|
|
6966 |
|
|
|
6967 |
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
|
6968 |
/**
|
|
|
6969 |
* M3: Spindle Clockwise
|
|
|
6970 |
* M4: Spindle Counter-clockwise
|
|
|
6971 |
*
|
|
|
6972 |
* S0 turns off spindle.
|
|
|
6973 |
*
|
|
|
6974 |
* If no speed PWM output is defined then M3/M4 just turns it on.
|
|
|
6975 |
*
|
|
|
6976 |
* At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
|
|
|
6977 |
* Hardware PWM is required. ISRs are too slow.
|
|
|
6978 |
*
|
|
|
6979 |
* NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
|
|
|
6980 |
* No other settings give a PWM signal that goes from 0 to 5 volts.
|
|
|
6981 |
*
|
|
|
6982 |
* The system automatically sets WGM to Mode 1, so no special
|
|
|
6983 |
* initialization is needed.
|
|
|
6984 |
*
|
|
|
6985 |
* WGM bits for timer 2 are automatically set by the system to
|
|
|
6986 |
* Mode 1. This produces an acceptable 0 to 5 volt signal.
|
|
|
6987 |
* No special initialization is needed.
|
|
|
6988 |
*
|
|
|
6989 |
* NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
|
|
|
6990 |
* factors for timers 2, 3, 4, and 5 are acceptable.
|
|
|
6991 |
*
|
|
|
6992 |
* SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
|
|
|
6993 |
* the spindle/laser during power-up or when connecting to the host
|
|
|
6994 |
* (usually goes through a reset which sets all I/O pins to tri-state)
|
|
|
6995 |
*
|
|
|
6996 |
* PWM duty cycle goes from 0 (off) to 255 (always on).
|
|
|
6997 |
*/
|
|
|
6998 |
|
|
|
6999 |
// Wait for spindle to come up to speed
|
|
|
7000 |
inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
|
|
|
7001 |
|
|
|
7002 |
// Wait for spindle to stop turning
|
|
|
7003 |
inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
|
|
|
7004 |
|
|
|
7005 |
/**
|
|
|
7006 |
* ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
|
|
|
7007 |
*
|
|
|
7008 |
* it accepts inputs of 0-255
|
|
|
7009 |
*/
|
|
|
7010 |
|
|
|
7011 |
inline void ocr_val_mode() {
|
|
|
7012 |
uint8_t spindle_laser_power = parser.value_byte();
|
|
|
7013 |
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
|
|
|
7014 |
if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
|
|
|
7015 |
analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
|
|
|
7016 |
}
|
|
|
7017 |
|
|
|
7018 |
inline void gcode_M3_M4(bool is_M3) {
|
|
|
7019 |
|
|
|
7020 |
planner.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
|
|
|
7021 |
#if SPINDLE_DIR_CHANGE
|
|
|
7022 |
const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
|
|
|
7023 |
if (SPINDLE_STOP_ON_DIR_CHANGE \
|
|
|
7024 |
&& READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
|
|
|
7025 |
&& READ(SPINDLE_DIR_PIN) != rotation_dir
|
|
|
7026 |
) {
|
|
|
7027 |
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
|
|
|
7028 |
delay_for_power_down();
|
|
|
7029 |
}
|
|
|
7030 |
WRITE(SPINDLE_DIR_PIN, rotation_dir);
|
|
|
7031 |
#endif
|
|
|
7032 |
|
|
|
7033 |
/**
|
|
|
7034 |
* Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
|
|
|
7035 |
* Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
|
|
|
7036 |
* Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
|
|
|
7037 |
*/
|
|
|
7038 |
#if ENABLED(SPINDLE_LASER_PWM)
|
|
|
7039 |
if (parser.seen('O')) ocr_val_mode();
|
|
|
7040 |
else {
|
|
|
7041 |
const float spindle_laser_power = parser.floatval('S');
|
|
|
7042 |
if (spindle_laser_power == 0) {
|
|
|
7043 |
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
|
|
|
7044 |
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte
|
|
|
7045 |
delay_for_power_down();
|
|
|
7046 |
}
|
|
|
7047 |
else {
|
|
|
7048 |
int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
|
|
|
7049 |
NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
|
|
|
7050 |
if (spindle_laser_power <= SPEED_POWER_MIN)
|
|
|
7051 |
ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // minimum setting
|
|
|
7052 |
if (spindle_laser_power >= SPEED_POWER_MAX)
|
|
|
7053 |
ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // limit to max RPM
|
|
|
7054 |
if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
|
|
|
7055 |
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
|
|
|
7056 |
analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
|
|
|
7057 |
delay_for_power_up();
|
|
|
7058 |
}
|
|
|
7059 |
}
|
|
|
7060 |
#else
|
|
|
7061 |
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
|
|
|
7062 |
delay_for_power_up();
|
|
|
7063 |
#endif
|
|
|
7064 |
}
|
|
|
7065 |
|
|
|
7066 |
/**
|
|
|
7067 |
* M5 turn off spindle
|
|
|
7068 |
*/
|
|
|
7069 |
inline void gcode_M5() {
|
|
|
7070 |
planner.synchronize();
|
|
|
7071 |
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
|
|
|
7072 |
#if ENABLED(SPINDLE_LASER_PWM)
|
|
|
7073 |
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0);
|
|
|
7074 |
#endif
|
|
|
7075 |
delay_for_power_down();
|
|
|
7076 |
}
|
|
|
7077 |
|
|
|
7078 |
#endif // SPINDLE_LASER_ENABLE
|
|
|
7079 |
|
|
|
7080 |
/**
|
|
|
7081 |
* M17: Enable power on all stepper motors
|
|
|
7082 |
*/
|
|
|
7083 |
inline void gcode_M17() {
|
|
|
7084 |
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
|
|
7085 |
enable_all_steppers();
|
|
|
7086 |
}
|
|
|
7087 |
|
|
|
7088 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
7089 |
|
|
|
7090 |
void do_pause_e_move(const float &length, const float &fr) {
|
|
|
7091 |
set_destination_from_current();
|
|
|
7092 |
destination[E_CART] += length / planner.e_factor[active_extruder];
|
|
|
7093 |
planner.buffer_line_kinematic(destination, fr, active_extruder);
|
|
|
7094 |
set_current_from_destination();
|
|
|
7095 |
planner.synchronize();
|
|
|
7096 |
}
|
|
|
7097 |
|
|
|
7098 |
static float resume_position[XYZE];
|
|
|
7099 |
int8_t did_pause_print = 0;
|
|
|
7100 |
|
|
|
7101 |
#if HAS_BUZZER
|
|
|
7102 |
static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
|
|
|
7103 |
static millis_t next_buzz = 0;
|
|
|
7104 |
static int8_t runout_beep = 0;
|
|
|
7105 |
|
|
|
7106 |
if (init) next_buzz = runout_beep = 0;
|
|
|
7107 |
|
|
|
7108 |
const millis_t ms = millis();
|
|
|
7109 |
if (ELAPSED(ms, next_buzz)) {
|
|
|
7110 |
if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
|
|
|
7111 |
next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 1000 : 500);
|
|
|
7112 |
BUZZ(50, 880 - (runout_beep & 1) * 220);
|
|
|
7113 |
runout_beep++;
|
|
|
7114 |
}
|
|
|
7115 |
}
|
|
|
7116 |
}
|
|
|
7117 |
#endif
|
|
|
7118 |
|
|
|
7119 |
/**
|
|
|
7120 |
* Ensure a safe temperature for extrusion
|
|
|
7121 |
*
|
|
|
7122 |
* - Fail if the TARGET temperature is too low
|
|
|
7123 |
* - Display LCD placard with temperature status
|
|
|
7124 |
* - Return when heating is done or aborted
|
|
|
7125 |
*
|
|
|
7126 |
* Returns 'true' if heating was completed, 'false' for abort
|
|
|
7127 |
*/
|
|
|
7128 |
static bool ensure_safe_temperature(const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT) {
|
|
|
7129 |
|
|
|
7130 |
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
7131 |
if (!DEBUGGING(DRYRUN) && thermalManager.targetTooColdToExtrude(active_extruder)) {
|
|
|
7132 |
SERIAL_ERROR_START();
|
|
|
7133 |
SERIAL_ERRORLNPGM(MSG_HOTEND_TOO_COLD);
|
|
|
7134 |
return false;
|
|
|
7135 |
}
|
|
|
7136 |
#endif
|
|
|
7137 |
|
|
|
7138 |
#if ENABLED(ULTIPANEL)
|
|
|
7139 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT, mode);
|
|
|
7140 |
#else
|
|
|
7141 |
UNUSED(mode);
|
|
|
7142 |
#endif
|
|
|
7143 |
|
|
|
7144 |
wait_for_heatup = true; // M108 will clear this
|
|
|
7145 |
while (wait_for_heatup && thermalManager.wait_for_heating(active_extruder)) idle();
|
|
|
7146 |
const bool status = wait_for_heatup;
|
|
|
7147 |
wait_for_heatup = false;
|
|
|
7148 |
|
|
|
7149 |
return status;
|
|
|
7150 |
}
|
|
|
7151 |
|
|
|
7152 |
/**
|
|
|
7153 |
* Load filament into the hotend
|
|
|
7154 |
*
|
|
|
7155 |
* - Fail if the a safe temperature was not reached
|
|
|
7156 |
* - If pausing for confirmation, wait for a click or M108
|
|
|
7157 |
* - Show "wait for load" placard
|
|
|
7158 |
* - Load and purge filament
|
|
|
7159 |
* - Show "Purge more" / "Continue" menu
|
|
|
7160 |
* - Return when "Continue" is selected
|
|
|
7161 |
*
|
|
|
7162 |
* Returns 'true' if load was completed, 'false' for abort
|
|
|
7163 |
*/
|
|
|
7164 |
static bool load_filament(const float &slow_load_length=0, const float &fast_load_length=0, const float &purge_length=0, const int8_t max_beep_count=0,
|
|
|
7165 |
const bool show_lcd=false, const bool pause_for_user=false,
|
|
|
7166 |
const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT
|
|
|
7167 |
) {
|
|
|
7168 |
#if DISABLED(ULTIPANEL)
|
|
|
7169 |
UNUSED(show_lcd);
|
|
|
7170 |
#endif
|
|
|
7171 |
|
|
|
7172 |
if (!ensure_safe_temperature(mode)) {
|
|
|
7173 |
#if ENABLED(ULTIPANEL)
|
|
|
7174 |
if (show_lcd) // Show status screen
|
|
|
7175 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
|
|
7176 |
#endif
|
|
|
7177 |
|
|
|
7178 |
return false;
|
|
|
7179 |
}
|
|
|
7180 |
|
|
|
7181 |
if (pause_for_user) {
|
|
|
7182 |
#if ENABLED(ULTIPANEL)
|
|
|
7183 |
if (show_lcd) // Show "insert filament"
|
|
|
7184 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT, mode);
|
|
|
7185 |
#endif
|
|
|
7186 |
SERIAL_ECHO_START();
|
|
|
7187 |
SERIAL_ECHOLNPGM(MSG_FILAMENT_CHANGE_INSERT);
|
|
|
7188 |
|
|
|
7189 |
#if HAS_BUZZER
|
|
|
7190 |
filament_change_beep(max_beep_count, true);
|
|
|
7191 |
#else
|
|
|
7192 |
UNUSED(max_beep_count);
|
|
|
7193 |
#endif
|
|
|
7194 |
|
|
|
7195 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
7196 |
wait_for_user = true; // LCD click or M108 will clear this
|
|
|
7197 |
while (wait_for_user) {
|
|
|
7198 |
#if HAS_BUZZER
|
|
|
7199 |
filament_change_beep(max_beep_count);
|
|
|
7200 |
#endif
|
|
|
7201 |
idle(true);
|
|
|
7202 |
}
|
|
|
7203 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
7204 |
}
|
|
|
7205 |
|
|
|
7206 |
#if ENABLED(ULTIPANEL)
|
|
|
7207 |
if (show_lcd) // Show "wait for load" message
|
|
|
7208 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD, mode);
|
|
|
7209 |
#endif
|
|
|
7210 |
|
|
|
7211 |
// Slow Load filament
|
|
|
7212 |
if (slow_load_length) do_pause_e_move(slow_load_length, FILAMENT_CHANGE_SLOW_LOAD_FEEDRATE);
|
|
|
7213 |
|
|
|
7214 |
// Fast Load Filament
|
|
|
7215 |
if (fast_load_length) {
|
|
|
7216 |
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
|
|
|
7217 |
const float saved_acceleration = planner.retract_acceleration;
|
|
|
7218 |
planner.retract_acceleration = FILAMENT_CHANGE_FAST_LOAD_ACCEL;
|
|
|
7219 |
#endif
|
|
|
7220 |
|
|
|
7221 |
do_pause_e_move(fast_load_length, FILAMENT_CHANGE_FAST_LOAD_FEEDRATE);
|
|
|
7222 |
|
|
|
7223 |
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
|
|
|
7224 |
planner.retract_acceleration = saved_acceleration;
|
|
|
7225 |
#endif
|
|
|
7226 |
}
|
|
|
7227 |
|
|
|
7228 |
#if ENABLED(ADVANCED_PAUSE_CONTINUOUS_PURGE)
|
|
|
7229 |
|
|
|
7230 |
#if ENABLED(ULTIPANEL)
|
|
|
7231 |
if (show_lcd)
|
|
|
7232 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CONTINUOUS_PURGE);
|
|
|
7233 |
#endif
|
|
|
7234 |
|
|
|
7235 |
wait_for_user = true;
|
|
|
7236 |
for (float purge_count = purge_length; purge_count > 0 && wait_for_user; --purge_count)
|
|
|
7237 |
do_pause_e_move(1, ADVANCED_PAUSE_PURGE_FEEDRATE);
|
|
|
7238 |
wait_for_user = false;
|
|
|
7239 |
|
|
|
7240 |
#else
|
|
|
7241 |
|
|
|
7242 |
do {
|
|
|
7243 |
if (purge_length > 0) {
|
|
|
7244 |
// "Wait for filament purge"
|
|
|
7245 |
#if ENABLED(ULTIPANEL)
|
|
|
7246 |
if (show_lcd)
|
|
|
7247 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_PURGE, mode);
|
|
|
7248 |
#endif
|
|
|
7249 |
|
|
|
7250 |
// Extrude filament to get into hotend
|
|
|
7251 |
do_pause_e_move(purge_length, ADVANCED_PAUSE_PURGE_FEEDRATE);
|
|
|
7252 |
}
|
|
|
7253 |
|
|
|
7254 |
// Show "Purge More" / "Resume" menu and wait for reply
|
|
|
7255 |
#if ENABLED(ULTIPANEL)
|
|
|
7256 |
if (show_lcd) {
|
|
|
7257 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
7258 |
wait_for_user = false;
|
|
|
7259 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION, mode);
|
|
|
7260 |
while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
|
|
|
7261 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
7262 |
}
|
|
|
7263 |
#endif
|
|
|
7264 |
|
|
|
7265 |
// Keep looping if "Purge More" was selected
|
|
|
7266 |
} while (
|
|
|
7267 |
#if ENABLED(ULTIPANEL)
|
|
|
7268 |
show_lcd && advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE
|
|
|
7269 |
#else
|
|
|
7270 |
|
|
|
7271 |
#endif
|
|
|
7272 |
);
|
|
|
7273 |
|
|
|
7274 |
#endif
|
|
|
7275 |
|
|
|
7276 |
return true;
|
|
|
7277 |
}
|
|
|
7278 |
|
|
|
7279 |
/**
|
|
|
7280 |
* Unload filament from the hotend
|
|
|
7281 |
*
|
|
|
7282 |
* - Fail if the a safe temperature was not reached
|
|
|
7283 |
* - Show "wait for unload" placard
|
|
|
7284 |
* - Retract, pause, then unload filament
|
|
|
7285 |
* - Disable E stepper (on most machines)
|
|
|
7286 |
*
|
|
|
7287 |
* Returns 'true' if unload was completed, 'false' for abort
|
|
|
7288 |
*/
|
|
|
7289 |
static bool unload_filament(const float &unload_length, const bool show_lcd=false,
|
|
|
7290 |
const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT
|
|
|
7291 |
) {
|
|
|
7292 |
if (!ensure_safe_temperature(mode)) {
|
|
|
7293 |
#if ENABLED(ULTIPANEL)
|
|
|
7294 |
if (show_lcd) // Show status screen
|
|
|
7295 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
|
|
7296 |
#endif
|
|
|
7297 |
|
|
|
7298 |
return false;
|
|
|
7299 |
}
|
|
|
7300 |
|
|
|
7301 |
#if DISABLED(ULTIPANEL)
|
|
|
7302 |
UNUSED(show_lcd);
|
|
|
7303 |
#else
|
|
|
7304 |
if (show_lcd)
|
|
|
7305 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD, mode);
|
|
|
7306 |
#endif
|
|
|
7307 |
|
|
|
7308 |
// Retract filament
|
|
|
7309 |
do_pause_e_move(-FILAMENT_UNLOAD_RETRACT_LENGTH, PAUSE_PARK_RETRACT_FEEDRATE);
|
|
|
7310 |
|
|
|
7311 |
// Wait for filament to cool
|
|
|
7312 |
safe_delay(FILAMENT_UNLOAD_DELAY);
|
|
|
7313 |
|
|
|
7314 |
// Quickly purge
|
|
|
7315 |
do_pause_e_move(FILAMENT_UNLOAD_RETRACT_LENGTH + FILAMENT_UNLOAD_PURGE_LENGTH, planner.max_feedrate_mm_s[E_AXIS]);
|
|
|
7316 |
|
|
|
7317 |
// Unload filament
|
|
|
7318 |
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
|
|
|
7319 |
const float saved_acceleration = planner.retract_acceleration;
|
|
|
7320 |
planner.retract_acceleration = FILAMENT_CHANGE_UNLOAD_ACCEL;
|
|
|
7321 |
#endif
|
|
|
7322 |
|
|
|
7323 |
do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
|
|
|
7324 |
|
|
|
7325 |
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
|
|
|
7326 |
planner.retract_acceleration = saved_acceleration;
|
|
|
7327 |
#endif
|
|
|
7328 |
|
|
|
7329 |
// Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
|
|
|
7330 |
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
|
|
|
7331 |
disable_e_stepper(active_extruder);
|
|
|
7332 |
safe_delay(100);
|
|
|
7333 |
#endif
|
|
|
7334 |
|
|
|
7335 |
return true;
|
|
|
7336 |
}
|
|
|
7337 |
|
|
|
7338 |
/**
|
|
|
7339 |
* Pause procedure
|
|
|
7340 |
*
|
|
|
7341 |
* - Abort if already paused
|
|
|
7342 |
* - Send host action for pause, if configured
|
|
|
7343 |
* - Abort if TARGET temperature is too low
|
|
|
7344 |
* - Display "wait for start of filament change" (if a length was specified)
|
|
|
7345 |
* - Initial retract, if current temperature is hot enough
|
|
|
7346 |
* - Park the nozzle at the given position
|
|
|
7347 |
* - Call unload_filament (if a length was specified)
|
|
|
7348 |
*
|
|
|
7349 |
* Returns 'true' if pause was completed, 'false' for abort
|
|
|
7350 |
*/
|
|
|
7351 |
static bool pause_print(const float &retract, const point_t &park_point, const float &unload_length=0, const bool show_lcd=false) {
|
|
|
7352 |
if (did_pause_print) return false; // already paused
|
|
|
7353 |
|
|
|
7354 |
#ifdef ACTION_ON_PAUSE
|
|
|
7355 |
SERIAL_ECHOLNPGM("//action:" ACTION_ON_PAUSE);
|
|
|
7356 |
#endif
|
|
|
7357 |
|
|
|
7358 |
if (!DEBUGGING(DRYRUN) && unload_length && thermalManager.targetTooColdToExtrude(active_extruder)) {
|
|
|
7359 |
SERIAL_ERROR_START();
|
|
|
7360 |
SERIAL_ERRORLNPGM(MSG_HOTEND_TOO_COLD);
|
|
|
7361 |
|
|
|
7362 |
#if ENABLED(ULTIPANEL)
|
|
|
7363 |
if (show_lcd) // Show status screen
|
|
|
7364 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
|
|
7365 |
LCD_MESSAGEPGM(MSG_M600_TOO_COLD);
|
|
|
7366 |
#endif
|
|
|
7367 |
|
|
|
7368 |
return false; // unable to reach safe temperature
|
|
|
7369 |
}
|
|
|
7370 |
|
|
|
7371 |
// Indicate that the printer is paused
|
|
|
7372 |
++did_pause_print;
|
|
|
7373 |
|
|
|
7374 |
// Pause the print job and timer
|
|
|
7375 |
#if ENABLED(SDSUPPORT)
|
|
|
7376 |
if (card.sdprinting) {
|
|
|
7377 |
card.pauseSDPrint();
|
|
|
7378 |
++did_pause_print; // Indicate SD pause also
|
|
|
7379 |
}
|
|
|
7380 |
#endif
|
|
|
7381 |
print_job_timer.pause();
|
|
|
7382 |
|
|
|
7383 |
// Save current position
|
|
|
7384 |
COPY(resume_position, current_position);
|
|
|
7385 |
|
|
|
7386 |
// Wait for synchronize steppers
|
|
|
7387 |
planner.synchronize();
|
|
|
7388 |
|
|
|
7389 |
// Initial retract before move to filament change position
|
|
|
7390 |
if (retract && thermalManager.hotEnoughToExtrude(active_extruder))
|
|
|
7391 |
do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
|
|
|
7392 |
|
|
|
7393 |
// Park the nozzle by moving up by z_lift and then moving to (x_pos, y_pos)
|
|
|
7394 |
if (!axis_unhomed_error())
|
|
|
7395 |
Nozzle::park(2, park_point);
|
|
|
7396 |
|
|
|
7397 |
// Unload the filament
|
|
|
7398 |
if (unload_length)
|
|
|
7399 |
unload_filament(unload_length, show_lcd);
|
|
|
7400 |
|
|
|
7401 |
return true;
|
|
|
7402 |
}
|
|
|
7403 |
|
|
|
7404 |
/**
|
|
|
7405 |
* - Show "Insert filament and press button to continue"
|
|
|
7406 |
* - Wait for a click before returning
|
|
|
7407 |
* - Heaters can time out, reheated before accepting a click
|
|
|
7408 |
*
|
|
|
7409 |
* Used by M125 and M600
|
|
|
7410 |
*/
|
|
|
7411 |
static void wait_for_filament_reload(const int8_t max_beep_count=0) {
|
|
|
7412 |
bool nozzle_timed_out = false;
|
|
|
7413 |
|
|
|
7414 |
#if ENABLED(ULTIPANEL)
|
|
|
7415 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
|
|
7416 |
#endif
|
|
|
7417 |
SERIAL_ECHO_START();
|
|
|
7418 |
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT);
|
|
|
7419 |
|
|
|
7420 |
#if HAS_BUZZER
|
|
|
7421 |
filament_change_beep(max_beep_count, true);
|
|
|
7422 |
#endif
|
|
|
7423 |
|
|
|
7424 |
// Start the heater idle timers
|
|
|
7425 |
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
|
|
|
7426 |
|
|
|
7427 |
HOTEND_LOOP()
|
|
|
7428 |
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
|
|
|
7429 |
|
|
|
7430 |
// Wait for filament insert by user and press button
|
|
|
7431 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
7432 |
wait_for_user = true; // LCD click or M108 will clear this
|
|
|
7433 |
while (wait_for_user) {
|
|
|
7434 |
#if HAS_BUZZER
|
|
|
7435 |
filament_change_beep(max_beep_count);
|
|
|
7436 |
#endif
|
|
|
7437 |
|
|
|
7438 |
// If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
|
|
|
7439 |
// re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
|
|
|
7440 |
if (!nozzle_timed_out)
|
|
|
7441 |
HOTEND_LOOP()
|
|
|
7442 |
nozzle_timed_out |= thermalManager.is_heater_idle(e);
|
|
|
7443 |
|
|
|
7444 |
if (nozzle_timed_out) {
|
|
|
7445 |
#if ENABLED(ULTIPANEL)
|
|
|
7446 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
|
|
|
7447 |
#endif
|
|
|
7448 |
SERIAL_ECHO_START();
|
|
|
7449 |
#if ENABLED(ULTIPANEL) && ENABLED(EMERGENCY_PARSER)
|
|
|
7450 |
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT);
|
|
|
7451 |
#elif ENABLED(EMERGENCY_PARSER)
|
|
|
7452 |
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT_M108);
|
|
|
7453 |
#else
|
|
|
7454 |
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT_LCD);
|
|
|
7455 |
#endif
|
|
|
7456 |
|
|
|
7457 |
// Wait for LCD click or M108
|
|
|
7458 |
while (wait_for_user) idle(true);
|
|
|
7459 |
|
|
|
7460 |
// Re-enable the heaters if they timed out
|
|
|
7461 |
HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
|
|
|
7462 |
|
|
|
7463 |
// Wait for the heaters to reach the target temperatures
|
|
|
7464 |
ensure_safe_temperature();
|
|
|
7465 |
|
|
|
7466 |
#if ENABLED(ULTIPANEL)
|
|
|
7467 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
|
|
7468 |
#endif
|
|
|
7469 |
SERIAL_ECHO_START();
|
|
|
7470 |
#if ENABLED(ULTIPANEL) && ENABLED(EMERGENCY_PARSER)
|
|
|
7471 |
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT);
|
|
|
7472 |
#elif ENABLED(EMERGENCY_PARSER)
|
|
|
7473 |
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT_M108);
|
|
|
7474 |
#else
|
|
|
7475 |
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT_LCD);
|
|
|
7476 |
#endif
|
|
|
7477 |
|
|
|
7478 |
// Start the heater idle timers
|
|
|
7479 |
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
|
|
|
7480 |
|
|
|
7481 |
HOTEND_LOOP()
|
|
|
7482 |
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
|
|
|
7483 |
|
|
|
7484 |
wait_for_user = true; // Wait for user to load filament
|
|
|
7485 |
nozzle_timed_out = false;
|
|
|
7486 |
|
|
|
7487 |
#if HAS_BUZZER
|
|
|
7488 |
filament_change_beep(max_beep_count, true);
|
|
|
7489 |
#endif
|
|
|
7490 |
}
|
|
|
7491 |
|
|
|
7492 |
idle(true);
|
|
|
7493 |
}
|
|
|
7494 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
7495 |
}
|
|
|
7496 |
|
|
|
7497 |
/**
|
|
|
7498 |
* Resume or Start print procedure
|
|
|
7499 |
*
|
|
|
7500 |
* - Abort if not paused
|
|
|
7501 |
* - Reset heater idle timers
|
|
|
7502 |
* - Load filament if specified, but only if:
|
|
|
7503 |
* - a nozzle timed out, or
|
|
|
7504 |
* - the nozzle is already heated.
|
|
|
7505 |
* - Display "wait for print to resume"
|
|
|
7506 |
* - Re-prime the nozzle...
|
|
|
7507 |
* - FWRETRACT: Recover/prime from the prior G10.
|
|
|
7508 |
* - !FWRETRACT: Retract by resume_position[E], if negative.
|
|
|
7509 |
* Not sure how this logic comes into use.
|
|
|
7510 |
* - Move the nozzle back to resume_position
|
|
|
7511 |
* - Sync the planner E to resume_position[E]
|
|
|
7512 |
* - Send host action for resume, if configured
|
|
|
7513 |
* - Resume the current SD print job, if any
|
|
|
7514 |
*/
|
|
|
7515 |
static void resume_print(const float &slow_load_length=0, const float &fast_load_length=0, const float &purge_length=ADVANCED_PAUSE_PURGE_LENGTH, const int8_t max_beep_count=0) {
|
|
|
7516 |
if (!did_pause_print) return;
|
|
|
7517 |
|
|
|
7518 |
// Re-enable the heaters if they timed out
|
|
|
7519 |
bool nozzle_timed_out = false;
|
|
|
7520 |
HOTEND_LOOP() {
|
|
|
7521 |
nozzle_timed_out |= thermalManager.is_heater_idle(e);
|
|
|
7522 |
thermalManager.reset_heater_idle_timer(e);
|
|
|
7523 |
}
|
|
|
7524 |
|
|
|
7525 |
if (nozzle_timed_out || thermalManager.hotEnoughToExtrude(active_extruder)) {
|
|
|
7526 |
// Load the new filament
|
|
|
7527 |
load_filament(slow_load_length, fast_load_length, purge_length, max_beep_count, true, nozzle_timed_out);
|
|
|
7528 |
}
|
|
|
7529 |
|
|
|
7530 |
#if ENABLED(ULTIPANEL)
|
|
|
7531 |
// "Wait for print to resume"
|
|
|
7532 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
|
|
|
7533 |
#endif
|
|
|
7534 |
|
|
|
7535 |
// Intelligent resuming
|
|
|
7536 |
#if ENABLED(FWRETRACT)
|
|
|
7537 |
// If retracted before goto pause
|
|
|
7538 |
if (fwretract.retracted[active_extruder])
|
|
|
7539 |
do_pause_e_move(-fwretract.retract_length, fwretract.retract_feedrate_mm_s);
|
|
|
7540 |
#endif
|
|
|
7541 |
|
|
|
7542 |
// If resume_position is negative
|
|
|
7543 |
if (resume_position[E_CART] < 0) do_pause_e_move(resume_position[E_CART], PAUSE_PARK_RETRACT_FEEDRATE);
|
|
|
7544 |
|
|
|
7545 |
// Move XY to starting position, then Z
|
|
|
7546 |
do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], NOZZLE_PARK_XY_FEEDRATE);
|
|
|
7547 |
|
|
|
7548 |
// Set Z_AXIS to saved position
|
|
|
7549 |
do_blocking_move_to_z(resume_position[Z_AXIS], NOZZLE_PARK_Z_FEEDRATE);
|
|
|
7550 |
|
|
|
7551 |
// Now all extrusion positions are resumed and ready to be confirmed
|
|
|
7552 |
// Set extruder to saved position
|
|
|
7553 |
planner.set_e_position_mm((destination[E_CART] = current_position[E_CART] = resume_position[E_CART]));
|
|
|
7554 |
|
|
|
7555 |
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
7556 |
runout.reset();
|
|
|
7557 |
#endif
|
|
|
7558 |
|
|
|
7559 |
#if ENABLED(ULTIPANEL)
|
|
|
7560 |
// Show status screen
|
|
|
7561 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
|
|
7562 |
#endif
|
|
|
7563 |
|
|
|
7564 |
#ifdef ACTION_ON_RESUME
|
|
|
7565 |
SERIAL_ECHOLNPGM("//action:" ACTION_ON_RESUME);
|
|
|
7566 |
#endif
|
|
|
7567 |
|
|
|
7568 |
--did_pause_print;
|
|
|
7569 |
|
|
|
7570 |
#if ENABLED(SDSUPPORT)
|
|
|
7571 |
if (did_pause_print) {
|
|
|
7572 |
card.startFileprint();
|
|
|
7573 |
--did_pause_print;
|
|
|
7574 |
}
|
|
|
7575 |
#endif
|
|
|
7576 |
}
|
|
|
7577 |
|
|
|
7578 |
#endif // ADVANCED_PAUSE_FEATURE
|
|
|
7579 |
|
|
|
7580 |
#if ENABLED(SDSUPPORT)
|
|
|
7581 |
|
|
|
7582 |
/**
|
|
|
7583 |
* M20: List SD card to serial output
|
|
|
7584 |
*/
|
|
|
7585 |
inline void gcode_M20() {
|
|
|
7586 |
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
|
|
7587 |
card.ls();
|
|
|
7588 |
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
|
|
7589 |
}
|
|
|
7590 |
|
|
|
7591 |
/**
|
|
|
7592 |
* M21: Init SD Card
|
|
|
7593 |
*/
|
|
|
7594 |
inline void gcode_M21() { card.initsd(); }
|
|
|
7595 |
|
|
|
7596 |
/**
|
|
|
7597 |
* M22: Release SD Card
|
|
|
7598 |
*/
|
|
|
7599 |
inline void gcode_M22() { card.release(); }
|
|
|
7600 |
|
|
|
7601 |
/**
|
|
|
7602 |
* M23: Open a file
|
|
|
7603 |
*/
|
|
|
7604 |
inline void gcode_M23() {
|
|
|
7605 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
7606 |
card.removeJobRecoveryFile();
|
|
|
7607 |
#endif
|
|
|
7608 |
// Simplify3D includes the size, so zero out all spaces (#7227)
|
|
|
7609 |
for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
|
|
|
7610 |
card.openFile(parser.string_arg, true);
|
|
|
7611 |
}
|
|
|
7612 |
|
|
|
7613 |
/**
|
|
|
7614 |
* M24: Start or Resume SD Print
|
|
|
7615 |
*/
|
|
|
7616 |
inline void gcode_M24() {
|
|
|
7617 |
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
|
7618 |
resume_print();
|
|
|
7619 |
#endif
|
|
|
7620 |
|
|
|
7621 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
7622 |
if (parser.seenval('S')) card.setIndex(parser.value_long());
|
|
|
7623 |
#endif
|
|
|
7624 |
|
|
|
7625 |
card.startFileprint();
|
|
|
7626 |
|
|
|
7627 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
7628 |
if (parser.seenval('T'))
|
|
|
7629 |
print_job_timer.resume(parser.value_long());
|
|
|
7630 |
else
|
|
|
7631 |
#endif
|
|
|
7632 |
print_job_timer.start();
|
|
|
7633 |
}
|
|
|
7634 |
|
|
|
7635 |
/**
|
|
|
7636 |
* M25: Pause SD Print
|
|
|
7637 |
*/
|
|
|
7638 |
inline void gcode_M25() {
|
|
|
7639 |
card.pauseSDPrint();
|
|
|
7640 |
print_job_timer.pause();
|
|
|
7641 |
|
|
|
7642 |
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
|
7643 |
enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
|
|
|
7644 |
#endif
|
|
|
7645 |
}
|
|
|
7646 |
|
|
|
7647 |
/**
|
|
|
7648 |
* M26: Set SD Card file index
|
|
|
7649 |
*/
|
|
|
7650 |
inline void gcode_M26() {
|
|
|
7651 |
if (card.cardOK && parser.seenval('S'))
|
|
|
7652 |
card.setIndex(parser.value_long());
|
|
|
7653 |
}
|
|
|
7654 |
|
|
|
7655 |
/**
|
|
|
7656 |
* M27: Get SD Card status
|
|
|
7657 |
* OR, with 'S<seconds>' set the SD status auto-report interval. (Requires AUTO_REPORT_SD_STATUS)
|
|
|
7658 |
* OR, with 'C' get the current filename.
|
|
|
7659 |
*/
|
|
|
7660 |
inline void gcode_M27() {
|
|
|
7661 |
if (parser.seen('C')) {
|
|
|
7662 |
SERIAL_ECHOPGM("Current file: ");
|
|
|
7663 |
card.printFilename();
|
|
|
7664 |
}
|
|
|
7665 |
|
|
|
7666 |
#if ENABLED(AUTO_REPORT_SD_STATUS)
|
|
|
7667 |
else if (parser.seenval('S'))
|
|
|
7668 |
card.set_auto_report_interval(parser.value_byte());
|
|
|
7669 |
#endif
|
|
|
7670 |
|
|
|
7671 |
else
|
|
|
7672 |
card.getStatus();
|
|
|
7673 |
}
|
|
|
7674 |
|
|
|
7675 |
/**
|
|
|
7676 |
* M28: Start SD Write
|
|
|
7677 |
*/
|
|
|
7678 |
inline void gcode_M28() { card.openFile(parser.string_arg, false); }
|
|
|
7679 |
|
|
|
7680 |
/**
|
|
|
7681 |
* M29: Stop SD Write
|
|
|
7682 |
* Processed in write to file routine above
|
|
|
7683 |
*/
|
|
|
7684 |
inline void gcode_M29() {
|
|
|
7685 |
// card.saving = false;
|
|
|
7686 |
}
|
|
|
7687 |
|
|
|
7688 |
/**
|
|
|
7689 |
* M30 <filename>: Delete SD Card file
|
|
|
7690 |
*/
|
|
|
7691 |
inline void gcode_M30() {
|
|
|
7692 |
if (card.cardOK) {
|
|
|
7693 |
card.closefile();
|
|
|
7694 |
card.removeFile(parser.string_arg);
|
|
|
7695 |
}
|
|
|
7696 |
}
|
|
|
7697 |
|
|
|
7698 |
#endif // SDSUPPORT
|
|
|
7699 |
|
|
|
7700 |
/**
|
|
|
7701 |
* M31: Get the time since the start of SD Print (or last M109)
|
|
|
7702 |
*/
|
|
|
7703 |
inline void gcode_M31() {
|
|
|
7704 |
char buffer[21];
|
|
|
7705 |
duration_t elapsed = print_job_timer.duration();
|
|
|
7706 |
elapsed.toString(buffer);
|
|
|
7707 |
lcd_setstatus(buffer);
|
|
|
7708 |
|
|
|
7709 |
SERIAL_ECHO_START();
|
|
|
7710 |
SERIAL_ECHOLNPAIR("Print time: ", buffer);
|
|
|
7711 |
}
|
|
|
7712 |
|
|
|
7713 |
#if ENABLED(SDSUPPORT)
|
|
|
7714 |
|
|
|
7715 |
/**
|
|
|
7716 |
* M32: Select file and start SD Print
|
|
|
7717 |
*
|
|
|
7718 |
* Examples:
|
|
|
7719 |
*
|
|
|
7720 |
* M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO
|
|
|
7721 |
* M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure
|
|
|
7722 |
* M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60
|
|
|
7723 |
*
|
|
|
7724 |
*/
|
|
|
7725 |
inline void gcode_M32() {
|
|
|
7726 |
if (card.sdprinting) planner.synchronize();
|
|
|
7727 |
|
|
|
7728 |
if (card.cardOK) {
|
|
|
7729 |
const bool call_procedure = parser.boolval('P');
|
|
|
7730 |
|
|
|
7731 |
card.openFile(parser.string_arg, true, call_procedure);
|
|
|
7732 |
|
|
|
7733 |
if (parser.seenval('S')) card.setIndex(parser.value_long());
|
|
|
7734 |
|
|
|
7735 |
card.startFileprint();
|
|
|
7736 |
|
|
|
7737 |
// Procedure calls count as normal print time.
|
|
|
7738 |
if (!call_procedure) print_job_timer.start();
|
|
|
7739 |
}
|
|
|
7740 |
}
|
|
|
7741 |
|
|
|
7742 |
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
|
7743 |
|
|
|
7744 |
/**
|
|
|
7745 |
* M33: Get the long full path of a file or folder
|
|
|
7746 |
*
|
|
|
7747 |
* Parameters:
|
|
|
7748 |
* <dospath> Case-insensitive DOS-style path to a file or folder
|
|
|
7749 |
*
|
|
|
7750 |
* Example:
|
|
|
7751 |
* M33 miscel~1/armchair/armcha~1.gco
|
|
|
7752 |
*
|
|
|
7753 |
* Output:
|
|
|
7754 |
* /Miscellaneous/Armchair/Armchair.gcode
|
|
|
7755 |
*/
|
|
|
7756 |
inline void gcode_M33() {
|
|
|
7757 |
card.printLongPath(parser.string_arg);
|
|
|
7758 |
}
|
|
|
7759 |
|
|
|
7760 |
#endif
|
|
|
7761 |
|
|
|
7762 |
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
|
|
|
7763 |
/**
|
|
|
7764 |
* M34: Set SD Card Sorting Options
|
|
|
7765 |
*/
|
|
|
7766 |
inline void gcode_M34() {
|
|
|
7767 |
if (parser.seen('S')) card.setSortOn(parser.value_bool());
|
|
|
7768 |
if (parser.seenval('F')) {
|
|
|
7769 |
const int v = parser.value_long();
|
|
|
7770 |
card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
|
|
|
7771 |
}
|
|
|
7772 |
//if (parser.seen('R')) card.setSortReverse(parser.value_bool());
|
|
|
7773 |
}
|
|
|
7774 |
#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
|
|
|
7775 |
|
|
|
7776 |
/**
|
|
|
7777 |
* M928: Start SD Write
|
|
|
7778 |
*/
|
|
|
7779 |
inline void gcode_M928() {
|
|
|
7780 |
card.openLogFile(parser.string_arg);
|
|
|
7781 |
}
|
|
|
7782 |
|
|
|
7783 |
#endif // SDSUPPORT
|
|
|
7784 |
|
|
|
7785 |
/**
|
|
|
7786 |
* Sensitive pin test for M42, M226
|
|
|
7787 |
*/
|
|
|
7788 |
static bool pin_is_protected(const pin_t pin) {
|
|
|
7789 |
static const pin_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
|
|
|
7790 |
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
|
|
|
7791 |
if (pin == (pin_t)pgm_read_byte(&sensitive_pins[i])) return true;
|
|
|
7792 |
return false;
|
|
|
7793 |
}
|
|
|
7794 |
|
|
|
7795 |
inline void protected_pin_err() {
|
|
|
7796 |
SERIAL_ERROR_START();
|
|
|
7797 |
SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
|
|
|
7798 |
}
|
|
|
7799 |
|
|
|
7800 |
/**
|
|
|
7801 |
* M42: Change pin status via GCode
|
|
|
7802 |
*
|
|
|
7803 |
* P<pin> Pin number (LED if omitted)
|
|
|
7804 |
* S<byte> Pin status from 0 - 255
|
|
|
7805 |
* I Flag to ignore Marlin's pin protection
|
|
|
7806 |
*/
|
|
|
7807 |
inline void gcode_M42() {
|
|
|
7808 |
if (!parser.seenval('S')) return;
|
|
|
7809 |
const byte pin_status = parser.value_byte();
|
|
|
7810 |
|
|
|
7811 |
const pin_t pin_number = parser.byteval('P', LED_PIN);
|
|
|
7812 |
if (pin_number < 0) return;
|
|
|
7813 |
|
|
|
7814 |
if (!parser.boolval('I') && pin_is_protected(pin_number)) return protected_pin_err();
|
|
|
7815 |
|
|
|
7816 |
pinMode(pin_number, OUTPUT);
|
|
|
7817 |
digitalWrite(pin_number, pin_status);
|
|
|
7818 |
analogWrite(pin_number, pin_status);
|
|
|
7819 |
|
|
|
7820 |
#if FAN_COUNT > 0
|
|
|
7821 |
switch (pin_number) {
|
|
|
7822 |
#if HAS_FAN0
|
|
|
7823 |
case FAN_PIN: fanSpeeds[0] = pin_status; break;
|
|
|
7824 |
#endif
|
|
|
7825 |
#if HAS_FAN1
|
|
|
7826 |
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
|
|
|
7827 |
#endif
|
|
|
7828 |
#if HAS_FAN2
|
|
|
7829 |
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
|
|
|
7830 |
#endif
|
|
|
7831 |
}
|
|
|
7832 |
#endif
|
|
|
7833 |
}
|
|
|
7834 |
|
|
|
7835 |
#if ENABLED(PINS_DEBUGGING)
|
|
|
7836 |
|
|
|
7837 |
#include "pinsDebug.h"
|
|
|
7838 |
|
|
|
7839 |
inline void toggle_pins() {
|
|
|
7840 |
const bool ignore_protection = parser.boolval('I');
|
|
|
7841 |
const int repeat = parser.intval('R', 1),
|
|
|
7842 |
start = parser.intval('S'),
|
|
|
7843 |
end = parser.intval('L', NUM_DIGITAL_PINS - 1),
|
|
|
7844 |
wait = parser.intval('W', 500);
|
|
|
7845 |
|
|
|
7846 |
for (uint8_t pin = start; pin <= end; pin++) {
|
|
|
7847 |
//report_pin_state_extended(pin, ignore_protection, false);
|
|
|
7848 |
|
|
|
7849 |
if (!ignore_protection && pin_is_protected(pin)) {
|
|
|
7850 |
report_pin_state_extended(pin, ignore_protection, true, "Untouched ");
|
|
|
7851 |
SERIAL_EOL();
|
|
|
7852 |
}
|
|
|
7853 |
else {
|
|
|
7854 |
report_pin_state_extended(pin, ignore_protection, true, "Pulsing ");
|
|
|
7855 |
#if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
|
|
|
7856 |
if (pin == TEENSY_E2) {
|
|
|
7857 |
SET_OUTPUT(TEENSY_E2);
|
|
|
7858 |
for (int16_t j = 0; j < repeat; j++) {
|
|
|
7859 |
WRITE(TEENSY_E2, LOW); safe_delay(wait);
|
|
|
7860 |
WRITE(TEENSY_E2, HIGH); safe_delay(wait);
|
|
|
7861 |
WRITE(TEENSY_E2, LOW); safe_delay(wait);
|
|
|
7862 |
}
|
|
|
7863 |
}
|
|
|
7864 |
else if (pin == TEENSY_E3) {
|
|
|
7865 |
SET_OUTPUT(TEENSY_E3);
|
|
|
7866 |
for (int16_t j = 0; j < repeat; j++) {
|
|
|
7867 |
WRITE(TEENSY_E3, LOW); safe_delay(wait);
|
|
|
7868 |
WRITE(TEENSY_E3, HIGH); safe_delay(wait);
|
|
|
7869 |
WRITE(TEENSY_E3, LOW); safe_delay(wait);
|
|
|
7870 |
}
|
|
|
7871 |
}
|
|
|
7872 |
else
|
|
|
7873 |
#endif
|
|
|
7874 |
{
|
|
|
7875 |
pinMode(pin, OUTPUT);
|
|
|
7876 |
for (int16_t j = 0; j < repeat; j++) {
|
|
|
7877 |
digitalWrite(pin, 0); safe_delay(wait);
|
|
|
7878 |
digitalWrite(pin, 1); safe_delay(wait);
|
|
|
7879 |
digitalWrite(pin, 0); safe_delay(wait);
|
|
|
7880 |
}
|
|
|
7881 |
}
|
|
|
7882 |
|
|
|
7883 |
}
|
|
|
7884 |
SERIAL_EOL();
|
|
|
7885 |
}
|
|
|
7886 |
SERIAL_ECHOLNPGM("Done.");
|
|
|
7887 |
|
|
|
7888 |
} // toggle_pins
|
|
|
7889 |
|
|
|
7890 |
inline void servo_probe_test() {
|
|
|
7891 |
#if !(NUM_SERVOS > 0 && HAS_SERVO_0)
|
|
|
7892 |
|
|
|
7893 |
SERIAL_ERROR_START();
|
|
|
7894 |
SERIAL_ERRORLNPGM("SERVO not setup");
|
|
|
7895 |
|
|
|
7896 |
#elif !HAS_Z_SERVO_PROBE
|
|
|
7897 |
|
|
|
7898 |
SERIAL_ERROR_START();
|
|
|
7899 |
SERIAL_ERRORLNPGM("Z_PROBE_SERVO_NR not setup");
|
|
|
7900 |
|
|
|
7901 |
#else // HAS_Z_SERVO_PROBE
|
|
|
7902 |
|
|
|
7903 |
const uint8_t probe_index = parser.byteval('P', Z_PROBE_SERVO_NR);
|
|
|
7904 |
|
|
|
7905 |
SERIAL_PROTOCOLLNPGM("Servo probe test");
|
|
|
7906 |
SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
|
|
|
7907 |
SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
|
|
|
7908 |
SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
|
|
|
7909 |
|
|
|
7910 |
bool probe_inverting;
|
|
|
7911 |
|
|
|
7912 |
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
|
|
7913 |
|
|
|
7914 |
#define PROBE_TEST_PIN Z_MIN_PIN
|
|
|
7915 |
|
|
|
7916 |
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
|
|
|
7917 |
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
|
|
|
7918 |
SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
|
|
|
7919 |
|
|
|
7920 |
#if Z_MIN_ENDSTOP_INVERTING
|
|
|
7921 |
SERIAL_PROTOCOLLNPGM("true");
|
|
|
7922 |
#else
|
|
|
7923 |
SERIAL_PROTOCOLLNPGM("false");
|
|
|
7924 |
#endif
|
|
|
7925 |
|
|
|
7926 |
probe_inverting = Z_MIN_ENDSTOP_INVERTING;
|
|
|
7927 |
|
|
|
7928 |
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
|
7929 |
|
|
|
7930 |
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
|
|
|
7931 |
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
|
|
|
7932 |
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
|
|
|
7933 |
SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
|
|
|
7934 |
|
|
|
7935 |
#if Z_MIN_PROBE_ENDSTOP_INVERTING
|
|
|
7936 |
SERIAL_PROTOCOLLNPGM("true");
|
|
|
7937 |
#else
|
|
|
7938 |
SERIAL_PROTOCOLLNPGM("false");
|
|
|
7939 |
#endif
|
|
|
7940 |
|
|
|
7941 |
probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
|
|
|
7942 |
|
|
|
7943 |
#endif
|
|
|
7944 |
|
|
|
7945 |
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
|
|
|
7946 |
SET_INPUT_PULLUP(PROBE_TEST_PIN);
|
|
|
7947 |
bool deploy_state, stow_state;
|
|
|
7948 |
for (uint8_t i = 0; i < 4; i++) {
|
|
|
7949 |
MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
|
|
|
7950 |
safe_delay(500);
|
|
|
7951 |
deploy_state = READ(PROBE_TEST_PIN);
|
|
|
7952 |
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
|
|
|
7953 |
safe_delay(500);
|
|
|
7954 |
stow_state = READ(PROBE_TEST_PIN);
|
|
|
7955 |
}
|
|
|
7956 |
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
|
|
|
7957 |
|
|
|
7958 |
if (deploy_state != stow_state) {
|
|
|
7959 |
SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
|
|
|
7960 |
if (deploy_state) {
|
|
|
7961 |
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
|
|
|
7962 |
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
|
|
|
7963 |
}
|
|
|
7964 |
else {
|
|
|
7965 |
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
|
|
|
7966 |
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
|
|
|
7967 |
}
|
|
|
7968 |
#if ENABLED(BLTOUCH)
|
|
|
7969 |
SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
|
|
|
7970 |
#endif
|
|
|
7971 |
|
|
|
7972 |
}
|
|
|
7973 |
else { // measure active signal length
|
|
|
7974 |
MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
|
|
|
7975 |
safe_delay(500);
|
|
|
7976 |
SERIAL_PROTOCOLLNPGM("please trigger probe");
|
|
|
7977 |
uint16_t probe_counter = 0;
|
|
|
7978 |
|
|
|
7979 |
// Allow 30 seconds max for operator to trigger probe
|
|
|
7980 |
for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
|
|
|
7981 |
|
|
|
7982 |
safe_delay(2);
|
|
|
7983 |
|
|
|
7984 |
if (0 == j % (500 * 1)) reset_stepper_timeout(); // Keep steppers powered
|
|
|
7985 |
|
|
|
7986 |
if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
|
|
|
7987 |
|
|
|
7988 |
for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
|
|
|
7989 |
safe_delay(2);
|
|
|
7990 |
|
|
|
7991 |
if (probe_counter == 50)
|
|
|
7992 |
SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
|
|
|
7993 |
else if (probe_counter >= 2)
|
|
|
7994 |
SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
|
|
|
7995 |
else
|
|
|
7996 |
SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
|
|
|
7997 |
|
|
|
7998 |
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
|
|
|
7999 |
|
|
|
8000 |
} // pulse detected
|
|
|
8001 |
|
|
|
8002 |
} // for loop waiting for trigger
|
|
|
8003 |
|
|
|
8004 |
if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
|
|
|
8005 |
|
|
|
8006 |
} // measure active signal length
|
|
|
8007 |
|
|
|
8008 |
#endif
|
|
|
8009 |
|
|
|
8010 |
} // servo_probe_test
|
|
|
8011 |
|
|
|
8012 |
/**
|
|
|
8013 |
* M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
|
|
|
8014 |
*
|
|
|
8015 |
* M43 - report name and state of pin(s)
|
|
|
8016 |
* P<pin> Pin to read or watch. If omitted, reads all pins.
|
|
|
8017 |
* I Flag to ignore Marlin's pin protection.
|
|
|
8018 |
*
|
|
|
8019 |
* M43 W - Watch pins -reporting changes- until reset, click, or M108.
|
|
|
8020 |
* P<pin> Pin to read or watch. If omitted, read/watch all pins.
|
|
|
8021 |
* I Flag to ignore Marlin's pin protection.
|
|
|
8022 |
*
|
|
|
8023 |
* M43 E<bool> - Enable / disable background endstop monitoring
|
|
|
8024 |
* - Machine continues to operate
|
|
|
8025 |
* - Reports changes to endstops
|
|
|
8026 |
* - Toggles LED_PIN when an endstop changes
|
|
|
8027 |
* - Can not reliably catch the 5mS pulse from BLTouch type probes
|
|
|
8028 |
*
|
|
|
8029 |
* M43 T - Toggle pin(s) and report which pin is being toggled
|
|
|
8030 |
* S<pin> - Start Pin number. If not given, will default to 0
|
|
|
8031 |
* L<pin> - End Pin number. If not given, will default to last pin defined for this board
|
|
|
8032 |
* I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
|
|
|
8033 |
* R - Repeat pulses on each pin this number of times before continueing to next pin
|
|
|
8034 |
* W - Wait time (in miliseconds) between pulses. If not given will default to 500
|
|
|
8035 |
*
|
|
|
8036 |
* M43 S - Servo probe test
|
|
|
8037 |
* P<index> - Probe index (optional - defaults to 0
|
|
|
8038 |
*/
|
|
|
8039 |
inline void gcode_M43() {
|
|
|
8040 |
|
|
|
8041 |
if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
|
|
|
8042 |
toggle_pins();
|
|
|
8043 |
return;
|
|
|
8044 |
}
|
|
|
8045 |
|
|
|
8046 |
// Enable or disable endstop monitoring
|
|
|
8047 |
if (parser.seen('E')) {
|
|
|
8048 |
endstops.monitor_flag = parser.value_bool();
|
|
|
8049 |
SERIAL_PROTOCOLPGM("endstop monitor ");
|
|
|
8050 |
serialprintPGM(endstops.monitor_flag ? PSTR("en") : PSTR("dis"));
|
|
|
8051 |
SERIAL_PROTOCOLLNPGM("abled");
|
|
|
8052 |
return;
|
|
|
8053 |
}
|
|
|
8054 |
|
|
|
8055 |
if (parser.seen('S')) {
|
|
|
8056 |
servo_probe_test();
|
|
|
8057 |
return;
|
|
|
8058 |
}
|
|
|
8059 |
|
|
|
8060 |
// Get the range of pins to test or watch
|
|
|
8061 |
const pin_t first_pin = parser.byteval('P'),
|
|
|
8062 |
last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
|
|
|
8063 |
|
|
|
8064 |
if (first_pin > last_pin) return;
|
|
|
8065 |
|
|
|
8066 |
const bool ignore_protection = parser.boolval('I');
|
|
|
8067 |
|
|
|
8068 |
// Watch until click, M108, or reset
|
|
|
8069 |
if (parser.boolval('W')) {
|
|
|
8070 |
SERIAL_PROTOCOLLNPGM("Watching pins");
|
|
|
8071 |
byte pin_state[last_pin - first_pin + 1];
|
|
|
8072 |
for (pin_t pin = first_pin; pin <= last_pin; pin++) {
|
|
|
8073 |
if (!ignore_protection && pin_is_protected(pin)) continue;
|
|
|
8074 |
pinMode(pin, INPUT_PULLUP);
|
|
|
8075 |
delay(1);
|
|
|
8076 |
/*
|
|
|
8077 |
if (IS_ANALOG(pin))
|
|
|
8078 |
pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
|
|
|
8079 |
else
|
|
|
8080 |
//*/
|
|
|
8081 |
pin_state[pin - first_pin] = digitalRead(pin);
|
|
|
8082 |
}
|
|
|
8083 |
|
|
|
8084 |
#if HAS_RESUME_CONTINUE
|
|
|
8085 |
wait_for_user = true;
|
|
|
8086 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
8087 |
#endif
|
|
|
8088 |
|
|
|
8089 |
for (;;) {
|
|
|
8090 |
for (pin_t pin = first_pin; pin <= last_pin; pin++) {
|
|
|
8091 |
if (!ignore_protection && pin_is_protected(pin)) continue;
|
|
|
8092 |
const byte val =
|
|
|
8093 |
/*
|
|
|
8094 |
IS_ANALOG(pin)
|
|
|
8095 |
? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
|
|
|
8096 |
:
|
|
|
8097 |
//*/
|
|
|
8098 |
digitalRead(pin);
|
|
|
8099 |
if (val != pin_state[pin - first_pin]) {
|
|
|
8100 |
report_pin_state_extended(pin, ignore_protection, false);
|
|
|
8101 |
pin_state[pin - first_pin] = val;
|
|
|
8102 |
}
|
|
|
8103 |
}
|
|
|
8104 |
|
|
|
8105 |
#if HAS_RESUME_CONTINUE
|
|
|
8106 |
if (!wait_for_user) {
|
|
|
8107 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
8108 |
break;
|
|
|
8109 |
}
|
|
|
8110 |
#endif
|
|
|
8111 |
|
|
|
8112 |
safe_delay(200);
|
|
|
8113 |
}
|
|
|
8114 |
return;
|
|
|
8115 |
}
|
|
|
8116 |
|
|
|
8117 |
// Report current state of selected pin(s)
|
|
|
8118 |
for (pin_t pin = first_pin; pin <= last_pin; pin++)
|
|
|
8119 |
report_pin_state_extended(pin, ignore_protection, true);
|
|
|
8120 |
}
|
|
|
8121 |
|
|
|
8122 |
#endif // PINS_DEBUGGING
|
|
|
8123 |
|
|
|
8124 |
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
8125 |
|
|
|
8126 |
/**
|
|
|
8127 |
* M48: Z probe repeatability measurement function.
|
|
|
8128 |
*
|
|
|
8129 |
* Usage:
|
|
|
8130 |
* M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>
|
|
|
8131 |
* P = Number of sampled points (4-50, default 10)
|
|
|
8132 |
* X = Sample X position
|
|
|
8133 |
* Y = Sample Y position
|
|
|
8134 |
* V = Verbose level (0-4, default=1)
|
|
|
8135 |
* E = Engage Z probe for each reading
|
|
|
8136 |
* L = Number of legs of movement before probe
|
|
|
8137 |
* S = Schizoid (Or Star if you prefer)
|
|
|
8138 |
*
|
|
|
8139 |
* This function requires the machine to be homed before invocation.
|
|
|
8140 |
*/
|
|
|
8141 |
inline void gcode_M48() {
|
|
|
8142 |
|
|
|
8143 |
if (axis_unhomed_error()) return;
|
|
|
8144 |
|
|
|
8145 |
const int8_t verbose_level = parser.byteval('V', 1);
|
|
|
8146 |
if (!WITHIN(verbose_level, 0, 4)) {
|
|
|
8147 |
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
|
|
|
8148 |
return;
|
|
|
8149 |
}
|
|
|
8150 |
|
|
|
8151 |
if (verbose_level > 0)
|
|
|
8152 |
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
|
|
|
8153 |
|
|
|
8154 |
const int8_t n_samples = parser.byteval('P', 10);
|
|
|
8155 |
if (!WITHIN(n_samples, 4, 50)) {
|
|
|
8156 |
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
|
|
|
8157 |
return;
|
|
|
8158 |
}
|
|
|
8159 |
|
|
|
8160 |
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
|
|
|
8161 |
|
|
|
8162 |
float X_current = current_position[X_AXIS],
|
|
|
8163 |
Y_current = current_position[Y_AXIS];
|
|
|
8164 |
|
|
|
8165 |
const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
|
8166 |
Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
8167 |
|
|
|
8168 |
if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
|
|
|
8169 |
SERIAL_PROTOCOLLNPGM("? (X,Y) out of bounds.");
|
|
|
8170 |
return;
|
|
|
8171 |
}
|
|
|
8172 |
|
|
|
8173 |
bool seen_L = parser.seen('L');
|
|
|
8174 |
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
|
|
|
8175 |
if (n_legs > 15) {
|
|
|
8176 |
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
|
|
|
8177 |
return;
|
|
|
8178 |
}
|
|
|
8179 |
if (n_legs == 1) n_legs = 2;
|
|
|
8180 |
|
|
|
8181 |
const bool schizoid_flag = parser.boolval('S');
|
|
|
8182 |
if (schizoid_flag && !seen_L) n_legs = 7;
|
|
|
8183 |
|
|
|
8184 |
/**
|
|
|
8185 |
* Now get everything to the specified probe point So we can safely do a
|
|
|
8186 |
* probe to get us close to the bed. If the Z-Axis is far from the bed,
|
|
|
8187 |
* we don't want to use that as a starting point for each probe.
|
|
|
8188 |
*/
|
|
|
8189 |
if (verbose_level > 2)
|
|
|
8190 |
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
|
|
|
8191 |
|
|
|
8192 |
// Disable bed level correction in M48 because we want the raw data when we probe
|
|
|
8193 |
|
|
|
8194 |
#if HAS_LEVELING
|
|
|
8195 |
const bool was_enabled = planner.leveling_active;
|
|
|
8196 |
set_bed_leveling_enabled(false);
|
|
|
8197 |
#endif
|
|
|
8198 |
|
|
|
8199 |
setup_for_endstop_or_probe_move();
|
|
|
8200 |
|
|
|
8201 |
float mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
|
|
|
8202 |
|
|
|
8203 |
// Move to the first point, deploy, and probe
|
|
|
8204 |
const float t = probe_pt(X_probe_location, Y_probe_location, raise_after, verbose_level);
|
|
|
8205 |
bool probing_good = !isnan(t);
|
|
|
8206 |
|
|
|
8207 |
if (probing_good) {
|
|
|
8208 |
randomSeed(millis());
|
|
|
8209 |
|
|
|
8210 |
for (uint8_t n = 0; n < n_samples; n++) {
|
|
|
8211 |
if (n_legs) {
|
|
|
8212 |
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
|
8213 |
float angle = random(0.0, 360.0);
|
|
|
8214 |
const float radius = random(
|
|
|
8215 |
#if ENABLED(DELTA)
|
|
|
8216 |
0.1250000000 * (DELTA_PRINTABLE_RADIUS),
|
|
|
8217 |
0.3333333333 * (DELTA_PRINTABLE_RADIUS)
|
|
|
8218 |
#else
|
|
|
8219 |
5.0, 0.125 * MIN(X_BED_SIZE, Y_BED_SIZE)
|
|
|
8220 |
#endif
|
|
|
8221 |
);
|
|
|
8222 |
|
|
|
8223 |
if (verbose_level > 3) {
|
|
|
8224 |
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
|
|
8225 |
SERIAL_ECHOPAIR(" angle: ", angle);
|
|
|
8226 |
SERIAL_ECHOPGM(" Direction: ");
|
|
|
8227 |
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
|
|
8228 |
SERIAL_ECHOLNPGM("Clockwise");
|
|
|
8229 |
}
|
|
|
8230 |
|
|
|
8231 |
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
|
|
8232 |
float delta_angle;
|
|
|
8233 |
|
|
|
8234 |
if (schizoid_flag)
|
|
|
8235 |
// The points of a 5 point star are 72 degrees apart. We need to
|
|
|
8236 |
// skip a point and go to the next one on the star.
|
|
|
8237 |
delta_angle = dir * 2.0 * 72.0;
|
|
|
8238 |
|
|
|
8239 |
else
|
|
|
8240 |
// If we do this line, we are just trying to move further
|
|
|
8241 |
// around the circle.
|
|
|
8242 |
delta_angle = dir * (float) random(25, 45);
|
|
|
8243 |
|
|
|
8244 |
angle += delta_angle;
|
|
|
8245 |
|
|
|
8246 |
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
|
|
8247 |
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
|
|
8248 |
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
|
|
8249 |
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
|
|
8250 |
|
|
|
8251 |
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
|
|
8252 |
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
|
|
8253 |
|
|
|
8254 |
#if DISABLED(DELTA)
|
|
|
8255 |
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
|
8256 |
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
|
8257 |
#else
|
|
|
8258 |
// If we have gone out too far, we can do a simple fix and scale the numbers
|
|
|
8259 |
// back in closer to the origin.
|
|
|
8260 |
while (!position_is_reachable_by_probe(X_current, Y_current)) {
|
|
|
8261 |
X_current *= 0.8;
|
|
|
8262 |
Y_current *= 0.8;
|
|
|
8263 |
if (verbose_level > 3) {
|
|
|
8264 |
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
|
|
8265 |
SERIAL_ECHOLNPAIR(", ", Y_current);
|
|
|
8266 |
}
|
|
|
8267 |
}
|
|
|
8268 |
#endif
|
|
|
8269 |
if (verbose_level > 3) {
|
|
|
8270 |
SERIAL_PROTOCOLPGM("Going to:");
|
|
|
8271 |
SERIAL_ECHOPAIR(" X", X_current);
|
|
|
8272 |
SERIAL_ECHOPAIR(" Y", Y_current);
|
|
|
8273 |
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
|
|
8274 |
}
|
|
|
8275 |
do_blocking_move_to_xy(X_current, Y_current);
|
|
|
8276 |
} // n_legs loop
|
|
|
8277 |
} // n_legs
|
|
|
8278 |
|
|
|
8279 |
// Probe a single point
|
|
|
8280 |
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, raise_after);
|
|
|
8281 |
|
|
|
8282 |
// Break the loop if the probe fails
|
|
|
8283 |
probing_good = !isnan(sample_set[n]);
|
|
|
8284 |
if (!probing_good) break;
|
|
|
8285 |
|
|
|
8286 |
/**
|
|
|
8287 |
* Get the current mean for the data points we have so far
|
|
|
8288 |
*/
|
|
|
8289 |
float sum = 0.0;
|
|
|
8290 |
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
|
|
8291 |
mean = sum / (n + 1);
|
|
|
8292 |
|
|
|
8293 |
NOMORE(min, sample_set[n]);
|
|
|
8294 |
NOLESS(max, sample_set[n]);
|
|
|
8295 |
|
|
|
8296 |
/**
|
|
|
8297 |
* Now, use that mean to calculate the standard deviation for the
|
|
|
8298 |
* data points we have so far
|
|
|
8299 |
*/
|
|
|
8300 |
sum = 0.0;
|
|
|
8301 |
for (uint8_t j = 0; j <= n; j++)
|
|
|
8302 |
sum += sq(sample_set[j] - mean);
|
|
|
8303 |
|
|
|
8304 |
sigma = SQRT(sum / (n + 1));
|
|
|
8305 |
if (verbose_level > 0) {
|
|
|
8306 |
if (verbose_level > 1) {
|
|
|
8307 |
SERIAL_PROTOCOL(n + 1);
|
|
|
8308 |
SERIAL_PROTOCOLPGM(" of ");
|
|
|
8309 |
SERIAL_PROTOCOL(int(n_samples));
|
|
|
8310 |
SERIAL_PROTOCOLPGM(": z: ");
|
|
|
8311 |
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
|
|
8312 |
if (verbose_level > 2) {
|
|
|
8313 |
SERIAL_PROTOCOLPGM(" mean: ");
|
|
|
8314 |
SERIAL_PROTOCOL_F(mean, 4);
|
|
|
8315 |
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
|
8316 |
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
8317 |
SERIAL_PROTOCOLPGM(" min: ");
|
|
|
8318 |
SERIAL_PROTOCOL_F(min, 3);
|
|
|
8319 |
SERIAL_PROTOCOLPGM(" max: ");
|
|
|
8320 |
SERIAL_PROTOCOL_F(max, 3);
|
|
|
8321 |
SERIAL_PROTOCOLPGM(" range: ");
|
|
|
8322 |
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
8323 |
}
|
|
|
8324 |
SERIAL_EOL();
|
|
|
8325 |
}
|
|
|
8326 |
}
|
|
|
8327 |
|
|
|
8328 |
} // n_samples loop
|
|
|
8329 |
}
|
|
|
8330 |
|
|
|
8331 |
STOW_PROBE();
|
|
|
8332 |
|
|
|
8333 |
if (probing_good) {
|
|
|
8334 |
SERIAL_PROTOCOLLNPGM("Finished!");
|
|
|
8335 |
|
|
|
8336 |
if (verbose_level > 0) {
|
|
|
8337 |
SERIAL_PROTOCOLPGM("Mean: ");
|
|
|
8338 |
SERIAL_PROTOCOL_F(mean, 6);
|
|
|
8339 |
SERIAL_PROTOCOLPGM(" Min: ");
|
|
|
8340 |
SERIAL_PROTOCOL_F(min, 3);
|
|
|
8341 |
SERIAL_PROTOCOLPGM(" Max: ");
|
|
|
8342 |
SERIAL_PROTOCOL_F(max, 3);
|
|
|
8343 |
SERIAL_PROTOCOLPGM(" Range: ");
|
|
|
8344 |
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
8345 |
SERIAL_EOL();
|
|
|
8346 |
}
|
|
|
8347 |
|
|
|
8348 |
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
|
8349 |
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
8350 |
SERIAL_EOL();
|
|
|
8351 |
SERIAL_EOL();
|
|
|
8352 |
}
|
|
|
8353 |
|
|
|
8354 |
clean_up_after_endstop_or_probe_move();
|
|
|
8355 |
|
|
|
8356 |
// Re-enable bed level correction if it had been on
|
|
|
8357 |
#if HAS_LEVELING
|
|
|
8358 |
set_bed_leveling_enabled(was_enabled);
|
|
|
8359 |
#endif
|
|
|
8360 |
|
|
|
8361 |
#ifdef Z_AFTER_PROBING
|
|
|
8362 |
move_z_after_probing();
|
|
|
8363 |
#endif
|
|
|
8364 |
|
|
|
8365 |
report_current_position();
|
|
|
8366 |
}
|
|
|
8367 |
|
|
|
8368 |
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
|
|
8369 |
|
|
|
8370 |
#if ENABLED(G26_MESH_VALIDATION)
|
|
|
8371 |
|
|
|
8372 |
inline void gcode_M49() {
|
|
|
8373 |
g26_debug_flag ^= true;
|
|
|
8374 |
SERIAL_PROTOCOLPGM("G26 Debug ");
|
|
|
8375 |
serialprintPGM(g26_debug_flag ? PSTR("on.\n") : PSTR("off.\n"));
|
|
|
8376 |
}
|
|
|
8377 |
|
|
|
8378 |
#endif // G26_MESH_VALIDATION
|
|
|
8379 |
|
|
|
8380 |
#if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
|
|
|
8381 |
/**
|
|
|
8382 |
* M73: Set percentage complete (for display on LCD)
|
|
|
8383 |
*
|
|
|
8384 |
* Example:
|
|
|
8385 |
* M73 P25 ; Set progress to 25%
|
|
|
8386 |
*
|
|
|
8387 |
* Notes:
|
|
|
8388 |
* This has no effect during an SD print job
|
|
|
8389 |
*/
|
|
|
8390 |
inline void gcode_M73() {
|
|
|
8391 |
if (!IS_SD_PRINTING() && parser.seen('P')) {
|
|
|
8392 |
progress_bar_percent = parser.value_byte();
|
|
|
8393 |
NOMORE(progress_bar_percent, 100);
|
|
|
8394 |
}
|
|
|
8395 |
}
|
|
|
8396 |
#endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
|
|
|
8397 |
|
|
|
8398 |
/**
|
|
|
8399 |
* M75: Start print timer
|
|
|
8400 |
*/
|
|
|
8401 |
inline void gcode_M75() { print_job_timer.start(); }
|
|
|
8402 |
|
|
|
8403 |
/**
|
|
|
8404 |
* M76: Pause print timer
|
|
|
8405 |
*/
|
|
|
8406 |
inline void gcode_M76() { print_job_timer.pause(); }
|
|
|
8407 |
|
|
|
8408 |
/**
|
|
|
8409 |
* M77: Stop print timer
|
|
|
8410 |
*/
|
|
|
8411 |
inline void gcode_M77() { print_job_timer.stop(); }
|
|
|
8412 |
|
|
|
8413 |
#if ENABLED(PRINTCOUNTER)
|
|
|
8414 |
/**
|
|
|
8415 |
* M78: Show print statistics
|
|
|
8416 |
*/
|
|
|
8417 |
inline void gcode_M78() {
|
|
|
8418 |
// "M78 S78" will reset the statistics
|
|
|
8419 |
if (parser.intval('S') == 78)
|
|
|
8420 |
print_job_timer.initStats();
|
|
|
8421 |
else
|
|
|
8422 |
print_job_timer.showStats();
|
|
|
8423 |
}
|
|
|
8424 |
#endif
|
|
|
8425 |
|
|
|
8426 |
/**
|
|
|
8427 |
* M104: Set hot end temperature
|
|
|
8428 |
*/
|
|
|
8429 |
inline void gcode_M104() {
|
|
|
8430 |
if (get_target_extruder_from_command(104)) return;
|
|
|
8431 |
if (DEBUGGING(DRYRUN)) return;
|
|
|
8432 |
|
|
|
8433 |
#if ENABLED(SINGLENOZZLE)
|
|
|
8434 |
if (target_extruder != active_extruder) return;
|
|
|
8435 |
#endif
|
|
|
8436 |
|
|
|
8437 |
if (parser.seenval('S')) {
|
|
|
8438 |
const int16_t temp = parser.value_celsius();
|
|
|
8439 |
thermalManager.setTargetHotend(temp, target_extruder);
|
|
|
8440 |
|
|
|
8441 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
8442 |
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
|
8443 |
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
|
|
|
8444 |
#endif
|
|
|
8445 |
|
|
|
8446 |
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
|
8447 |
/**
|
|
|
8448 |
* Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
|
|
|
8449 |
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
|
|
|
8450 |
* standby mode, for instance in a dual extruder setup, without affecting
|
|
|
8451 |
* the running print timer.
|
|
|
8452 |
*/
|
|
|
8453 |
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
|
|
|
8454 |
print_job_timer.stop();
|
|
|
8455 |
lcd_reset_status();
|
|
|
8456 |
}
|
|
|
8457 |
#endif
|
|
|
8458 |
}
|
|
|
8459 |
|
|
|
8460 |
#if ENABLED(AUTOTEMP)
|
|
|
8461 |
planner.autotemp_M104_M109();
|
|
|
8462 |
#endif
|
|
|
8463 |
}
|
|
|
8464 |
|
|
|
8465 |
/**
|
|
|
8466 |
* M105: Read hot end and bed temperature
|
|
|
8467 |
*/
|
|
|
8468 |
inline void gcode_M105() {
|
|
|
8469 |
if (get_target_extruder_from_command(105)) return;
|
|
|
8470 |
|
|
|
8471 |
#if HAS_TEMP_SENSOR
|
|
|
8472 |
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
|
8473 |
thermalManager.print_heaterstates();
|
|
|
8474 |
#else // !HAS_TEMP_SENSOR
|
|
|
8475 |
SERIAL_ERROR_START();
|
|
|
8476 |
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
|
|
8477 |
#endif
|
|
|
8478 |
|
|
|
8479 |
SERIAL_EOL();
|
|
|
8480 |
}
|
|
|
8481 |
|
|
|
8482 |
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
8483 |
|
|
|
8484 |
/**
|
|
|
8485 |
* M155: Set temperature auto-report interval. M155 S<seconds>
|
|
|
8486 |
*/
|
|
|
8487 |
inline void gcode_M155() {
|
|
|
8488 |
if (parser.seenval('S'))
|
|
|
8489 |
thermalManager.set_auto_report_interval(parser.value_byte());
|
|
|
8490 |
}
|
|
|
8491 |
|
|
|
8492 |
#endif // AUTO_REPORT_TEMPERATURES
|
|
|
8493 |
|
|
|
8494 |
#if FAN_COUNT > 0
|
|
|
8495 |
|
|
|
8496 |
/**
|
|
|
8497 |
* M106: Set Fan Speed
|
|
|
8498 |
*
|
|
|
8499 |
* S<int> Speed between 0-255
|
|
|
8500 |
* P<index> Fan index, if more than one fan
|
|
|
8501 |
*
|
|
|
8502 |
* With EXTRA_FAN_SPEED enabled:
|
|
|
8503 |
*
|
|
|
8504 |
* T<int> Restore/Use/Set Temporary Speed:
|
|
|
8505 |
* 1 = Restore previous speed after T2
|
|
|
8506 |
* 2 = Use temporary speed set with T3-255
|
|
|
8507 |
* 3-255 = Set the speed for use with T2
|
|
|
8508 |
*/
|
|
|
8509 |
inline void gcode_M106() {
|
|
|
8510 |
const uint8_t p = parser.byteval('P');
|
|
|
8511 |
if (p < FAN_COUNT) {
|
|
|
8512 |
#if ENABLED(EXTRA_FAN_SPEED)
|
|
|
8513 |
const int16_t t = parser.intval('T');
|
|
|
8514 |
if (t > 0) {
|
|
|
8515 |
switch (t) {
|
|
|
8516 |
case 1:
|
|
|
8517 |
fanSpeeds[p] = old_fanSpeeds[p];
|
|
|
8518 |
break;
|
|
|
8519 |
case 2:
|
|
|
8520 |
old_fanSpeeds[p] = fanSpeeds[p];
|
|
|
8521 |
fanSpeeds[p] = new_fanSpeeds[p];
|
|
|
8522 |
break;
|
|
|
8523 |
default:
|
|
|
8524 |
new_fanSpeeds[p] = MIN(t, 255);
|
|
|
8525 |
break;
|
|
|
8526 |
}
|
|
|
8527 |
return;
|
|
|
8528 |
}
|
|
|
8529 |
#endif // EXTRA_FAN_SPEED
|
|
|
8530 |
const uint16_t s = parser.ushortval('S', 255);
|
|
|
8531 |
fanSpeeds[p] = MIN(s, 255U);
|
|
|
8532 |
}
|
|
|
8533 |
}
|
|
|
8534 |
|
|
|
8535 |
/**
|
|
|
8536 |
* M107: Fan Off
|
|
|
8537 |
*/
|
|
|
8538 |
inline void gcode_M107() {
|
|
|
8539 |
const uint16_t p = parser.ushortval('P');
|
|
|
8540 |
if (p < FAN_COUNT) fanSpeeds[p] = 0;
|
|
|
8541 |
}
|
|
|
8542 |
|
|
|
8543 |
#endif // FAN_COUNT > 0
|
|
|
8544 |
|
|
|
8545 |
#if DISABLED(EMERGENCY_PARSER)
|
|
|
8546 |
|
|
|
8547 |
/**
|
|
|
8548 |
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
|
|
|
8549 |
*/
|
|
|
8550 |
inline void gcode_M108() { wait_for_heatup = false; }
|
|
|
8551 |
|
|
|
8552 |
|
|
|
8553 |
/**
|
|
|
8554 |
* M112: Emergency Stop
|
|
|
8555 |
*/
|
|
|
8556 |
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
|
|
|
8557 |
|
|
|
8558 |
|
|
|
8559 |
/**
|
|
|
8560 |
* M410: Quickstop - Abort all planned moves
|
|
|
8561 |
*
|
|
|
8562 |
* This will stop the carriages mid-move, so most likely they
|
|
|
8563 |
* will be out of sync with the stepper position after this.
|
|
|
8564 |
*/
|
|
|
8565 |
inline void gcode_M410() { quickstop_stepper(); }
|
|
|
8566 |
|
|
|
8567 |
#endif
|
|
|
8568 |
|
|
|
8569 |
/**
|
|
|
8570 |
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
|
|
|
8571 |
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
|
|
|
8572 |
*/
|
|
|
8573 |
|
|
|
8574 |
#ifndef MIN_COOLING_SLOPE_DEG
|
|
|
8575 |
#define MIN_COOLING_SLOPE_DEG 1.50
|
|
|
8576 |
#endif
|
|
|
8577 |
#ifndef MIN_COOLING_SLOPE_TIME
|
|
|
8578 |
#define MIN_COOLING_SLOPE_TIME 60
|
|
|
8579 |
#endif
|
|
|
8580 |
|
|
|
8581 |
inline void gcode_M109() {
|
|
|
8582 |
|
|
|
8583 |
if (get_target_extruder_from_command(109)) return;
|
|
|
8584 |
if (DEBUGGING(DRYRUN)) return;
|
|
|
8585 |
|
|
|
8586 |
#if ENABLED(SINGLENOZZLE)
|
|
|
8587 |
if (target_extruder != active_extruder) return;
|
|
|
8588 |
#endif
|
|
|
8589 |
|
|
|
8590 |
const bool no_wait_for_cooling = parser.seenval('S'),
|
|
|
8591 |
set_temp = no_wait_for_cooling || parser.seenval('R');
|
|
|
8592 |
if (set_temp) {
|
|
|
8593 |
const int16_t temp = parser.value_celsius();
|
|
|
8594 |
thermalManager.setTargetHotend(temp, target_extruder);
|
|
|
8595 |
|
|
|
8596 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
8597 |
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
|
8598 |
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
|
|
|
8599 |
#endif
|
|
|
8600 |
|
|
|
8601 |
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
|
8602 |
/**
|
|
|
8603 |
* Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
|
|
|
8604 |
* standby mode, (e.g., in a dual extruder setup) without affecting
|
|
|
8605 |
* the running print timer.
|
|
|
8606 |
*/
|
|
|
8607 |
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
|
|
|
8608 |
print_job_timer.stop();
|
|
|
8609 |
lcd_reset_status();
|
|
|
8610 |
}
|
|
|
8611 |
else
|
|
|
8612 |
print_job_timer.start();
|
|
|
8613 |
#endif
|
|
|
8614 |
|
|
|
8615 |
#if ENABLED(ULTRA_LCD)
|
|
|
8616 |
const bool heating = thermalManager.isHeatingHotend(target_extruder);
|
|
|
8617 |
if (heating || !no_wait_for_cooling)
|
|
|
8618 |
#if HOTENDS > 1
|
|
|
8619 |
lcd_status_printf_P(0, heating ? PSTR("E%i " MSG_HEATING) : PSTR("E%i " MSG_COOLING), target_extruder + 1);
|
|
|
8620 |
#else
|
|
|
8621 |
lcd_setstatusPGM(heating ? PSTR("E " MSG_HEATING) : PSTR("E " MSG_COOLING));
|
|
|
8622 |
#endif
|
|
|
8623 |
#endif
|
|
|
8624 |
}
|
|
|
8625 |
|
|
|
8626 |
#if ENABLED(AUTOTEMP)
|
|
|
8627 |
planner.autotemp_M104_M109();
|
|
|
8628 |
#endif
|
|
|
8629 |
|
|
|
8630 |
if (!set_temp) return;
|
|
|
8631 |
|
|
|
8632 |
#if TEMP_RESIDENCY_TIME > 0
|
|
|
8633 |
millis_t residency_start_ms = 0;
|
|
|
8634 |
// Loop until the temperature has stabilized
|
|
|
8635 |
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
|
|
|
8636 |
#else
|
|
|
8637 |
// Loop until the temperature is very close target
|
|
|
8638 |
#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
|
|
|
8639 |
#endif
|
|
|
8640 |
|
|
|
8641 |
float target_temp = -1, old_temp = 9999;
|
|
|
8642 |
bool wants_to_cool = false;
|
|
|
8643 |
wait_for_heatup = true;
|
|
|
8644 |
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
8645 |
|
|
|
8646 |
#if DISABLED(BUSY_WHILE_HEATING)
|
|
|
8647 |
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
8648 |
#endif
|
|
|
8649 |
|
|
|
8650 |
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
|
8651 |
const float start_temp = thermalManager.degHotend(target_extruder);
|
|
|
8652 |
uint8_t old_blue = 0;
|
|
|
8653 |
#endif
|
|
|
8654 |
|
|
|
8655 |
do {
|
|
|
8656 |
// Target temperature might be changed during the loop
|
|
|
8657 |
if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
|
|
|
8658 |
wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
|
|
|
8659 |
target_temp = thermalManager.degTargetHotend(target_extruder);
|
|
|
8660 |
|
|
|
8661 |
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
|
8662 |
if (no_wait_for_cooling && wants_to_cool) break;
|
|
|
8663 |
}
|
|
|
8664 |
|
|
|
8665 |
now = millis();
|
|
|
8666 |
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
|
|
|
8667 |
next_temp_ms = now + 1000UL;
|
|
|
8668 |
thermalManager.print_heaterstates();
|
|
|
8669 |
#if TEMP_RESIDENCY_TIME > 0
|
|
|
8670 |
SERIAL_PROTOCOLPGM(" W:");
|
|
|
8671 |
if (residency_start_ms)
|
|
|
8672 |
SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
|
|
8673 |
else
|
|
|
8674 |
SERIAL_PROTOCOLCHAR('?');
|
|
|
8675 |
#endif
|
|
|
8676 |
SERIAL_EOL();
|
|
|
8677 |
}
|
|
|
8678 |
|
|
|
8679 |
idle();
|
|
|
8680 |
reset_stepper_timeout(); // Keep steppers powered
|
|
|
8681 |
|
|
|
8682 |
const float temp = thermalManager.degHotend(target_extruder);
|
|
|
8683 |
|
|
|
8684 |
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
|
8685 |
// Gradually change LED strip from violet to red as nozzle heats up
|
|
|
8686 |
if (!wants_to_cool) {
|
|
|
8687 |
const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
|
|
|
8688 |
if (blue != old_blue) {
|
|
|
8689 |
old_blue = blue;
|
|
|
8690 |
leds.set_color(
|
|
|
8691 |
MakeLEDColor(255, 0, blue, 0, pixels.getBrightness())
|
|
|
8692 |
#if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
|
|
|
8693 |
, true
|
|
|
8694 |
#endif
|
|
|
8695 |
);
|
|
|
8696 |
}
|
|
|
8697 |
}
|
|
|
8698 |
#endif
|
|
|
8699 |
|
|
|
8700 |
#if TEMP_RESIDENCY_TIME > 0
|
|
|
8701 |
|
|
|
8702 |
const float temp_diff = ABS(target_temp - temp);
|
|
|
8703 |
|
|
|
8704 |
if (!residency_start_ms) {
|
|
|
8705 |
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
|
8706 |
if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
|
|
|
8707 |
}
|
|
|
8708 |
else if (temp_diff > TEMP_HYSTERESIS) {
|
|
|
8709 |
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
|
8710 |
residency_start_ms = now;
|
|
|
8711 |
}
|
|
|
8712 |
|
|
|
8713 |
#endif
|
|
|
8714 |
|
|
|
8715 |
// Prevent a wait-forever situation if R is misused i.e. M109 R0
|
|
|
8716 |
if (wants_to_cool) {
|
|
|
8717 |
// break after MIN_COOLING_SLOPE_TIME seconds
|
|
|
8718 |
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
|
|
|
8719 |
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
|
8720 |
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
|
|
|
8721 |
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
|
|
|
8722 |
old_temp = temp;
|
|
|
8723 |
}
|
|
|
8724 |
}
|
|
|
8725 |
|
|
|
8726 |
} while (wait_for_heatup && TEMP_CONDITIONS);
|
|
|
8727 |
|
|
|
8728 |
if (wait_for_heatup) {
|
|
|
8729 |
lcd_reset_status();
|
|
|
8730 |
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
|
8731 |
leds.set_white();
|
|
|
8732 |
#endif
|
|
|
8733 |
}
|
|
|
8734 |
|
|
|
8735 |
#if DISABLED(BUSY_WHILE_HEATING)
|
|
|
8736 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
8737 |
#endif
|
|
|
8738 |
}
|
|
|
8739 |
|
|
|
8740 |
#if HAS_HEATED_BED
|
|
|
8741 |
|
|
|
8742 |
/**
|
|
|
8743 |
* M140: Set bed temperature
|
|
|
8744 |
*/
|
|
|
8745 |
inline void gcode_M140() {
|
|
|
8746 |
if (DEBUGGING(DRYRUN)) return;
|
|
|
8747 |
if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
|
|
|
8748 |
}
|
|
|
8749 |
|
|
|
8750 |
#ifndef MIN_COOLING_SLOPE_DEG_BED
|
|
|
8751 |
#define MIN_COOLING_SLOPE_DEG_BED 1.50
|
|
|
8752 |
#endif
|
|
|
8753 |
#ifndef MIN_COOLING_SLOPE_TIME_BED
|
|
|
8754 |
#define MIN_COOLING_SLOPE_TIME_BED 60
|
|
|
8755 |
#endif
|
|
|
8756 |
|
|
|
8757 |
/**
|
|
|
8758 |
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
|
8759 |
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
|
8760 |
*/
|
|
|
8761 |
inline void gcode_M190() {
|
|
|
8762 |
if (DEBUGGING(DRYRUN)) return;
|
|
|
8763 |
|
|
|
8764 |
const bool no_wait_for_cooling = parser.seenval('S');
|
|
|
8765 |
if (no_wait_for_cooling || parser.seenval('R')) {
|
|
|
8766 |
thermalManager.setTargetBed(parser.value_celsius());
|
|
|
8767 |
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
|
8768 |
if (parser.value_celsius() > BED_MINTEMP)
|
|
|
8769 |
print_job_timer.start();
|
|
|
8770 |
#endif
|
|
|
8771 |
}
|
|
|
8772 |
else return;
|
|
|
8773 |
|
|
|
8774 |
lcd_setstatusPGM(thermalManager.isHeatingBed() ? PSTR(MSG_BED_HEATING) : PSTR(MSG_BED_COOLING));
|
|
|
8775 |
|
|
|
8776 |
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
8777 |
millis_t residency_start_ms = 0;
|
|
|
8778 |
// Loop until the temperature has stabilized
|
|
|
8779 |
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
|
|
|
8780 |
#else
|
|
|
8781 |
// Loop until the temperature is very close target
|
|
|
8782 |
#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
|
|
|
8783 |
#endif
|
|
|
8784 |
|
|
|
8785 |
float target_temp = -1.0, old_temp = 9999.0;
|
|
|
8786 |
bool wants_to_cool = false;
|
|
|
8787 |
wait_for_heatup = true;
|
|
|
8788 |
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
8789 |
|
|
|
8790 |
#if DISABLED(BUSY_WHILE_HEATING)
|
|
|
8791 |
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
8792 |
#endif
|
|
|
8793 |
|
|
|
8794 |
target_extruder = active_extruder; // for print_heaterstates
|
|
|
8795 |
|
|
|
8796 |
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
|
8797 |
const float start_temp = thermalManager.degBed();
|
|
|
8798 |
uint8_t old_red = 127;
|
|
|
8799 |
#endif
|
|
|
8800 |
|
|
|
8801 |
do {
|
|
|
8802 |
// Target temperature might be changed during the loop
|
|
|
8803 |
if (target_temp != thermalManager.degTargetBed()) {
|
|
|
8804 |
wants_to_cool = thermalManager.isCoolingBed();
|
|
|
8805 |
target_temp = thermalManager.degTargetBed();
|
|
|
8806 |
|
|
|
8807 |
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
|
8808 |
if (no_wait_for_cooling && wants_to_cool) break;
|
|
|
8809 |
}
|
|
|
8810 |
|
|
|
8811 |
now = millis();
|
|
|
8812 |
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
|
|
|
8813 |
next_temp_ms = now + 1000UL;
|
|
|
8814 |
thermalManager.print_heaterstates();
|
|
|
8815 |
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
8816 |
SERIAL_PROTOCOLPGM(" W:");
|
|
|
8817 |
if (residency_start_ms)
|
|
|
8818 |
SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
|
|
8819 |
else
|
|
|
8820 |
SERIAL_PROTOCOLCHAR('?');
|
|
|
8821 |
#endif
|
|
|
8822 |
SERIAL_EOL();
|
|
|
8823 |
}
|
|
|
8824 |
|
|
|
8825 |
idle();
|
|
|
8826 |
reset_stepper_timeout(); // Keep steppers powered
|
|
|
8827 |
|
|
|
8828 |
const float temp = thermalManager.degBed();
|
|
|
8829 |
|
|
|
8830 |
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
|
8831 |
// Gradually change LED strip from blue to violet as bed heats up
|
|
|
8832 |
if (!wants_to_cool) {
|
|
|
8833 |
const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
|
|
|
8834 |
if (red != old_red) {
|
|
|
8835 |
old_red = red;
|
|
|
8836 |
leds.set_color(
|
|
|
8837 |
MakeLEDColor(red, 0, 255, 0, pixels.getBrightness())
|
|
|
8838 |
#if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
|
|
|
8839 |
, true
|
|
|
8840 |
#endif
|
|
|
8841 |
);
|
|
|
8842 |
}
|
|
|
8843 |
}
|
|
|
8844 |
#endif
|
|
|
8845 |
|
|
|
8846 |
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
8847 |
|
|
|
8848 |
const float temp_diff = ABS(target_temp - temp);
|
|
|
8849 |
|
|
|
8850 |
if (!residency_start_ms) {
|
|
|
8851 |
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
|
8852 |
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
|
|
|
8853 |
}
|
|
|
8854 |
else if (temp_diff > TEMP_BED_HYSTERESIS) {
|
|
|
8855 |
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
|
8856 |
residency_start_ms = now;
|
|
|
8857 |
}
|
|
|
8858 |
|
|
|
8859 |
#endif // TEMP_BED_RESIDENCY_TIME > 0
|
|
|
8860 |
|
|
|
8861 |
// Prevent a wait-forever situation if R is misused i.e. M190 R0
|
|
|
8862 |
if (wants_to_cool) {
|
|
|
8863 |
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
|
|
|
8864 |
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
|
|
|
8865 |
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
|
8866 |
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
|
|
|
8867 |
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
|
|
|
8868 |
old_temp = temp;
|
|
|
8869 |
}
|
|
|
8870 |
}
|
|
|
8871 |
|
|
|
8872 |
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
|
|
|
8873 |
|
|
|
8874 |
if (wait_for_heatup) lcd_reset_status();
|
|
|
8875 |
#if DISABLED(BUSY_WHILE_HEATING)
|
|
|
8876 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
8877 |
#endif
|
|
|
8878 |
}
|
|
|
8879 |
|
|
|
8880 |
#endif // HAS_HEATED_BED
|
|
|
8881 |
|
|
|
8882 |
/**
|
|
|
8883 |
* M110: Set Current Line Number
|
|
|
8884 |
*/
|
|
|
8885 |
inline void gcode_M110() {
|
|
|
8886 |
if (parser.seenval('N')) gcode_LastN = parser.value_long();
|
|
|
8887 |
}
|
|
|
8888 |
|
|
|
8889 |
/**
|
|
|
8890 |
* M111: Set the debug level
|
|
|
8891 |
*/
|
|
|
8892 |
inline void gcode_M111() {
|
|
|
8893 |
if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
|
|
|
8894 |
|
|
|
8895 |
static const char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
|
|
|
8896 |
str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
|
|
|
8897 |
str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
|
|
|
8898 |
str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
|
|
|
8899 |
str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
|
|
|
8900 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
8901 |
, str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
|
|
|
8902 |
#endif
|
|
|
8903 |
;
|
|
|
8904 |
|
|
|
8905 |
static const char* const debug_strings[] PROGMEM = {
|
|
|
8906 |
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
|
|
|
8907 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
8908 |
, str_debug_32
|
|
|
8909 |
#endif
|
|
|
8910 |
};
|
|
|
8911 |
|
|
|
8912 |
SERIAL_ECHO_START();
|
|
|
8913 |
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
|
|
|
8914 |
if (marlin_debug_flags) {
|
|
|
8915 |
uint8_t comma = 0;
|
|
|
8916 |
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
|
|
|
8917 |
if (TEST(marlin_debug_flags, i)) {
|
|
|
8918 |
if (comma++) SERIAL_CHAR(',');
|
|
|
8919 |
serialprintPGM((char*)pgm_read_ptr(&debug_strings[i]));
|
|
|
8920 |
}
|
|
|
8921 |
}
|
|
|
8922 |
}
|
|
|
8923 |
else {
|
|
|
8924 |
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
|
|
|
8925 |
#if !defined(__AVR__) || !defined(USBCON)
|
|
|
8926 |
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
|
|
8927 |
SERIAL_ECHOPAIR("\nBuffer Overruns: ", customizedSerial.buffer_overruns());
|
|
|
8928 |
#endif
|
|
|
8929 |
|
|
|
8930 |
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
|
|
8931 |
SERIAL_ECHOPAIR("\nFraming Errors: ", customizedSerial.framing_errors());
|
|
|
8932 |
#endif
|
|
|
8933 |
|
|
|
8934 |
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
|
8935 |
SERIAL_ECHOPAIR("\nDropped bytes: ", customizedSerial.dropped());
|
|
|
8936 |
#endif
|
|
|
8937 |
|
|
|
8938 |
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
|
8939 |
SERIAL_ECHOPAIR("\nMax RX Queue Size: ", customizedSerial.rxMaxEnqueued());
|
|
|
8940 |
#endif
|
|
|
8941 |
#endif // !__AVR__ || !USBCON
|
|
|
8942 |
}
|
|
|
8943 |
SERIAL_EOL();
|
|
|
8944 |
}
|
|
|
8945 |
|
|
|
8946 |
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
8947 |
|
|
|
8948 |
/**
|
|
|
8949 |
* M113: Get or set Host Keepalive interval (0 to disable)
|
|
|
8950 |
*
|
|
|
8951 |
* S<seconds> Optional. Set the keepalive interval.
|
|
|
8952 |
*/
|
|
|
8953 |
inline void gcode_M113() {
|
|
|
8954 |
if (parser.seenval('S')) {
|
|
|
8955 |
host_keepalive_interval = parser.value_byte();
|
|
|
8956 |
NOMORE(host_keepalive_interval, 60);
|
|
|
8957 |
}
|
|
|
8958 |
else {
|
|
|
8959 |
SERIAL_ECHO_START();
|
|
|
8960 |
SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
|
|
|
8961 |
}
|
|
|
8962 |
}
|
|
|
8963 |
|
|
|
8964 |
#endif
|
|
|
8965 |
|
|
|
8966 |
#if ENABLED(BARICUDA)
|
|
|
8967 |
|
|
|
8968 |
#if HAS_HEATER_1
|
|
|
8969 |
/**
|
|
|
8970 |
* M126: Heater 1 valve open
|
|
|
8971 |
*/
|
|
|
8972 |
inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
|
|
|
8973 |
/**
|
|
|
8974 |
* M127: Heater 1 valve close
|
|
|
8975 |
*/
|
|
|
8976 |
inline void gcode_M127() { baricuda_valve_pressure = 0; }
|
|
|
8977 |
#endif
|
|
|
8978 |
|
|
|
8979 |
#if HAS_HEATER_2
|
|
|
8980 |
/**
|
|
|
8981 |
* M128: Heater 2 valve open
|
|
|
8982 |
*/
|
|
|
8983 |
inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
|
|
|
8984 |
/**
|
|
|
8985 |
* M129: Heater 2 valve close
|
|
|
8986 |
*/
|
|
|
8987 |
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
|
|
|
8988 |
#endif
|
|
|
8989 |
|
|
|
8990 |
#endif // BARICUDA
|
|
|
8991 |
|
|
|
8992 |
#if ENABLED(ULTIPANEL)
|
|
|
8993 |
|
|
|
8994 |
/**
|
|
|
8995 |
* M145: Set the heatup state for a material in the LCD menu
|
|
|
8996 |
*
|
|
|
8997 |
* S<material> (0=PLA, 1=ABS)
|
|
|
8998 |
* H<hotend temp>
|
|
|
8999 |
* B<bed temp>
|
|
|
9000 |
* F<fan speed>
|
|
|
9001 |
*/
|
|
|
9002 |
inline void gcode_M145() {
|
|
|
9003 |
const uint8_t material = (uint8_t)parser.intval('S');
|
|
|
9004 |
if (material >= COUNT(lcd_preheat_hotend_temp)) {
|
|
|
9005 |
SERIAL_ERROR_START();
|
|
|
9006 |
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
|
|
|
9007 |
}
|
|
|
9008 |
else {
|
|
|
9009 |
int v;
|
|
|
9010 |
if (parser.seenval('H')) {
|
|
|
9011 |
v = parser.value_int();
|
|
|
9012 |
lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
|
|
|
9013 |
}
|
|
|
9014 |
if (parser.seenval('F')) {
|
|
|
9015 |
v = parser.value_int();
|
|
|
9016 |
lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
|
|
|
9017 |
}
|
|
|
9018 |
#if TEMP_SENSOR_BED != 0
|
|
|
9019 |
if (parser.seenval('B')) {
|
|
|
9020 |
v = parser.value_int();
|
|
|
9021 |
lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
|
|
|
9022 |
}
|
|
|
9023 |
#endif
|
|
|
9024 |
}
|
|
|
9025 |
}
|
|
|
9026 |
|
|
|
9027 |
#endif // ULTIPANEL
|
|
|
9028 |
|
|
|
9029 |
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
|
9030 |
/**
|
|
|
9031 |
* M149: Set temperature units
|
|
|
9032 |
*/
|
|
|
9033 |
inline void gcode_M149() {
|
|
|
9034 |
if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
|
|
|
9035 |
else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
|
|
|
9036 |
else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
|
|
|
9037 |
}
|
|
|
9038 |
#endif
|
|
|
9039 |
|
|
|
9040 |
#if HAS_POWER_SWITCH
|
|
|
9041 |
|
|
|
9042 |
/**
|
|
|
9043 |
* M80 : Turn on the Power Supply
|
|
|
9044 |
* M80 S : Report the current state and exit
|
|
|
9045 |
*/
|
|
|
9046 |
inline void gcode_M80() {
|
|
|
9047 |
|
|
|
9048 |
// S: Report the current power supply state and exit
|
|
|
9049 |
if (parser.seen('S')) {
|
|
|
9050 |
serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
|
|
|
9051 |
return;
|
|
|
9052 |
}
|
|
|
9053 |
|
|
|
9054 |
PSU_ON();
|
|
|
9055 |
|
|
|
9056 |
/**
|
|
|
9057 |
* If you have a switch on suicide pin, this is useful
|
|
|
9058 |
* if you want to start another print with suicide feature after
|
|
|
9059 |
* a print without suicide...
|
|
|
9060 |
*/
|
|
|
9061 |
#if HAS_SUICIDE
|
|
|
9062 |
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
|
9063 |
#endif
|
|
|
9064 |
|
|
|
9065 |
#if DISABLED(AUTO_POWER_CONTROL)
|
|
|
9066 |
delay(100); // Wait for power to settle
|
|
|
9067 |
restore_stepper_drivers();
|
|
|
9068 |
#endif
|
|
|
9069 |
|
|
|
9070 |
#if ENABLED(ULTIPANEL)
|
|
|
9071 |
lcd_reset_status();
|
|
|
9072 |
#endif
|
|
|
9073 |
}
|
|
|
9074 |
|
|
|
9075 |
#endif // HAS_POWER_SWITCH
|
|
|
9076 |
|
|
|
9077 |
/**
|
|
|
9078 |
* M81: Turn off Power, including Power Supply, if there is one.
|
|
|
9079 |
*
|
|
|
9080 |
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
|
|
|
9081 |
*/
|
|
|
9082 |
inline void gcode_M81() {
|
|
|
9083 |
thermalManager.disable_all_heaters();
|
|
|
9084 |
planner.finish_and_disable();
|
|
|
9085 |
|
|
|
9086 |
#if FAN_COUNT > 0
|
|
|
9087 |
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
|
|
9088 |
#if ENABLED(PROBING_FANS_OFF)
|
|
|
9089 |
fans_paused = false;
|
|
|
9090 |
ZERO(paused_fanSpeeds);
|
|
|
9091 |
#endif
|
|
|
9092 |
#endif
|
|
|
9093 |
|
|
|
9094 |
safe_delay(1000); // Wait 1 second before switching off
|
|
|
9095 |
|
|
|
9096 |
#if HAS_SUICIDE
|
|
|
9097 |
suicide();
|
|
|
9098 |
#elif HAS_POWER_SWITCH
|
|
|
9099 |
PSU_OFF();
|
|
|
9100 |
#endif
|
|
|
9101 |
|
|
|
9102 |
#if ENABLED(ULTIPANEL)
|
|
|
9103 |
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
|
|
9104 |
#endif
|
|
|
9105 |
}
|
|
|
9106 |
|
|
|
9107 |
/**
|
|
|
9108 |
* M82: Set E codes absolute (default)
|
|
|
9109 |
*/
|
|
|
9110 |
inline void gcode_M82() { axis_relative_modes[E_CART] = false; }
|
|
|
9111 |
|
|
|
9112 |
/**
|
|
|
9113 |
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
|
|
|
9114 |
*/
|
|
|
9115 |
inline void gcode_M83() { axis_relative_modes[E_CART] = true; }
|
|
|
9116 |
|
|
|
9117 |
/**
|
|
|
9118 |
* M18, M84: Disable stepper motors
|
|
|
9119 |
*/
|
|
|
9120 |
inline void gcode_M18_M84() {
|
|
|
9121 |
if (parser.seenval('S')) {
|
|
|
9122 |
stepper_inactive_time = parser.value_millis_from_seconds();
|
|
|
9123 |
}
|
|
|
9124 |
else {
|
|
|
9125 |
bool all_axis = !(parser.seen('X') || parser.seen('Y') || parser.seen('Z') || parser.seen('E'));
|
|
|
9126 |
if (all_axis) {
|
|
|
9127 |
planner.finish_and_disable();
|
|
|
9128 |
}
|
|
|
9129 |
else {
|
|
|
9130 |
planner.synchronize();
|
|
|
9131 |
if (parser.seen('X')) disable_X();
|
|
|
9132 |
if (parser.seen('Y')) disable_Y();
|
|
|
9133 |
if (parser.seen('Z')) disable_Z();
|
|
|
9134 |
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only disable on boards that have separate ENABLE_PINS
|
|
|
9135 |
if (parser.seen('E')) disable_e_steppers();
|
|
|
9136 |
#endif
|
|
|
9137 |
}
|
|
|
9138 |
|
|
|
9139 |
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) // Only needed with an LCD
|
|
|
9140 |
if (ubl.lcd_map_control) ubl.lcd_map_control = defer_return_to_status = false;
|
|
|
9141 |
#endif
|
|
|
9142 |
}
|
|
|
9143 |
}
|
|
|
9144 |
|
|
|
9145 |
/**
|
|
|
9146 |
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
|
9147 |
*/
|
|
|
9148 |
inline void gcode_M85() {
|
|
|
9149 |
if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
|
|
|
9150 |
}
|
|
|
9151 |
|
|
|
9152 |
/**
|
|
|
9153 |
* Multi-stepper support for M92, M201, M203
|
|
|
9154 |
*/
|
|
|
9155 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
9156 |
#define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
|
|
|
9157 |
#define TARGET_EXTRUDER target_extruder
|
|
|
9158 |
#else
|
|
|
9159 |
#define GET_TARGET_EXTRUDER(CMD) NOOP
|
|
|
9160 |
#define TARGET_EXTRUDER 0
|
|
|
9161 |
#endif
|
|
|
9162 |
|
|
|
9163 |
/**
|
|
|
9164 |
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
|
|
|
9165 |
* (for Hangprinter: A, B, C, D, and E)
|
|
|
9166 |
* (Follows the same syntax as G92)
|
|
|
9167 |
*
|
|
|
9168 |
* With multiple extruders use T to specify which one.
|
|
|
9169 |
*/
|
|
|
9170 |
inline void gcode_M92() {
|
|
|
9171 |
GET_TARGET_EXTRUDER(92);
|
|
|
9172 |
|
|
|
9173 |
LOOP_NUM_AXIS(i) {
|
|
|
9174 |
if (parser.seen(RAW_AXIS_CODES(i))) {
|
|
|
9175 |
if (i == E_AXIS) {
|
|
|
9176 |
const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
|
|
|
9177 |
if (value < 20) {
|
|
|
9178 |
const float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
|
|
|
9179 |
#if DISABLED(JUNCTION_DEVIATION)
|
|
|
9180 |
planner.max_jerk[E_AXIS] *= factor;
|
|
|
9181 |
#endif
|
|
|
9182 |
planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
|
|
|
9183 |
planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
|
|
|
9184 |
}
|
|
|
9185 |
planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
|
|
|
9186 |
}
|
|
|
9187 |
else {
|
|
|
9188 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
9189 |
SERIAL_ECHOLNPGM("Warning: "
|
|
|
9190 |
"M92 A, B, C, and D only affect acceleration planning "
|
|
|
9191 |
"when BUILDUP_COMPENSATION_FEATURE is enabled.");
|
|
|
9192 |
#endif
|
|
|
9193 |
planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
|
|
|
9194 |
}
|
|
|
9195 |
}
|
|
|
9196 |
}
|
|
|
9197 |
planner.refresh_positioning();
|
|
|
9198 |
}
|
|
|
9199 |
|
|
|
9200 |
/**
|
|
|
9201 |
* Output the current position to serial
|
|
|
9202 |
*/
|
|
|
9203 |
void report_current_position() {
|
|
|
9204 |
SERIAL_PROTOCOLPAIR("X:", LOGICAL_X_POSITION(current_position[X_AXIS]));
|
|
|
9205 |
SERIAL_PROTOCOLPAIR(" Y:", LOGICAL_Y_POSITION(current_position[Y_AXIS]));
|
|
|
9206 |
SERIAL_PROTOCOLPAIR(" Z:", LOGICAL_Z_POSITION(current_position[Z_AXIS]));
|
|
|
9207 |
SERIAL_PROTOCOLPAIR(" E:", current_position[E_CART]);
|
|
|
9208 |
|
|
|
9209 |
#if ENABLED(HANGPRINTER)
|
|
|
9210 |
SERIAL_EOL();
|
|
|
9211 |
SERIAL_PROTOCOLPAIR("A:", line_lengths[A_AXIS]);
|
|
|
9212 |
SERIAL_PROTOCOLPAIR(" B:", line_lengths[B_AXIS]);
|
|
|
9213 |
SERIAL_PROTOCOLPAIR(" C:", line_lengths[C_AXIS]);
|
|
|
9214 |
SERIAL_PROTOCOLLNPAIR(" D:", line_lengths[D_AXIS]);
|
|
|
9215 |
#endif
|
|
|
9216 |
|
|
|
9217 |
stepper.report_positions();
|
|
|
9218 |
|
|
|
9219 |
#if IS_SCARA
|
|
|
9220 |
SERIAL_PROTOCOLPAIR("SCARA Theta:", planner.get_axis_position_degrees(A_AXIS));
|
|
|
9221 |
SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", planner.get_axis_position_degrees(B_AXIS));
|
|
|
9222 |
SERIAL_EOL();
|
|
|
9223 |
#endif
|
|
|
9224 |
}
|
|
|
9225 |
|
|
|
9226 |
#ifdef M114_DETAIL
|
|
|
9227 |
|
|
|
9228 |
void report_xyze(const float pos[], const uint8_t n = 4, const uint8_t precision = 3) {
|
|
|
9229 |
char str[12];
|
|
|
9230 |
for (uint8_t i = 0; i < n; i++) {
|
|
|
9231 |
SERIAL_CHAR(' ');
|
|
|
9232 |
SERIAL_CHAR(axis_codes[i]);
|
|
|
9233 |
SERIAL_CHAR(':');
|
|
|
9234 |
SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
|
|
|
9235 |
}
|
|
|
9236 |
SERIAL_EOL();
|
|
|
9237 |
}
|
|
|
9238 |
|
|
|
9239 |
inline void report_xyz(const float pos[]) { report_xyze(pos, 3); }
|
|
|
9240 |
|
|
|
9241 |
void report_current_position_detail() {
|
|
|
9242 |
|
|
|
9243 |
SERIAL_PROTOCOLPGM("\nLogical:");
|
|
|
9244 |
const float logical[XYZ] = {
|
|
|
9245 |
LOGICAL_X_POSITION(current_position[X_AXIS]),
|
|
|
9246 |
LOGICAL_Y_POSITION(current_position[Y_AXIS]),
|
|
|
9247 |
LOGICAL_Z_POSITION(current_position[Z_AXIS])
|
|
|
9248 |
};
|
|
|
9249 |
report_xyz(logical);
|
|
|
9250 |
|
|
|
9251 |
SERIAL_PROTOCOLPGM("Raw: ");
|
|
|
9252 |
report_xyz(current_position);
|
|
|
9253 |
|
|
|
9254 |
float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
|
|
9255 |
|
|
|
9256 |
#if PLANNER_LEVELING
|
|
|
9257 |
SERIAL_PROTOCOLPGM("Leveled:");
|
|
|
9258 |
planner.apply_leveling(leveled);
|
|
|
9259 |
report_xyz(leveled);
|
|
|
9260 |
|
|
|
9261 |
SERIAL_PROTOCOLPGM("UnLevel:");
|
|
|
9262 |
float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
|
|
|
9263 |
planner.unapply_leveling(unleveled);
|
|
|
9264 |
report_xyz(unleveled);
|
|
|
9265 |
#endif
|
|
|
9266 |
|
|
|
9267 |
#if IS_KINEMATIC
|
|
|
9268 |
#if IS_SCARA
|
|
|
9269 |
SERIAL_PROTOCOLPGM("ScaraK: ");
|
|
|
9270 |
#else
|
|
|
9271 |
SERIAL_PROTOCOLPGM("DeltaK: ");
|
|
|
9272 |
#endif
|
|
|
9273 |
inverse_kinematics(leveled); // writes delta[]
|
|
|
9274 |
report_xyz(delta);
|
|
|
9275 |
#endif
|
|
|
9276 |
|
|
|
9277 |
planner.synchronize();
|
|
|
9278 |
|
|
|
9279 |
SERIAL_PROTOCOLPGM("Stepper:");
|
|
|
9280 |
LOOP_NUM_AXIS(i) {
|
|
|
9281 |
SERIAL_CHAR(' ');
|
|
|
9282 |
SERIAL_CHAR(RAW_AXIS_CODES(i));
|
|
|
9283 |
SERIAL_CHAR(':');
|
|
|
9284 |
SERIAL_PROTOCOL(stepper.position((AxisEnum)i));
|
|
|
9285 |
}
|
|
|
9286 |
SERIAL_EOL();
|
|
|
9287 |
|
|
|
9288 |
#if IS_SCARA
|
|
|
9289 |
const float deg[XYZ] = {
|
|
|
9290 |
planner.get_axis_position_degrees(A_AXIS),
|
|
|
9291 |
planner.get_axis_position_degrees(B_AXIS)
|
|
|
9292 |
};
|
|
|
9293 |
SERIAL_PROTOCOLPGM("Degrees:");
|
|
|
9294 |
report_xyze(deg, 2);
|
|
|
9295 |
#endif
|
|
|
9296 |
|
|
|
9297 |
SERIAL_PROTOCOLPGM("FromStp:");
|
|
|
9298 |
get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
|
|
|
9299 |
const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], planner.get_axis_position_mm(E_AXIS) };
|
|
|
9300 |
report_xyze(from_steppers);
|
|
|
9301 |
|
|
|
9302 |
const float diff[XYZE] = {
|
|
|
9303 |
from_steppers[X_AXIS] - leveled[X_AXIS],
|
|
|
9304 |
from_steppers[Y_AXIS] - leveled[Y_AXIS],
|
|
|
9305 |
from_steppers[Z_AXIS] - leveled[Z_AXIS],
|
|
|
9306 |
from_steppers[E_CART] - current_position[E_CART]
|
|
|
9307 |
};
|
|
|
9308 |
SERIAL_PROTOCOLPGM("Differ: ");
|
|
|
9309 |
report_xyze(diff);
|
|
|
9310 |
}
|
|
|
9311 |
#endif // M114_DETAIL
|
|
|
9312 |
|
|
|
9313 |
/**
|
|
|
9314 |
* M114: Report current position to host
|
|
|
9315 |
*/
|
|
|
9316 |
inline void gcode_M114() {
|
|
|
9317 |
|
|
|
9318 |
#ifdef M114_DETAIL
|
|
|
9319 |
if (parser.seen('D')) return report_current_position_detail();
|
|
|
9320 |
#endif
|
|
|
9321 |
|
|
|
9322 |
planner.synchronize();
|
|
|
9323 |
|
|
|
9324 |
const uint16_t sval = parser.ushortval('S');
|
|
|
9325 |
|
|
|
9326 |
#if ENABLED(MECHADUINO_I2C_COMMANDS)
|
|
|
9327 |
if (sval == 1) return report_axis_position_from_encoder_data();
|
|
|
9328 |
#endif
|
|
|
9329 |
|
|
|
9330 |
if (sval == 2) return report_xyz_from_stepper_position();
|
|
|
9331 |
|
|
|
9332 |
report_current_position();
|
|
|
9333 |
}
|
|
|
9334 |
|
|
|
9335 |
/**
|
|
|
9336 |
* M115: Capabilities string
|
|
|
9337 |
*/
|
|
|
9338 |
|
|
|
9339 |
#if ENABLED(EXTENDED_CAPABILITIES_REPORT)
|
|
|
9340 |
static void cap_line(const char * const name, bool ena=false) {
|
|
|
9341 |
SERIAL_PROTOCOLPGM("Cap:");
|
|
|
9342 |
serialprintPGM(name);
|
|
|
9343 |
SERIAL_PROTOCOLPGM(":");
|
|
|
9344 |
SERIAL_PROTOCOLLN(int(ena ? 1 : 0));
|
|
|
9345 |
}
|
|
|
9346 |
#endif
|
|
|
9347 |
|
|
|
9348 |
inline void gcode_M115() {
|
|
|
9349 |
SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
|
|
|
9350 |
|
|
|
9351 |
#if ENABLED(EXTENDED_CAPABILITIES_REPORT)
|
|
|
9352 |
|
|
|
9353 |
// SERIAL_XON_XOFF
|
|
|
9354 |
cap_line(PSTR("SERIAL_XON_XOFF")
|
|
|
9355 |
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
9356 |
, true
|
|
|
9357 |
#endif
|
|
|
9358 |
);
|
|
|
9359 |
|
|
|
9360 |
// EEPROM (M500, M501)
|
|
|
9361 |
cap_line(PSTR("EEPROM")
|
|
|
9362 |
#if ENABLED(EEPROM_SETTINGS)
|
|
|
9363 |
, true
|
|
|
9364 |
#endif
|
|
|
9365 |
);
|
|
|
9366 |
|
|
|
9367 |
// Volumetric Extrusion (M200)
|
|
|
9368 |
cap_line(PSTR("VOLUMETRIC")
|
|
|
9369 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
9370 |
, true
|
|
|
9371 |
#endif
|
|
|
9372 |
);
|
|
|
9373 |
|
|
|
9374 |
// AUTOREPORT_TEMP (M155)
|
|
|
9375 |
cap_line(PSTR("AUTOREPORT_TEMP")
|
|
|
9376 |
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
9377 |
, true
|
|
|
9378 |
#endif
|
|
|
9379 |
);
|
|
|
9380 |
|
|
|
9381 |
// PROGRESS (M530 S L, M531 <file>, M532 X L)
|
|
|
9382 |
cap_line(PSTR("PROGRESS"));
|
|
|
9383 |
|
|
|
9384 |
// Print Job timer M75, M76, M77
|
|
|
9385 |
cap_line(PSTR("PRINT_JOB"), true);
|
|
|
9386 |
|
|
|
9387 |
// AUTOLEVEL (G29)
|
|
|
9388 |
cap_line(PSTR("AUTOLEVEL")
|
|
|
9389 |
#if HAS_AUTOLEVEL
|
|
|
9390 |
, true
|
|
|
9391 |
#endif
|
|
|
9392 |
);
|
|
|
9393 |
|
|
|
9394 |
// Z_PROBE (G30)
|
|
|
9395 |
cap_line(PSTR("Z_PROBE")
|
|
|
9396 |
#if HAS_BED_PROBE
|
|
|
9397 |
, true
|
|
|
9398 |
#endif
|
|
|
9399 |
);
|
|
|
9400 |
|
|
|
9401 |
// MESH_REPORT (M420 V)
|
|
|
9402 |
cap_line(PSTR("LEVELING_DATA")
|
|
|
9403 |
#if HAS_LEVELING
|
|
|
9404 |
, true
|
|
|
9405 |
#endif
|
|
|
9406 |
);
|
|
|
9407 |
|
|
|
9408 |
// BUILD_PERCENT (M73)
|
|
|
9409 |
cap_line(PSTR("BUILD_PERCENT")
|
|
|
9410 |
#if ENABLED(LCD_SET_PROGRESS_MANUALLY)
|
|
|
9411 |
, true
|
|
|
9412 |
#endif
|
|
|
9413 |
);
|
|
|
9414 |
|
|
|
9415 |
// SOFTWARE_POWER (M80, M81)
|
|
|
9416 |
cap_line(PSTR("SOFTWARE_POWER")
|
|
|
9417 |
#if HAS_POWER_SWITCH
|
|
|
9418 |
, true
|
|
|
9419 |
#endif
|
|
|
9420 |
);
|
|
|
9421 |
|
|
|
9422 |
// CASE LIGHTS (M355)
|
|
|
9423 |
cap_line(PSTR("TOGGLE_LIGHTS")
|
|
|
9424 |
#if HAS_CASE_LIGHT
|
|
|
9425 |
, true
|
|
|
9426 |
#endif
|
|
|
9427 |
);
|
|
|
9428 |
cap_line(PSTR("CASE_LIGHT_BRIGHTNESS")
|
|
|
9429 |
#if HAS_CASE_LIGHT
|
|
|
9430 |
, USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)
|
|
|
9431 |
#endif
|
|
|
9432 |
);
|
|
|
9433 |
|
|
|
9434 |
// EMERGENCY_PARSER (M108, M112, M410)
|
|
|
9435 |
cap_line(PSTR("EMERGENCY_PARSER")
|
|
|
9436 |
#if ENABLED(EMERGENCY_PARSER)
|
|
|
9437 |
, true
|
|
|
9438 |
#endif
|
|
|
9439 |
);
|
|
|
9440 |
|
|
|
9441 |
// AUTOREPORT_SD_STATUS (M27 extension)
|
|
|
9442 |
cap_line(PSTR("AUTOREPORT_SD_STATUS")
|
|
|
9443 |
#if ENABLED(AUTO_REPORT_SD_STATUS)
|
|
|
9444 |
, true
|
|
|
9445 |
#endif
|
|
|
9446 |
);
|
|
|
9447 |
|
|
|
9448 |
// THERMAL_PROTECTION
|
|
|
9449 |
cap_line(PSTR("THERMAL_PROTECTION")
|
|
|
9450 |
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(THERMAL_PROTECTION_BED)
|
|
|
9451 |
, true
|
|
|
9452 |
#endif
|
|
|
9453 |
);
|
|
|
9454 |
|
|
|
9455 |
#endif // EXTENDED_CAPABILITIES_REPORT
|
|
|
9456 |
}
|
|
|
9457 |
|
|
|
9458 |
/**
|
|
|
9459 |
* M117: Set LCD Status Message
|
|
|
9460 |
*/
|
|
|
9461 |
inline void gcode_M117() {
|
|
|
9462 |
if (parser.string_arg[0])
|
|
|
9463 |
lcd_setstatus(parser.string_arg);
|
|
|
9464 |
else
|
|
|
9465 |
lcd_reset_status();
|
|
|
9466 |
}
|
|
|
9467 |
|
|
|
9468 |
/**
|
|
|
9469 |
* M118: Display a message in the host console.
|
|
|
9470 |
*
|
|
|
9471 |
* A1 Prepend '// ' for an action command, as in OctoPrint
|
|
|
9472 |
* E1 Have the host 'echo:' the text
|
|
|
9473 |
*/
|
|
|
9474 |
inline void gcode_M118() {
|
|
|
9475 |
bool hasE = false, hasA = false;
|
|
|
9476 |
char *p = parser.string_arg;
|
|
|
9477 |
for (uint8_t i = 2; i--;)
|
|
|
9478 |
if ((p[0] == 'A' || p[0] == 'E') && p[1] == '1') {
|
|
|
9479 |
if (p[0] == 'A') hasA = true;
|
|
|
9480 |
if (p[0] == 'E') hasE = true;
|
|
|
9481 |
p += 2;
|
|
|
9482 |
while (*p == ' ') ++p;
|
|
|
9483 |
}
|
|
|
9484 |
if (hasE) SERIAL_ECHO_START();
|
|
|
9485 |
if (hasA) SERIAL_ECHOPGM("// ");
|
|
|
9486 |
SERIAL_ECHOLN(p);
|
|
|
9487 |
}
|
|
|
9488 |
|
|
|
9489 |
/**
|
|
|
9490 |
* M119: Output endstop states to serial output
|
|
|
9491 |
*/
|
|
|
9492 |
inline void gcode_M119() { endstops.M119(); }
|
|
|
9493 |
|
|
|
9494 |
/**
|
|
|
9495 |
* M120: Enable endstops and set non-homing endstop state to "enabled"
|
|
|
9496 |
*/
|
|
|
9497 |
inline void gcode_M120() { endstops.enable_globally(true); }
|
|
|
9498 |
|
|
|
9499 |
/**
|
|
|
9500 |
* M121: Disable endstops and set non-homing endstop state to "disabled"
|
|
|
9501 |
*/
|
|
|
9502 |
inline void gcode_M121() { endstops.enable_globally(false); }
|
|
|
9503 |
|
|
|
9504 |
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
|
9505 |
|
|
|
9506 |
/**
|
|
|
9507 |
* M125: Store current position and move to filament change position.
|
|
|
9508 |
* Called on pause (by M25) to prevent material leaking onto the
|
|
|
9509 |
* object. On resume (M24) the head will be moved back and the
|
|
|
9510 |
* print will resume.
|
|
|
9511 |
*
|
|
|
9512 |
* If Marlin is compiled without SD Card support, M125 can be
|
|
|
9513 |
* used directly to pause the print and move to park position,
|
|
|
9514 |
* resuming with a button click or M108.
|
|
|
9515 |
*
|
|
|
9516 |
* L = override retract length
|
|
|
9517 |
* X = override X
|
|
|
9518 |
* Y = override Y
|
|
|
9519 |
* Z = override Z raise
|
|
|
9520 |
*/
|
|
|
9521 |
inline void gcode_M125() {
|
|
|
9522 |
|
|
|
9523 |
// Initial retract before move to filament change position
|
|
|
9524 |
const float retract = -ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
|
|
|
9525 |
#ifdef PAUSE_PARK_RETRACT_LENGTH
|
|
|
9526 |
+ (PAUSE_PARK_RETRACT_LENGTH)
|
|
|
9527 |
#endif
|
|
|
9528 |
);
|
|
|
9529 |
|
|
|
9530 |
point_t park_point = NOZZLE_PARK_POINT;
|
|
|
9531 |
|
|
|
9532 |
// Move XY axes to filament change position or given position
|
|
|
9533 |
if (parser.seenval('X')) park_point.x = parser.linearval('X');
|
|
|
9534 |
if (parser.seenval('Y')) park_point.y = parser.linearval('Y');
|
|
|
9535 |
|
|
|
9536 |
// Lift Z axis
|
|
|
9537 |
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
|
|
|
9538 |
|
|
|
9539 |
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) && DISABLED(DELTA)
|
|
|
9540 |
park_point.x += (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0);
|
|
|
9541 |
park_point.y += (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0);
|
|
|
9542 |
#endif
|
|
|
9543 |
|
|
|
9544 |
#if DISABLED(SDSUPPORT)
|
|
|
9545 |
const bool job_running = print_job_timer.isRunning();
|
|
|
9546 |
#endif
|
|
|
9547 |
|
|
|
9548 |
if (pause_print(retract, park_point)) {
|
|
|
9549 |
#if DISABLED(SDSUPPORT)
|
|
|
9550 |
// Wait for lcd click or M108
|
|
|
9551 |
wait_for_filament_reload();
|
|
|
9552 |
|
|
|
9553 |
// Return to print position and continue
|
|
|
9554 |
resume_print();
|
|
|
9555 |
|
|
|
9556 |
if (job_running) print_job_timer.start();
|
|
|
9557 |
#endif
|
|
|
9558 |
}
|
|
|
9559 |
}
|
|
|
9560 |
|
|
|
9561 |
#endif // PARK_HEAD_ON_PAUSE
|
|
|
9562 |
|
|
|
9563 |
#if HAS_COLOR_LEDS
|
|
|
9564 |
|
|
|
9565 |
/**
|
|
|
9566 |
* M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
|
|
|
9567 |
* and Brightness - Use P (for NEOPIXEL only)
|
|
|
9568 |
*
|
|
|
9569 |
* Always sets all 3 or 4 components. If a component is left out, set to 0.
|
|
|
9570 |
* If brightness is left out, no value changed
|
|
|
9571 |
*
|
|
|
9572 |
* Examples:
|
|
|
9573 |
*
|
|
|
9574 |
* M150 R255 ; Turn LED red
|
|
|
9575 |
* M150 R255 U127 ; Turn LED orange (PWM only)
|
|
|
9576 |
* M150 ; Turn LED off
|
|
|
9577 |
* M150 R U B ; Turn LED white
|
|
|
9578 |
* M150 W ; Turn LED white using a white LED
|
|
|
9579 |
* M150 P127 ; Set LED 50% brightness
|
|
|
9580 |
* M150 P ; Set LED full brightness
|
|
|
9581 |
*/
|
|
|
9582 |
inline void gcode_M150() {
|
|
|
9583 |
leds.set_color(MakeLEDColor(
|
|
|
9584 |
parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
|
|
9585 |
parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
|
|
9586 |
parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
|
|
9587 |
parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
|
|
9588 |
parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
|
|
|
9589 |
));
|
|
|
9590 |
}
|
|
|
9591 |
|
|
|
9592 |
#endif // HAS_COLOR_LEDS
|
|
|
9593 |
|
|
|
9594 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
9595 |
|
|
|
9596 |
/**
|
|
|
9597 |
* M200: Set filament diameter and set E axis units to cubic units
|
|
|
9598 |
*
|
|
|
9599 |
* T<extruder> - Optional extruder number. Current extruder if omitted.
|
|
|
9600 |
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
|
|
|
9601 |
*/
|
|
|
9602 |
inline void gcode_M200() {
|
|
|
9603 |
|
|
|
9604 |
if (get_target_extruder_from_command(200)) return;
|
|
|
9605 |
|
|
|
9606 |
if (parser.seen('D')) {
|
|
|
9607 |
// setting any extruder filament size disables volumetric on the assumption that
|
|
|
9608 |
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
|
9609 |
// for all extruders
|
|
|
9610 |
if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0)) )
|
|
|
9611 |
planner.set_filament_size(target_extruder, parser.value_linear_units());
|
|
|
9612 |
}
|
|
|
9613 |
planner.calculate_volumetric_multipliers();
|
|
|
9614 |
}
|
|
|
9615 |
|
|
|
9616 |
#endif // !NO_VOLUMETRICS
|
|
|
9617 |
|
|
|
9618 |
/**
|
|
|
9619 |
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
|
9620 |
*
|
|
|
9621 |
* With multiple extruders use T to specify which one.
|
|
|
9622 |
*/
|
|
|
9623 |
inline void gcode_M201() {
|
|
|
9624 |
|
|
|
9625 |
GET_TARGET_EXTRUDER(201);
|
|
|
9626 |
|
|
|
9627 |
LOOP_NUM_AXIS(i) {
|
|
|
9628 |
if (parser.seen(RAW_AXIS_CODES(i))) {
|
|
|
9629 |
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
|
|
|
9630 |
planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
|
|
|
9631 |
}
|
|
|
9632 |
}
|
|
|
9633 |
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
|
9634 |
planner.reset_acceleration_rates();
|
|
|
9635 |
}
|
|
|
9636 |
|
|
|
9637 |
#if 0 // Not used for Sprinter/grbl gen6
|
|
|
9638 |
inline void gcode_M202() {
|
|
|
9639 |
LOOP_XYZE(i) {
|
|
|
9640 |
if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
|
|
|
9641 |
}
|
|
|
9642 |
}
|
|
|
9643 |
#endif
|
|
|
9644 |
|
|
|
9645 |
|
|
|
9646 |
/**
|
|
|
9647 |
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
|
|
|
9648 |
*
|
|
|
9649 |
* With multiple extruders use T to specify which one.
|
|
|
9650 |
*/
|
|
|
9651 |
inline void gcode_M203() {
|
|
|
9652 |
|
|
|
9653 |
GET_TARGET_EXTRUDER(203);
|
|
|
9654 |
|
|
|
9655 |
LOOP_NUM_AXIS(i)
|
|
|
9656 |
if (parser.seen(RAW_AXIS_CODES(i))) {
|
|
|
9657 |
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
|
|
|
9658 |
planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
|
|
|
9659 |
}
|
|
|
9660 |
}
|
|
|
9661 |
|
|
|
9662 |
/**
|
|
|
9663 |
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
|
|
|
9664 |
*
|
|
|
9665 |
* P = Printing moves
|
|
|
9666 |
* R = Retract only (no X, Y, Z) moves
|
|
|
9667 |
* T = Travel (non printing) moves
|
|
|
9668 |
*/
|
|
|
9669 |
inline void gcode_M204() {
|
|
|
9670 |
bool report = true;
|
|
|
9671 |
if (parser.seenval('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
|
|
9672 |
planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
|
|
|
9673 |
report = false;
|
|
|
9674 |
}
|
|
|
9675 |
if (parser.seenval('P')) {
|
|
|
9676 |
planner.acceleration = parser.value_linear_units();
|
|
|
9677 |
report = false;
|
|
|
9678 |
}
|
|
|
9679 |
if (parser.seenval('R')) {
|
|
|
9680 |
planner.retract_acceleration = parser.value_linear_units();
|
|
|
9681 |
report = false;
|
|
|
9682 |
}
|
|
|
9683 |
if (parser.seenval('T')) {
|
|
|
9684 |
planner.travel_acceleration = parser.value_linear_units();
|
|
|
9685 |
report = false;
|
|
|
9686 |
}
|
|
|
9687 |
if (report) {
|
|
|
9688 |
SERIAL_ECHOPAIR("Acceleration: P", planner.acceleration);
|
|
|
9689 |
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
|
|
|
9690 |
SERIAL_ECHOLNPAIR(" T", planner.travel_acceleration);
|
|
|
9691 |
}
|
|
|
9692 |
}
|
|
|
9693 |
|
|
|
9694 |
/**
|
|
|
9695 |
* M205: Set Advanced Settings
|
|
|
9696 |
*
|
|
|
9697 |
* Q = Min Segment Time (µs)
|
|
|
9698 |
* S = Min Feed Rate (units/s)
|
|
|
9699 |
* T = Min Travel Feed Rate (units/s)
|
|
|
9700 |
* X = Max X Jerk (units/sec^2)
|
|
|
9701 |
* Y = Max Y Jerk (units/sec^2)
|
|
|
9702 |
* Z = Max Z Jerk (units/sec^2)
|
|
|
9703 |
* E = Max E Jerk (units/sec^2)
|
|
|
9704 |
* J = Junction Deviation (mm) (Requires JUNCTION_DEVIATION)
|
|
|
9705 |
*/
|
|
|
9706 |
inline void gcode_M205() {
|
|
|
9707 |
if (parser.seen('Q')) planner.min_segment_time_us = parser.value_ulong();
|
|
|
9708 |
if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
|
|
|
9709 |
if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
|
|
|
9710 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
9711 |
if (parser.seen('J')) {
|
|
|
9712 |
const float junc_dev = parser.value_linear_units();
|
|
|
9713 |
if (WITHIN(junc_dev, 0.01f, 0.3f)) {
|
|
|
9714 |
planner.junction_deviation_mm = junc_dev;
|
|
|
9715 |
planner.recalculate_max_e_jerk();
|
|
|
9716 |
}
|
|
|
9717 |
else {
|
|
|
9718 |
SERIAL_ERROR_START();
|
|
|
9719 |
SERIAL_ERRORLNPGM("?J out of range (0.01 to 0.3)");
|
|
|
9720 |
}
|
|
|
9721 |
}
|
|
|
9722 |
#else
|
|
|
9723 |
#if ENABLED(HANGPRINTER)
|
|
|
9724 |
if (parser.seen('A')) planner.max_jerk[A_AXIS] = parser.value_linear_units();
|
|
|
9725 |
if (parser.seen('B')) planner.max_jerk[B_AXIS] = parser.value_linear_units();
|
|
|
9726 |
if (parser.seen('C')) planner.max_jerk[C_AXIS] = parser.value_linear_units();
|
|
|
9727 |
if (parser.seen('D')) planner.max_jerk[D_AXIS] = parser.value_linear_units();
|
|
|
9728 |
#else
|
|
|
9729 |
if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
|
|
|
9730 |
if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
|
|
|
9731 |
if (parser.seen('Z')) {
|
|
|
9732 |
planner.max_jerk[Z_AXIS] = parser.value_linear_units();
|
|
|
9733 |
#if HAS_MESH
|
|
|
9734 |
if (planner.max_jerk[Z_AXIS] <= 0.1f)
|
|
|
9735 |
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
|
|
|
9736 |
#endif
|
|
|
9737 |
}
|
|
|
9738 |
#endif
|
|
|
9739 |
if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
|
|
|
9740 |
#endif
|
|
|
9741 |
}
|
|
|
9742 |
|
|
|
9743 |
#if HAS_M206_COMMAND
|
|
|
9744 |
|
|
|
9745 |
/**
|
|
|
9746 |
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
|
|
9747 |
*
|
|
|
9748 |
* *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
|
|
|
9749 |
* *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
|
|
|
9750 |
* *** In the next 1.2 release, it will simply be disabled by default.
|
|
|
9751 |
*/
|
|
|
9752 |
inline void gcode_M206() {
|
|
|
9753 |
LOOP_XYZ(i)
|
|
|
9754 |
if (parser.seen(axis_codes[i]))
|
|
|
9755 |
set_home_offset((AxisEnum)i, parser.value_linear_units());
|
|
|
9756 |
|
|
|
9757 |
#if ENABLED(MORGAN_SCARA)
|
|
|
9758 |
if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Theta
|
|
|
9759 |
if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
|
|
|
9760 |
#endif
|
|
|
9761 |
|
|
|
9762 |
report_current_position();
|
|
|
9763 |
}
|
|
|
9764 |
|
|
|
9765 |
#endif // HAS_M206_COMMAND
|
|
|
9766 |
|
|
|
9767 |
#if ENABLED(DELTA)
|
|
|
9768 |
/**
|
|
|
9769 |
* M665: Set delta configurations
|
|
|
9770 |
*
|
|
|
9771 |
* H = delta height
|
|
|
9772 |
* L = diagonal rod
|
|
|
9773 |
* R = delta radius
|
|
|
9774 |
* S = segments per second
|
|
|
9775 |
* B = delta calibration radius
|
|
|
9776 |
* X = Alpha (Tower 1) angle trim
|
|
|
9777 |
* Y = Beta (Tower 2) angle trim
|
|
|
9778 |
* Z = Gamma (Tower 3) angle trim
|
|
|
9779 |
*/
|
|
|
9780 |
inline void gcode_M665() {
|
|
|
9781 |
if (parser.seen('H')) delta_height = parser.value_linear_units();
|
|
|
9782 |
if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
|
|
|
9783 |
if (parser.seen('R')) delta_radius = parser.value_linear_units();
|
|
|
9784 |
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
|
|
|
9785 |
if (parser.seen('B')) delta_calibration_radius = parser.value_float();
|
|
|
9786 |
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
|
|
|
9787 |
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
|
|
|
9788 |
if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
|
|
|
9789 |
recalc_delta_settings();
|
|
|
9790 |
}
|
|
|
9791 |
/**
|
|
|
9792 |
* M666: Set delta endstop adjustment
|
|
|
9793 |
*/
|
|
|
9794 |
inline void gcode_M666() {
|
|
|
9795 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
9796 |
if (DEBUGGING(LEVELING)) {
|
|
|
9797 |
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
|
|
9798 |
}
|
|
|
9799 |
#endif
|
|
|
9800 |
LOOP_XYZ(i) {
|
|
|
9801 |
if (parser.seen(axis_codes[i])) {
|
|
|
9802 |
if (parser.value_linear_units() * Z_HOME_DIR <= 0)
|
|
|
9803 |
delta_endstop_adj[i] = parser.value_linear_units();
|
|
|
9804 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
9805 |
if (DEBUGGING(LEVELING)) {
|
|
|
9806 |
SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
|
|
|
9807 |
SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
|
|
|
9808 |
}
|
|
|
9809 |
#endif
|
|
|
9810 |
}
|
|
|
9811 |
}
|
|
|
9812 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
9813 |
if (DEBUGGING(LEVELING)) {
|
|
|
9814 |
SERIAL_ECHOLNPGM("<<< gcode_M666");
|
|
|
9815 |
}
|
|
|
9816 |
#endif
|
|
|
9817 |
}
|
|
|
9818 |
|
|
|
9819 |
#elif IS_SCARA
|
|
|
9820 |
|
|
|
9821 |
/**
|
|
|
9822 |
* M665: Set SCARA settings
|
|
|
9823 |
*
|
|
|
9824 |
* Parameters:
|
|
|
9825 |
*
|
|
|
9826 |
* S[segments-per-second] - Segments-per-second
|
|
|
9827 |
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
|
|
|
9828 |
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
|
|
|
9829 |
*
|
|
|
9830 |
* A, P, and X are all aliases for the shoulder angle
|
|
|
9831 |
* B, T, and Y are all aliases for the elbow angle
|
|
|
9832 |
*/
|
|
|
9833 |
inline void gcode_M665() {
|
|
|
9834 |
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
|
|
|
9835 |
|
|
|
9836 |
const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
|
|
|
9837 |
const uint8_t sumAPX = hasA + hasP + hasX;
|
|
|
9838 |
if (sumAPX == 1)
|
|
|
9839 |
home_offset[A_AXIS] = parser.value_float();
|
|
|
9840 |
else if (sumAPX > 1) {
|
|
|
9841 |
SERIAL_ERROR_START();
|
|
|
9842 |
SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
|
|
|
9843 |
return;
|
|
|
9844 |
}
|
|
|
9845 |
|
|
|
9846 |
const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
|
|
|
9847 |
const uint8_t sumBTY = hasB + hasT + hasY;
|
|
|
9848 |
if (sumBTY == 1)
|
|
|
9849 |
home_offset[B_AXIS] = parser.value_float();
|
|
|
9850 |
else if (sumBTY > 1) {
|
|
|
9851 |
SERIAL_ERROR_START();
|
|
|
9852 |
SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
|
|
|
9853 |
return;
|
|
|
9854 |
}
|
|
|
9855 |
}
|
|
|
9856 |
|
|
|
9857 |
#elif ENABLED(HANGPRINTER)
|
|
|
9858 |
/**
|
|
|
9859 |
* M665: Set HANGPRINTER settings
|
|
|
9860 |
*
|
|
|
9861 |
* Parameters:
|
|
|
9862 |
*
|
|
|
9863 |
* W[anchor_A_y] - A-anchor's y coordinate (see note)
|
|
|
9864 |
* E[anchor_A_z] - A-anchor's z coordinate (see note)
|
|
|
9865 |
* R[anchor_B_x] - B-anchor's x coordinate (see note)
|
|
|
9866 |
* T[anchor_B_y] - B-anchor's y coordinate (see note)
|
|
|
9867 |
* Y[anchor_B_z] - B-anchor's z coordinate (see note)
|
|
|
9868 |
* U[anchor_C_x] - C-anchor's x coordinate (see note)
|
|
|
9869 |
* I[anchor_C_y] - C-anchor's y coordinate (see note)
|
|
|
9870 |
* O[anchor_C_z] - C-anchor's z coordinate (see note)
|
|
|
9871 |
* P[anchor_D_z] - D-anchor's z coordinate (see note)
|
|
|
9872 |
* S[segments-per-second] - Segments-per-second
|
|
|
9873 |
*
|
|
|
9874 |
* Note: All xyz coordinates are measured relative to the line's pivot point in the mover,
|
|
|
9875 |
* when it is at its home position (nozzle in (0,0,0), and lines tight).
|
|
|
9876 |
* The y-axis is defined to be horizontal right above/below the A-lines when mover is at home.
|
|
|
9877 |
* The z-axis is along the vertical direction.
|
|
|
9878 |
*/
|
|
|
9879 |
inline void gcode_M665() {
|
|
|
9880 |
if (parser.seen('W')) anchor_A_y = parser.value_float();
|
|
|
9881 |
if (parser.seen('E')) anchor_A_z = parser.value_float();
|
|
|
9882 |
if (parser.seen('R')) anchor_B_x = parser.value_float();
|
|
|
9883 |
if (parser.seen('T')) anchor_B_y = parser.value_float();
|
|
|
9884 |
if (parser.seen('Y')) anchor_B_z = parser.value_float();
|
|
|
9885 |
if (parser.seen('U')) anchor_C_x = parser.value_float();
|
|
|
9886 |
if (parser.seen('I')) anchor_C_y = parser.value_float();
|
|
|
9887 |
if (parser.seen('O')) anchor_C_z = parser.value_float();
|
|
|
9888 |
if (parser.seen('P')) anchor_D_z = parser.value_float();
|
|
|
9889 |
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
|
|
|
9890 |
recalc_hangprinter_settings();
|
|
|
9891 |
}
|
|
|
9892 |
|
|
|
9893 |
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
9894 |
|
|
|
9895 |
/**
|
|
|
9896 |
* M666: Set Dual Endstops offsets for X, Y, and/or Z.
|
|
|
9897 |
* With no parameters report current offsets.
|
|
|
9898 |
*/
|
|
|
9899 |
inline void gcode_M666() {
|
|
|
9900 |
bool report = true;
|
|
|
9901 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
9902 |
if (parser.seenval('X')) {
|
|
|
9903 |
endstops.x_endstop_adj = parser.value_linear_units();
|
|
|
9904 |
report = false;
|
|
|
9905 |
}
|
|
|
9906 |
#endif
|
|
|
9907 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
9908 |
if (parser.seenval('Y')) {
|
|
|
9909 |
endstops.y_endstop_adj = parser.value_linear_units();
|
|
|
9910 |
report = false;
|
|
|
9911 |
}
|
|
|
9912 |
#endif
|
|
|
9913 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
9914 |
if (parser.seenval('Z')) {
|
|
|
9915 |
endstops.z_endstop_adj = parser.value_linear_units();
|
|
|
9916 |
report = false;
|
|
|
9917 |
}
|
|
|
9918 |
#endif
|
|
|
9919 |
if (report) {
|
|
|
9920 |
SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
|
|
|
9921 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
9922 |
SERIAL_ECHOPAIR(" X", endstops.x_endstop_adj);
|
|
|
9923 |
#endif
|
|
|
9924 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
9925 |
SERIAL_ECHOPAIR(" Y", endstops.y_endstop_adj);
|
|
|
9926 |
#endif
|
|
|
9927 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
9928 |
SERIAL_ECHOPAIR(" Z", endstops.z_endstop_adj);
|
|
|
9929 |
#endif
|
|
|
9930 |
SERIAL_EOL();
|
|
|
9931 |
}
|
|
|
9932 |
}
|
|
|
9933 |
|
|
|
9934 |
#endif // X_DUAL_ENDSTOPS || Y_DUAL_ENDSTOPS || Z_DUAL_ENDSTOPS
|
|
|
9935 |
|
|
|
9936 |
#if ENABLED(FWRETRACT)
|
|
|
9937 |
|
|
|
9938 |
/**
|
|
|
9939 |
* M207: Set firmware retraction values
|
|
|
9940 |
*
|
|
|
9941 |
* S[+units] retract_length
|
|
|
9942 |
* W[+units] swap_retract_length (multi-extruder)
|
|
|
9943 |
* F[units/min] retract_feedrate_mm_s
|
|
|
9944 |
* Z[units] retract_zlift
|
|
|
9945 |
*/
|
|
|
9946 |
inline void gcode_M207() {
|
|
|
9947 |
if (parser.seen('S')) fwretract.retract_length = parser.value_axis_units(E_AXIS);
|
|
|
9948 |
if (parser.seen('F')) fwretract.retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
|
|
9949 |
if (parser.seen('Z')) fwretract.retract_zlift = parser.value_linear_units();
|
|
|
9950 |
if (parser.seen('W')) fwretract.swap_retract_length = parser.value_axis_units(E_AXIS);
|
|
|
9951 |
}
|
|
|
9952 |
|
|
|
9953 |
/**
|
|
|
9954 |
* M208: Set firmware un-retraction values
|
|
|
9955 |
*
|
|
|
9956 |
* S[+units] retract_recover_length (in addition to M207 S*)
|
|
|
9957 |
* W[+units] swap_retract_recover_length (multi-extruder)
|
|
|
9958 |
* F[units/min] retract_recover_feedrate_mm_s
|
|
|
9959 |
* R[units/min] swap_retract_recover_feedrate_mm_s
|
|
|
9960 |
*/
|
|
|
9961 |
inline void gcode_M208() {
|
|
|
9962 |
if (parser.seen('S')) fwretract.retract_recover_length = parser.value_axis_units(E_AXIS);
|
|
|
9963 |
if (parser.seen('F')) fwretract.retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
|
|
9964 |
if (parser.seen('R')) fwretract.swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
|
|
9965 |
if (parser.seen('W')) fwretract.swap_retract_recover_length = parser.value_axis_units(E_AXIS);
|
|
|
9966 |
}
|
|
|
9967 |
|
|
|
9968 |
/**
|
|
|
9969 |
* M209: Enable automatic retract (M209 S1)
|
|
|
9970 |
* For slicers that don't support G10/11, reversed extrude-only
|
|
|
9971 |
* moves will be classified as retraction.
|
|
|
9972 |
*/
|
|
|
9973 |
inline void gcode_M209() {
|
|
|
9974 |
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
|
|
|
9975 |
if (parser.seen('S')) {
|
|
|
9976 |
fwretract.autoretract_enabled = parser.value_bool();
|
|
|
9977 |
for (uint8_t i = 0; i < EXTRUDERS; i++) fwretract.retracted[i] = false;
|
|
|
9978 |
}
|
|
|
9979 |
}
|
|
|
9980 |
}
|
|
|
9981 |
|
|
|
9982 |
#endif // FWRETRACT
|
|
|
9983 |
|
|
|
9984 |
/**
|
|
|
9985 |
* M211: Enable, Disable, and/or Report software endstops
|
|
|
9986 |
*
|
|
|
9987 |
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
|
|
|
9988 |
*/
|
|
|
9989 |
inline void gcode_M211() {
|
|
|
9990 |
SERIAL_ECHO_START();
|
|
|
9991 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
9992 |
if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
|
|
|
9993 |
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
|
|
9994 |
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
|
|
|
9995 |
#else
|
|
|
9996 |
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
|
|
9997 |
SERIAL_ECHOPGM(MSG_OFF);
|
|
|
9998 |
#endif
|
|
|
9999 |
SERIAL_ECHOPGM(MSG_SOFT_MIN);
|
|
|
10000 |
SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_min[X_AXIS]));
|
|
|
10001 |
SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_min[Y_AXIS]));
|
|
|
10002 |
SERIAL_ECHOPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_min[Z_AXIS]));
|
|
|
10003 |
SERIAL_ECHOPGM(MSG_SOFT_MAX);
|
|
|
10004 |
SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_max[X_AXIS]));
|
|
|
10005 |
SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_max[Y_AXIS]));
|
|
|
10006 |
SERIAL_ECHOLNPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_max[Z_AXIS]));
|
|
|
10007 |
}
|
|
|
10008 |
|
|
|
10009 |
#if HOTENDS > 1
|
|
|
10010 |
|
|
|
10011 |
/**
|
|
|
10012 |
* M218 - Set/get hotend offset (in linear units)
|
|
|
10013 |
*
|
|
|
10014 |
* T<tool>
|
|
|
10015 |
* X<xoffset>
|
|
|
10016 |
* Y<yoffset>
|
|
|
10017 |
* Z<zoffset> - Available with DUAL_X_CARRIAGE, SWITCHING_NOZZLE, and PARKING_EXTRUDER
|
|
|
10018 |
*/
|
|
|
10019 |
inline void gcode_M218() {
|
|
|
10020 |
if (get_target_extruder_from_command(218) || target_extruder == 0) return;
|
|
|
10021 |
|
|
|
10022 |
bool report = true;
|
|
|
10023 |
if (parser.seenval('X')) {
|
|
|
10024 |
hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
|
|
|
10025 |
report = false;
|
|
|
10026 |
}
|
|
|
10027 |
if (parser.seenval('Y')) {
|
|
|
10028 |
hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
|
|
|
10029 |
report = false;
|
|
|
10030 |
}
|
|
|
10031 |
|
|
|
10032 |
#if HAS_HOTEND_OFFSET_Z
|
|
|
10033 |
if (parser.seenval('Z')) {
|
|
|
10034 |
hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
|
|
|
10035 |
report = false;
|
|
|
10036 |
}
|
|
|
10037 |
#endif
|
|
|
10038 |
|
|
|
10039 |
if (report) {
|
|
|
10040 |
SERIAL_ECHO_START();
|
|
|
10041 |
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
|
10042 |
HOTEND_LOOP() {
|
|
|
10043 |
SERIAL_CHAR(' ');
|
|
|
10044 |
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
|
|
|
10045 |
SERIAL_CHAR(',');
|
|
|
10046 |
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
|
|
|
10047 |
#if HAS_HOTEND_OFFSET_Z
|
|
|
10048 |
SERIAL_CHAR(',');
|
|
|
10049 |
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
|
|
|
10050 |
#endif
|
|
|
10051 |
}
|
|
|
10052 |
SERIAL_EOL();
|
|
|
10053 |
}
|
|
|
10054 |
|
|
|
10055 |
#if ENABLED(DELTA)
|
|
|
10056 |
if (target_extruder == active_extruder)
|
|
|
10057 |
do_blocking_move_to_xy(current_position[X_AXIS], current_position[Y_AXIS], planner.max_feedrate_mm_s[X_AXIS]);
|
|
|
10058 |
#endif
|
|
|
10059 |
}
|
|
|
10060 |
|
|
|
10061 |
#endif // HOTENDS > 1
|
|
|
10062 |
|
|
|
10063 |
/**
|
|
|
10064 |
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
|
|
10065 |
*/
|
|
|
10066 |
inline void gcode_M220() {
|
|
|
10067 |
if (parser.seenval('S')) feedrate_percentage = parser.value_int();
|
|
|
10068 |
}
|
|
|
10069 |
|
|
|
10070 |
/**
|
|
|
10071 |
* M221: Set extrusion percentage (M221 T0 S95)
|
|
|
10072 |
*/
|
|
|
10073 |
inline void gcode_M221() {
|
|
|
10074 |
if (get_target_extruder_from_command(221)) return;
|
|
|
10075 |
if (parser.seenval('S')) {
|
|
|
10076 |
planner.flow_percentage[target_extruder] = parser.value_int();
|
|
|
10077 |
planner.refresh_e_factor(target_extruder);
|
|
|
10078 |
}
|
|
|
10079 |
else {
|
|
|
10080 |
SERIAL_ECHO_START();
|
|
|
10081 |
SERIAL_CHAR('E');
|
|
|
10082 |
SERIAL_CHAR('0' + target_extruder);
|
|
|
10083 |
SERIAL_ECHOPAIR(" Flow: ", planner.flow_percentage[target_extruder]);
|
|
|
10084 |
SERIAL_CHAR('%');
|
|
|
10085 |
SERIAL_EOL();
|
|
|
10086 |
}
|
|
|
10087 |
}
|
|
|
10088 |
|
|
|
10089 |
/**
|
|
|
10090 |
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
|
|
10091 |
*/
|
|
|
10092 |
inline void gcode_M226() {
|
|
|
10093 |
if (parser.seen('P')) {
|
|
|
10094 |
const int pin = parser.value_int(), pin_state = parser.intval('S', -1);
|
|
|
10095 |
if (WITHIN(pin_state, -1, 1) && pin > -1) {
|
|
|
10096 |
if (pin_is_protected(pin))
|
|
|
10097 |
protected_pin_err();
|
|
|
10098 |
else {
|
|
|
10099 |
int target = LOW;
|
|
|
10100 |
planner.synchronize();
|
|
|
10101 |
pinMode(pin, INPUT);
|
|
|
10102 |
switch (pin_state) {
|
|
|
10103 |
case 1: target = HIGH; break;
|
|
|
10104 |
case 0: target = LOW; break;
|
|
|
10105 |
case -1: target = !digitalRead(pin); break;
|
|
|
10106 |
}
|
|
|
10107 |
while (digitalRead(pin) != target) idle();
|
|
|
10108 |
}
|
|
|
10109 |
} // pin_state -1 0 1 && pin > -1
|
|
|
10110 |
} // parser.seen('P')
|
|
|
10111 |
}
|
|
|
10112 |
|
|
|
10113 |
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
10114 |
|
|
|
10115 |
/**
|
|
|
10116 |
* M260: Send data to a I2C slave device
|
|
|
10117 |
*
|
|
|
10118 |
* This is a PoC, the formating and arguments for the GCODE will
|
|
|
10119 |
* change to be more compatible, the current proposal is:
|
|
|
10120 |
*
|
|
|
10121 |
* M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
|
|
|
10122 |
*
|
|
|
10123 |
* M260 B<byte-1 value in base 10>
|
|
|
10124 |
* M260 B<byte-2 value in base 10>
|
|
|
10125 |
* M260 B<byte-3 value in base 10>
|
|
|
10126 |
*
|
|
|
10127 |
* M260 S1 ; Send the buffered data and reset the buffer
|
|
|
10128 |
* M260 R1 ; Reset the buffer without sending data
|
|
|
10129 |
*
|
|
|
10130 |
*/
|
|
|
10131 |
inline void gcode_M260() {
|
|
|
10132 |
// Set the target address
|
|
|
10133 |
if (parser.seen('A')) i2c.address(parser.value_byte());
|
|
|
10134 |
|
|
|
10135 |
// Add a new byte to the buffer
|
|
|
10136 |
if (parser.seen('B')) i2c.addbyte(parser.value_byte());
|
|
|
10137 |
|
|
|
10138 |
// Flush the buffer to the bus
|
|
|
10139 |
if (parser.seen('S')) i2c.send();
|
|
|
10140 |
|
|
|
10141 |
// Reset and rewind the buffer
|
|
|
10142 |
else if (parser.seen('R')) i2c.reset();
|
|
|
10143 |
}
|
|
|
10144 |
|
|
|
10145 |
/**
|
|
|
10146 |
* M261: Request X bytes from I2C slave device
|
|
|
10147 |
*
|
|
|
10148 |
* Usage: M261 A<slave device address base 10> B<number of bytes>
|
|
|
10149 |
*/
|
|
|
10150 |
inline void gcode_M261() {
|
|
|
10151 |
if (parser.seen('A')) i2c.address(parser.value_byte());
|
|
|
10152 |
|
|
|
10153 |
uint8_t bytes = parser.byteval('B', 1);
|
|
|
10154 |
|
|
|
10155 |
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
|
|
|
10156 |
i2c.relay(bytes);
|
|
|
10157 |
}
|
|
|
10158 |
else {
|
|
|
10159 |
SERIAL_ERROR_START();
|
|
|
10160 |
SERIAL_ERRORLNPGM("Bad i2c request");
|
|
|
10161 |
}
|
|
|
10162 |
}
|
|
|
10163 |
|
|
|
10164 |
#endif // EXPERIMENTAL_I2CBUS
|
|
|
10165 |
|
|
|
10166 |
#if HAS_SERVOS
|
|
|
10167 |
|
|
|
10168 |
/**
|
|
|
10169 |
* M280: Get or set servo position. P<index> [S<angle>]
|
|
|
10170 |
*/
|
|
|
10171 |
inline void gcode_M280() {
|
|
|
10172 |
if (!parser.seen('P')) return;
|
|
|
10173 |
const int servo_index = parser.value_int();
|
|
|
10174 |
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
|
|
|
10175 |
if (parser.seen('S'))
|
|
|
10176 |
MOVE_SERVO(servo_index, parser.value_int());
|
|
|
10177 |
else {
|
|
|
10178 |
SERIAL_ECHO_START();
|
|
|
10179 |
SERIAL_ECHOPAIR(" Servo ", servo_index);
|
|
|
10180 |
SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
|
|
|
10181 |
}
|
|
|
10182 |
}
|
|
|
10183 |
else {
|
|
|
10184 |
SERIAL_ERROR_START();
|
|
|
10185 |
SERIAL_ECHOPAIR("Servo ", servo_index);
|
|
|
10186 |
SERIAL_ECHOLNPGM(" out of range");
|
|
|
10187 |
}
|
|
|
10188 |
}
|
|
|
10189 |
|
|
|
10190 |
#endif // HAS_SERVOS
|
|
|
10191 |
|
|
|
10192 |
#if ENABLED(BABYSTEPPING)
|
|
|
10193 |
|
|
|
10194 |
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
|
|
|
10195 |
FORCE_INLINE void mod_zprobe_zoffset(const float &offs) {
|
|
|
10196 |
zprobe_zoffset += offs;
|
|
|
10197 |
SERIAL_ECHO_START();
|
|
|
10198 |
SERIAL_ECHOLNPAIR(MSG_PROBE_Z_OFFSET ": ", zprobe_zoffset);
|
|
|
10199 |
}
|
|
|
10200 |
#endif
|
|
|
10201 |
|
|
|
10202 |
/**
|
|
|
10203 |
* M290: Babystepping
|
|
|
10204 |
*/
|
|
|
10205 |
inline void gcode_M290() {
|
|
|
10206 |
#if ENABLED(BABYSTEP_XY)
|
|
|
10207 |
for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
|
|
|
10208 |
if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
|
|
|
10209 |
const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);
|
|
|
10210 |
thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);
|
|
|
10211 |
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
|
|
|
10212 |
if (a == Z_AXIS && (!parser.seen('P') || parser.value_bool())) mod_zprobe_zoffset(offs);
|
|
|
10213 |
#endif
|
|
|
10214 |
}
|
|
|
10215 |
#else
|
|
|
10216 |
if (parser.seenval('Z') || parser.seenval('S')) {
|
|
|
10217 |
const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);
|
|
|
10218 |
thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);
|
|
|
10219 |
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
|
|
|
10220 |
if (!parser.seen('P') || parser.value_bool()) mod_zprobe_zoffset(offs);
|
|
|
10221 |
#endif
|
|
|
10222 |
}
|
|
|
10223 |
#endif
|
|
|
10224 |
}
|
|
|
10225 |
|
|
|
10226 |
#endif // BABYSTEPPING
|
|
|
10227 |
|
|
|
10228 |
#if HAS_BUZZER
|
|
|
10229 |
|
|
|
10230 |
/**
|
|
|
10231 |
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
|
|
10232 |
*/
|
|
|
10233 |
inline void gcode_M300() {
|
|
|
10234 |
uint16_t const frequency = parser.ushortval('S', 260);
|
|
|
10235 |
uint16_t duration = parser.ushortval('P', 1000);
|
|
|
10236 |
|
|
|
10237 |
// Limits the tone duration to 0-5 seconds.
|
|
|
10238 |
NOMORE(duration, 5000);
|
|
|
10239 |
|
|
|
10240 |
BUZZ(duration, frequency);
|
|
|
10241 |
}
|
|
|
10242 |
|
|
|
10243 |
#endif // HAS_BUZZER
|
|
|
10244 |
|
|
|
10245 |
#if ENABLED(PIDTEMP)
|
|
|
10246 |
|
|
|
10247 |
/**
|
|
|
10248 |
* M301: Set PID parameters P I D (and optionally C, L)
|
|
|
10249 |
*
|
|
|
10250 |
* P[float] Kp term
|
|
|
10251 |
* I[float] Ki term (unscaled)
|
|
|
10252 |
* D[float] Kd term (unscaled)
|
|
|
10253 |
*
|
|
|
10254 |
* With PID_EXTRUSION_SCALING:
|
|
|
10255 |
*
|
|
|
10256 |
* C[float] Kc term
|
|
|
10257 |
* L[int] LPQ length
|
|
|
10258 |
*/
|
|
|
10259 |
inline void gcode_M301() {
|
|
|
10260 |
|
|
|
10261 |
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
|
|
10262 |
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
|
|
10263 |
const uint8_t e = parser.byteval('E'); // extruder being updated
|
|
|
10264 |
|
|
|
10265 |
if (e < HOTENDS) { // catch bad input value
|
|
|
10266 |
if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
|
|
|
10267 |
if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
|
|
|
10268 |
if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
|
|
|
10269 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
10270 |
if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
|
|
|
10271 |
if (parser.seen('L')) thermalManager.lpq_len = parser.value_float();
|
|
|
10272 |
NOMORE(thermalManager.lpq_len, LPQ_MAX_LEN);
|
|
|
10273 |
NOLESS(thermalManager.lpq_len, 0);
|
|
|
10274 |
#endif
|
|
|
10275 |
|
|
|
10276 |
thermalManager.update_pid();
|
|
|
10277 |
SERIAL_ECHO_START();
|
|
|
10278 |
#if ENABLED(PID_PARAMS_PER_HOTEND)
|
|
|
10279 |
SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
|
|
|
10280 |
#endif // PID_PARAMS_PER_HOTEND
|
|
|
10281 |
SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
|
|
|
10282 |
SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
|
|
|
10283 |
SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
|
|
|
10284 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
10285 |
//Kc does not have scaling applied above, or in resetting defaults
|
|
|
10286 |
SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
|
|
|
10287 |
#endif
|
|
|
10288 |
SERIAL_EOL();
|
|
|
10289 |
}
|
|
|
10290 |
else {
|
|
|
10291 |
SERIAL_ERROR_START();
|
|
|
10292 |
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER);
|
|
|
10293 |
}
|
|
|
10294 |
}
|
|
|
10295 |
|
|
|
10296 |
#endif // PIDTEMP
|
|
|
10297 |
|
|
|
10298 |
#if ENABLED(PIDTEMPBED)
|
|
|
10299 |
|
|
|
10300 |
inline void gcode_M304() {
|
|
|
10301 |
if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
|
|
|
10302 |
if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
|
|
|
10303 |
if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
|
|
|
10304 |
|
|
|
10305 |
SERIAL_ECHO_START();
|
|
|
10306 |
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
|
|
|
10307 |
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
|
|
|
10308 |
SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
|
|
|
10309 |
}
|
|
|
10310 |
|
|
|
10311 |
#endif // PIDTEMPBED
|
|
|
10312 |
|
|
|
10313 |
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
|
10314 |
|
|
|
10315 |
/**
|
|
|
10316 |
* M240: Trigger a camera by emulating a Canon RC-1
|
|
|
10317 |
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
|
|
10318 |
*/
|
|
|
10319 |
inline void gcode_M240() {
|
|
|
10320 |
#ifdef CHDK
|
|
|
10321 |
|
|
|
10322 |
OUT_WRITE(CHDK, HIGH);
|
|
|
10323 |
chdkHigh = millis();
|
|
|
10324 |
chdkActive = true;
|
|
|
10325 |
|
|
|
10326 |
#elif HAS_PHOTOGRAPH
|
|
|
10327 |
|
|
|
10328 |
const uint8_t NUM_PULSES = 16;
|
|
|
10329 |
const float PULSE_LENGTH = 0.01524;
|
|
|
10330 |
for (int i = 0; i < NUM_PULSES; i++) {
|
|
|
10331 |
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
|
10332 |
_delay_ms(PULSE_LENGTH);
|
|
|
10333 |
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
10334 |
_delay_ms(PULSE_LENGTH);
|
|
|
10335 |
}
|
|
|
10336 |
delay(7.33);
|
|
|
10337 |
for (int i = 0; i < NUM_PULSES; i++) {
|
|
|
10338 |
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
|
10339 |
_delay_ms(PULSE_LENGTH);
|
|
|
10340 |
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
10341 |
_delay_ms(PULSE_LENGTH);
|
|
|
10342 |
}
|
|
|
10343 |
|
|
|
10344 |
#endif // !CHDK && HAS_PHOTOGRAPH
|
|
|
10345 |
}
|
|
|
10346 |
|
|
|
10347 |
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
10348 |
|
|
|
10349 |
#if HAS_LCD_CONTRAST
|
|
|
10350 |
|
|
|
10351 |
/**
|
|
|
10352 |
* M250: Read and optionally set the LCD contrast
|
|
|
10353 |
*/
|
|
|
10354 |
inline void gcode_M250() {
|
|
|
10355 |
if (parser.seen('C')) set_lcd_contrast(parser.value_int());
|
|
|
10356 |
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
|
10357 |
SERIAL_PROTOCOL(lcd_contrast);
|
|
|
10358 |
SERIAL_EOL();
|
|
|
10359 |
}
|
|
|
10360 |
|
|
|
10361 |
#endif // HAS_LCD_CONTRAST
|
|
|
10362 |
|
|
|
10363 |
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
10364 |
|
|
|
10365 |
/**
|
|
|
10366 |
* M302: Allow cold extrudes, or set the minimum extrude temperature
|
|
|
10367 |
*
|
|
|
10368 |
* S<temperature> sets the minimum extrude temperature
|
|
|
10369 |
* P<bool> enables (1) or disables (0) cold extrusion
|
|
|
10370 |
*
|
|
|
10371 |
* Examples:
|
|
|
10372 |
*
|
|
|
10373 |
* M302 ; report current cold extrusion state
|
|
|
10374 |
* M302 P0 ; enable cold extrusion checking
|
|
|
10375 |
* M302 P1 ; disables cold extrusion checking
|
|
|
10376 |
* M302 S0 ; always allow extrusion (disables checking)
|
|
|
10377 |
* M302 S170 ; only allow extrusion above 170
|
|
|
10378 |
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
|
|
|
10379 |
*/
|
|
|
10380 |
inline void gcode_M302() {
|
|
|
10381 |
const bool seen_S = parser.seen('S');
|
|
|
10382 |
if (seen_S) {
|
|
|
10383 |
thermalManager.extrude_min_temp = parser.value_celsius();
|
|
|
10384 |
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
|
|
|
10385 |
}
|
|
|
10386 |
|
|
|
10387 |
if (parser.seen('P'))
|
|
|
10388 |
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
|
|
|
10389 |
else if (!seen_S) {
|
|
|
10390 |
// Report current state
|
|
|
10391 |
SERIAL_ECHO_START();
|
|
|
10392 |
SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
|
|
|
10393 |
SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
|
|
|
10394 |
SERIAL_ECHOLNPGM("C)");
|
|
|
10395 |
}
|
|
|
10396 |
}
|
|
|
10397 |
|
|
|
10398 |
#endif // PREVENT_COLD_EXTRUSION
|
|
|
10399 |
|
|
|
10400 |
/**
|
|
|
10401 |
* M303: PID relay autotune
|
|
|
10402 |
*
|
|
|
10403 |
* S<temperature> sets the target temperature. (default 150C / 70C)
|
|
|
10404 |
* E<extruder> (-1 for the bed) (default 0)
|
|
|
10405 |
* C<cycles>
|
|
|
10406 |
* U<bool> with a non-zero value will apply the result to current settings
|
|
|
10407 |
*/
|
|
|
10408 |
inline void gcode_M303() {
|
|
|
10409 |
#if HAS_PID_HEATING
|
|
|
10410 |
const int e = parser.intval('E'), c = parser.intval('C', 5);
|
|
|
10411 |
const bool u = parser.boolval('U');
|
|
|
10412 |
|
|
|
10413 |
int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
|
|
|
10414 |
|
|
|
10415 |
if (WITHIN(e, 0, HOTENDS - 1))
|
|
|
10416 |
target_extruder = e;
|
|
|
10417 |
|
|
|
10418 |
#if DISABLED(BUSY_WHILE_HEATING)
|
|
|
10419 |
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
10420 |
#endif
|
|
|
10421 |
|
|
|
10422 |
thermalManager.pid_autotune(temp, e, c, u);
|
|
|
10423 |
|
|
|
10424 |
#if DISABLED(BUSY_WHILE_HEATING)
|
|
|
10425 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
10426 |
#endif
|
|
|
10427 |
#else
|
|
|
10428 |
SERIAL_ERROR_START();
|
|
|
10429 |
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
|
|
|
10430 |
#endif
|
|
|
10431 |
}
|
|
|
10432 |
|
|
|
10433 |
#if ENABLED(MORGAN_SCARA)
|
|
|
10434 |
|
|
|
10435 |
bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
|
|
|
10436 |
if (IsRunning()) {
|
|
|
10437 |
forward_kinematics_SCARA(delta_a, delta_b);
|
|
|
10438 |
destination[X_AXIS] = cartes[X_AXIS];
|
|
|
10439 |
destination[Y_AXIS] = cartes[Y_AXIS];
|
|
|
10440 |
destination[Z_AXIS] = current_position[Z_AXIS];
|
|
|
10441 |
prepare_move_to_destination();
|
|
|
10442 |
return true;
|
|
|
10443 |
}
|
|
|
10444 |
return false;
|
|
|
10445 |
}
|
|
|
10446 |
|
|
|
10447 |
/**
|
|
|
10448 |
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
|
10449 |
*/
|
|
|
10450 |
inline bool gcode_M360() {
|
|
|
10451 |
SERIAL_ECHOLNPGM(" Cal: Theta 0");
|
|
|
10452 |
return SCARA_move_to_cal(0, 120);
|
|
|
10453 |
}
|
|
|
10454 |
|
|
|
10455 |
/**
|
|
|
10456 |
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
|
10457 |
*/
|
|
|
10458 |
inline bool gcode_M361() {
|
|
|
10459 |
SERIAL_ECHOLNPGM(" Cal: Theta 90");
|
|
|
10460 |
return SCARA_move_to_cal(90, 130);
|
|
|
10461 |
}
|
|
|
10462 |
|
|
|
10463 |
/**
|
|
|
10464 |
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
|
10465 |
*/
|
|
|
10466 |
inline bool gcode_M362() {
|
|
|
10467 |
SERIAL_ECHOLNPGM(" Cal: Psi 0");
|
|
|
10468 |
return SCARA_move_to_cal(60, 180);
|
|
|
10469 |
}
|
|
|
10470 |
|
|
|
10471 |
/**
|
|
|
10472 |
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
|
10473 |
*/
|
|
|
10474 |
inline bool gcode_M363() {
|
|
|
10475 |
SERIAL_ECHOLNPGM(" Cal: Psi 90");
|
|
|
10476 |
return SCARA_move_to_cal(50, 90);
|
|
|
10477 |
}
|
|
|
10478 |
|
|
|
10479 |
/**
|
|
|
10480 |
* M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
|
|
|
10481 |
*/
|
|
|
10482 |
inline bool gcode_M364() {
|
|
|
10483 |
SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
|
|
|
10484 |
return SCARA_move_to_cal(45, 135);
|
|
|
10485 |
}
|
|
|
10486 |
|
|
|
10487 |
#endif // SCARA
|
|
|
10488 |
|
|
|
10489 |
#if ENABLED(EXT_SOLENOID)
|
|
|
10490 |
|
|
|
10491 |
void enable_solenoid(const uint8_t num) {
|
|
|
10492 |
switch (num) {
|
|
|
10493 |
case 0:
|
|
|
10494 |
OUT_WRITE(SOL0_PIN, HIGH);
|
|
|
10495 |
break;
|
|
|
10496 |
#if HAS_SOLENOID_1 && EXTRUDERS > 1
|
|
|
10497 |
case 1:
|
|
|
10498 |
OUT_WRITE(SOL1_PIN, HIGH);
|
|
|
10499 |
break;
|
|
|
10500 |
#endif
|
|
|
10501 |
#if HAS_SOLENOID_2 && EXTRUDERS > 2
|
|
|
10502 |
case 2:
|
|
|
10503 |
OUT_WRITE(SOL2_PIN, HIGH);
|
|
|
10504 |
break;
|
|
|
10505 |
#endif
|
|
|
10506 |
#if HAS_SOLENOID_3 && EXTRUDERS > 3
|
|
|
10507 |
case 3:
|
|
|
10508 |
OUT_WRITE(SOL3_PIN, HIGH);
|
|
|
10509 |
break;
|
|
|
10510 |
#endif
|
|
|
10511 |
#if HAS_SOLENOID_4 && EXTRUDERS > 4
|
|
|
10512 |
case 4:
|
|
|
10513 |
OUT_WRITE(SOL4_PIN, HIGH);
|
|
|
10514 |
break;
|
|
|
10515 |
#endif
|
|
|
10516 |
default:
|
|
|
10517 |
SERIAL_ECHO_START();
|
|
|
10518 |
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
|
|
10519 |
break;
|
|
|
10520 |
}
|
|
|
10521 |
}
|
|
|
10522 |
|
|
|
10523 |
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
|
|
10524 |
|
|
|
10525 |
void disable_all_solenoids() {
|
|
|
10526 |
OUT_WRITE(SOL0_PIN, LOW);
|
|
|
10527 |
#if HAS_SOLENOID_1 && EXTRUDERS > 1
|
|
|
10528 |
OUT_WRITE(SOL1_PIN, LOW);
|
|
|
10529 |
#endif
|
|
|
10530 |
#if HAS_SOLENOID_2 && EXTRUDERS > 2
|
|
|
10531 |
OUT_WRITE(SOL2_PIN, LOW);
|
|
|
10532 |
#endif
|
|
|
10533 |
#if HAS_SOLENOID_3 && EXTRUDERS > 3
|
|
|
10534 |
OUT_WRITE(SOL3_PIN, LOW);
|
|
|
10535 |
#endif
|
|
|
10536 |
#if HAS_SOLENOID_4 && EXTRUDERS > 4
|
|
|
10537 |
OUT_WRITE(SOL4_PIN, LOW);
|
|
|
10538 |
#endif
|
|
|
10539 |
}
|
|
|
10540 |
|
|
|
10541 |
/**
|
|
|
10542 |
* M380: Enable solenoid on the active extruder
|
|
|
10543 |
*/
|
|
|
10544 |
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
|
|
10545 |
|
|
|
10546 |
/**
|
|
|
10547 |
* M381: Disable all solenoids
|
|
|
10548 |
*/
|
|
|
10549 |
inline void gcode_M381() { disable_all_solenoids(); }
|
|
|
10550 |
|
|
|
10551 |
#endif // EXT_SOLENOID
|
|
|
10552 |
|
|
|
10553 |
/**
|
|
|
10554 |
* M400: Finish all moves
|
|
|
10555 |
*/
|
|
|
10556 |
inline void gcode_M400() { planner.synchronize(); }
|
|
|
10557 |
|
|
|
10558 |
#if HAS_BED_PROBE
|
|
|
10559 |
|
|
|
10560 |
/**
|
|
|
10561 |
* M401: Deploy and activate the Z probe
|
|
|
10562 |
*/
|
|
|
10563 |
inline void gcode_M401() {
|
|
|
10564 |
DEPLOY_PROBE();
|
|
|
10565 |
report_current_position();
|
|
|
10566 |
}
|
|
|
10567 |
|
|
|
10568 |
/**
|
|
|
10569 |
* M402: Deactivate and stow the Z probe
|
|
|
10570 |
*/
|
|
|
10571 |
inline void gcode_M402() {
|
|
|
10572 |
STOW_PROBE();
|
|
|
10573 |
#ifdef Z_AFTER_PROBING
|
|
|
10574 |
move_z_after_probing();
|
|
|
10575 |
#endif
|
|
|
10576 |
report_current_position();
|
|
|
10577 |
}
|
|
|
10578 |
|
|
|
10579 |
#endif // HAS_BED_PROBE
|
|
|
10580 |
|
|
|
10581 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
10582 |
|
|
|
10583 |
/**
|
|
|
10584 |
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
|
|
|
10585 |
*/
|
|
|
10586 |
inline void gcode_M404() {
|
|
|
10587 |
if (parser.seen('W')) {
|
|
|
10588 |
filament_width_nominal = parser.value_linear_units();
|
|
|
10589 |
planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
|
|
|
10590 |
}
|
|
|
10591 |
else {
|
|
|
10592 |
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
|
10593 |
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
|
10594 |
}
|
|
|
10595 |
}
|
|
|
10596 |
|
|
|
10597 |
/**
|
|
|
10598 |
* M405: Turn on filament sensor for control
|
|
|
10599 |
*/
|
|
|
10600 |
inline void gcode_M405() {
|
|
|
10601 |
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
|
|
|
10602 |
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
|
|
|
10603 |
if (parser.seen('D')) {
|
|
|
10604 |
meas_delay_cm = parser.value_byte();
|
|
|
10605 |
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
|
|
|
10606 |
}
|
|
|
10607 |
|
|
|
10608 |
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
|
|
10609 |
const int8_t temp_ratio = thermalManager.widthFil_to_size_ratio();
|
|
|
10610 |
|
|
|
10611 |
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
|
|
10612 |
measurement_delay[i] = temp_ratio;
|
|
|
10613 |
|
|
|
10614 |
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
|
|
|
10615 |
}
|
|
|
10616 |
|
|
|
10617 |
filament_sensor = true;
|
|
|
10618 |
}
|
|
|
10619 |
|
|
|
10620 |
/**
|
|
|
10621 |
* M406: Turn off filament sensor for control
|
|
|
10622 |
*/
|
|
|
10623 |
inline void gcode_M406() {
|
|
|
10624 |
filament_sensor = false;
|
|
|
10625 |
planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
|
|
|
10626 |
}
|
|
|
10627 |
|
|
|
10628 |
/**
|
|
|
10629 |
* M407: Get measured filament diameter on serial output
|
|
|
10630 |
*/
|
|
|
10631 |
inline void gcode_M407() {
|
|
|
10632 |
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
|
10633 |
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
|
10634 |
}
|
|
|
10635 |
|
|
|
10636 |
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
10637 |
|
|
|
10638 |
void quickstop_stepper() {
|
|
|
10639 |
planner.quick_stop();
|
|
|
10640 |
planner.synchronize();
|
|
|
10641 |
set_current_from_steppers_for_axis(ALL_AXES);
|
|
|
10642 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
10643 |
}
|
|
|
10644 |
|
|
|
10645 |
#if HAS_LEVELING
|
|
|
10646 |
|
|
|
10647 |
//#define M420_C_USE_MEAN
|
|
|
10648 |
|
|
|
10649 |
/**
|
|
|
10650 |
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
|
|
|
10651 |
*
|
|
|
10652 |
* S[bool] Turns leveling on or off
|
|
|
10653 |
* Z[height] Sets the Z fade height (0 or none to disable)
|
|
|
10654 |
* V[bool] Verbose - Print the leveling grid
|
|
|
10655 |
*
|
|
|
10656 |
* With AUTO_BED_LEVELING_UBL only:
|
|
|
10657 |
*
|
|
|
10658 |
* L[index] Load UBL mesh from index (0 is default)
|
|
|
10659 |
* T[map] 0:Human-readable 1:CSV 2:"LCD" 4:Compact
|
|
|
10660 |
*
|
|
|
10661 |
* With mesh-based leveling only:
|
|
|
10662 |
*
|
|
|
10663 |
* C Center mesh on the mean of the lowest and highest
|
|
|
10664 |
*/
|
|
|
10665 |
inline void gcode_M420() {
|
|
|
10666 |
const bool seen_S = parser.seen('S');
|
|
|
10667 |
bool to_enable = seen_S ? parser.value_bool() : planner.leveling_active;
|
|
|
10668 |
|
|
|
10669 |
// If disabling leveling do it right away
|
|
|
10670 |
// (Don't disable for just M420 or M420 V)
|
|
|
10671 |
if (seen_S && !to_enable) set_bed_leveling_enabled(false);
|
|
|
10672 |
|
|
|
10673 |
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
|
|
10674 |
|
|
|
10675 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
10676 |
|
|
|
10677 |
// L to load a mesh from the EEPROM
|
|
|
10678 |
if (parser.seen('L')) {
|
|
|
10679 |
|
|
|
10680 |
set_bed_leveling_enabled(false);
|
|
|
10681 |
|
|
|
10682 |
#if ENABLED(EEPROM_SETTINGS)
|
|
|
10683 |
const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
|
|
|
10684 |
const int16_t a = settings.calc_num_meshes();
|
|
|
10685 |
|
|
|
10686 |
if (!a) {
|
|
|
10687 |
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
|
|
10688 |
return;
|
|
|
10689 |
}
|
|
|
10690 |
|
|
|
10691 |
if (!WITHIN(storage_slot, 0, a - 1)) {
|
|
|
10692 |
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
|
|
|
10693 |
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
|
|
|
10694 |
return;
|
|
|
10695 |
}
|
|
|
10696 |
|
|
|
10697 |
settings.load_mesh(storage_slot);
|
|
|
10698 |
ubl.storage_slot = storage_slot;
|
|
|
10699 |
|
|
|
10700 |
#else
|
|
|
10701 |
|
|
|
10702 |
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
|
|
10703 |
return;
|
|
|
10704 |
|
|
|
10705 |
#endif
|
|
|
10706 |
}
|
|
|
10707 |
|
|
|
10708 |
// L or V display the map info
|
|
|
10709 |
if (parser.seen('L') || parser.seen('V')) {
|
|
|
10710 |
ubl.display_map(parser.byteval('T'));
|
|
|
10711 |
SERIAL_ECHOPGM("Mesh is ");
|
|
|
10712 |
if (!ubl.mesh_is_valid()) SERIAL_ECHOPGM("in");
|
|
|
10713 |
SERIAL_ECHOLNPAIR("valid\nStorage slot: ", ubl.storage_slot);
|
|
|
10714 |
}
|
|
|
10715 |
|
|
|
10716 |
#endif // AUTO_BED_LEVELING_UBL
|
|
|
10717 |
|
|
|
10718 |
#if HAS_MESH
|
|
|
10719 |
|
|
|
10720 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
10721 |
#define Z_VALUES(X,Y) mbl.z_values[X][Y]
|
|
|
10722 |
#else
|
|
|
10723 |
#define Z_VALUES(X,Y) z_values[X][Y]
|
|
|
10724 |
#endif
|
|
|
10725 |
|
|
|
10726 |
// Subtract the given value or the mean from all mesh values
|
|
|
10727 |
if (leveling_is_valid() && parser.seen('C')) {
|
|
|
10728 |
const float cval = parser.value_float();
|
|
|
10729 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
10730 |
|
|
|
10731 |
set_bed_leveling_enabled(false);
|
|
|
10732 |
ubl.adjust_mesh_to_mean(true, cval);
|
|
|
10733 |
|
|
|
10734 |
#else
|
|
|
10735 |
|
|
|
10736 |
#if ENABLED(M420_C_USE_MEAN)
|
|
|
10737 |
|
|
|
10738 |
// Get the sum and average of all mesh values
|
|
|
10739 |
float mesh_sum = 0;
|
|
|
10740 |
for (uint8_t x = GRID_MAX_POINTS_X; x--;)
|
|
|
10741 |
for (uint8_t y = GRID_MAX_POINTS_Y; y--;)
|
|
|
10742 |
mesh_sum += Z_VALUES(x, y);
|
|
|
10743 |
const float zmean = mesh_sum / float(GRID_MAX_POINTS);
|
|
|
10744 |
|
|
|
10745 |
#else
|
|
|
10746 |
|
|
|
10747 |
// Find the low and high mesh values
|
|
|
10748 |
float lo_val = 100, hi_val = -100;
|
|
|
10749 |
for (uint8_t x = GRID_MAX_POINTS_X; x--;)
|
|
|
10750 |
for (uint8_t y = GRID_MAX_POINTS_Y; y--;) {
|
|
|
10751 |
const float z = Z_VALUES(x, y);
|
|
|
10752 |
NOMORE(lo_val, z);
|
|
|
10753 |
NOLESS(hi_val, z);
|
|
|
10754 |
}
|
|
|
10755 |
// Take the mean of the lowest and highest
|
|
|
10756 |
const float zmean = (lo_val + hi_val) / 2.0 + cval;
|
|
|
10757 |
|
|
|
10758 |
#endif
|
|
|
10759 |
|
|
|
10760 |
// If not very close to 0, adjust the mesh
|
|
|
10761 |
if (!NEAR_ZERO(zmean)) {
|
|
|
10762 |
set_bed_leveling_enabled(false);
|
|
|
10763 |
// Subtract the mean from all values
|
|
|
10764 |
for (uint8_t x = GRID_MAX_POINTS_X; x--;)
|
|
|
10765 |
for (uint8_t y = GRID_MAX_POINTS_Y; y--;)
|
|
|
10766 |
Z_VALUES(x, y) -= zmean;
|
|
|
10767 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
10768 |
bed_level_virt_interpolate();
|
|
|
10769 |
#endif
|
|
|
10770 |
}
|
|
|
10771 |
|
|
|
10772 |
#endif
|
|
|
10773 |
}
|
|
|
10774 |
|
|
|
10775 |
#endif // HAS_MESH
|
|
|
10776 |
|
|
|
10777 |
// V to print the matrix or mesh
|
|
|
10778 |
if (parser.seen('V')) {
|
|
|
10779 |
#if ABL_PLANAR
|
|
|
10780 |
planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
|
|
|
10781 |
#else
|
|
|
10782 |
if (leveling_is_valid()) {
|
|
|
10783 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
10784 |
print_bilinear_leveling_grid();
|
|
|
10785 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
10786 |
print_bilinear_leveling_grid_virt();
|
|
|
10787 |
#endif
|
|
|
10788 |
#elif ENABLED(MESH_BED_LEVELING)
|
|
|
10789 |
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
|
|
|
10790 |
mbl.report_mesh();
|
|
|
10791 |
#endif
|
|
|
10792 |
}
|
|
|
10793 |
#endif
|
|
|
10794 |
}
|
|
|
10795 |
|
|
|
10796 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
10797 |
if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units(), false);
|
|
|
10798 |
#endif
|
|
|
10799 |
|
|
|
10800 |
// Enable leveling if specified, or if previously active
|
|
|
10801 |
set_bed_leveling_enabled(to_enable);
|
|
|
10802 |
|
|
|
10803 |
// Error if leveling failed to enable or reenable
|
|
|
10804 |
if (to_enable && !planner.leveling_active) {
|
|
|
10805 |
SERIAL_ERROR_START();
|
|
|
10806 |
SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
|
|
|
10807 |
}
|
|
|
10808 |
|
|
|
10809 |
SERIAL_ECHO_START();
|
|
|
10810 |
SERIAL_ECHOLNPAIR("Bed Leveling ", planner.leveling_active ? MSG_ON : MSG_OFF);
|
|
|
10811 |
|
|
|
10812 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
10813 |
SERIAL_ECHO_START();
|
|
|
10814 |
SERIAL_ECHOPGM("Fade Height ");
|
|
|
10815 |
if (planner.z_fade_height > 0.0)
|
|
|
10816 |
SERIAL_ECHOLN(planner.z_fade_height);
|
|
|
10817 |
else
|
|
|
10818 |
SERIAL_ECHOLNPGM(MSG_OFF);
|
|
|
10819 |
#endif
|
|
|
10820 |
|
|
|
10821 |
// Report change in position
|
|
|
10822 |
if (memcmp(oldpos, current_position, sizeof(oldpos)))
|
|
|
10823 |
report_current_position();
|
|
|
10824 |
}
|
|
|
10825 |
|
|
|
10826 |
#endif // HAS_LEVELING
|
|
|
10827 |
|
|
|
10828 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
10829 |
|
|
|
10830 |
/**
|
|
|
10831 |
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
|
10832 |
*
|
|
|
10833 |
* Usage:
|
|
|
10834 |
* M421 X<linear> Y<linear> Z<linear>
|
|
|
10835 |
* M421 X<linear> Y<linear> Q<offset>
|
|
|
10836 |
* M421 I<xindex> J<yindex> Z<linear>
|
|
|
10837 |
* M421 I<xindex> J<yindex> Q<offset>
|
|
|
10838 |
*/
|
|
|
10839 |
inline void gcode_M421() {
|
|
|
10840 |
const bool hasX = parser.seen('X'), hasI = parser.seen('I');
|
|
|
10841 |
const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
|
|
|
10842 |
const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
|
|
|
10843 |
const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
|
|
|
10844 |
const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
|
|
|
10845 |
|
|
|
10846 |
if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
|
|
|
10847 |
SERIAL_ERROR_START();
|
|
|
10848 |
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
|
|
10849 |
}
|
|
|
10850 |
else if (ix < 0 || iy < 0) {
|
|
|
10851 |
SERIAL_ERROR_START();
|
|
|
10852 |
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
|
10853 |
}
|
|
|
10854 |
else
|
|
|
10855 |
mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
|
|
|
10856 |
}
|
|
|
10857 |
|
|
|
10858 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
10859 |
|
|
|
10860 |
/**
|
|
|
10861 |
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
|
10862 |
*
|
|
|
10863 |
* Usage:
|
|
|
10864 |
* M421 I<xindex> J<yindex> Z<linear>
|
|
|
10865 |
* M421 I<xindex> J<yindex> Q<offset>
|
|
|
10866 |
*/
|
|
|
10867 |
inline void gcode_M421() {
|
|
|
10868 |
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
|
|
|
10869 |
const bool hasI = ix >= 0,
|
|
|
10870 |
hasJ = iy >= 0,
|
|
|
10871 |
hasZ = parser.seen('Z'),
|
|
|
10872 |
hasQ = !hasZ && parser.seen('Q');
|
|
|
10873 |
|
|
|
10874 |
if (!hasI || !hasJ || !(hasZ || hasQ)) {
|
|
|
10875 |
SERIAL_ERROR_START();
|
|
|
10876 |
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
|
|
10877 |
}
|
|
|
10878 |
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
10879 |
SERIAL_ERROR_START();
|
|
|
10880 |
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
|
10881 |
}
|
|
|
10882 |
else {
|
|
|
10883 |
z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
|
|
|
10884 |
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
10885 |
bed_level_virt_interpolate();
|
|
|
10886 |
#endif
|
|
|
10887 |
}
|
|
|
10888 |
}
|
|
|
10889 |
|
|
|
10890 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
10891 |
|
|
|
10892 |
/**
|
|
|
10893 |
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
|
10894 |
*
|
|
|
10895 |
* Usage:
|
|
|
10896 |
* M421 I<xindex> J<yindex> Z<linear>
|
|
|
10897 |
* M421 I<xindex> J<yindex> Q<offset>
|
|
|
10898 |
* M421 I<xindex> J<yindex> N
|
|
|
10899 |
* M421 C Z<linear>
|
|
|
10900 |
* M421 C Q<offset>
|
|
|
10901 |
*/
|
|
|
10902 |
inline void gcode_M421() {
|
|
|
10903 |
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
|
|
|
10904 |
const bool hasI = ix >= 0,
|
|
|
10905 |
hasJ = iy >= 0,
|
|
|
10906 |
hasC = parser.seen('C'),
|
|
|
10907 |
hasN = parser.seen('N'),
|
|
|
10908 |
hasZ = parser.seen('Z'),
|
|
|
10909 |
hasQ = !hasZ && parser.seen('Q');
|
|
|
10910 |
|
|
|
10911 |
if (hasC) {
|
|
|
10912 |
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
|
|
|
10913 |
ix = location.x_index;
|
|
|
10914 |
iy = location.y_index;
|
|
|
10915 |
}
|
|
|
10916 |
|
|
|
10917 |
if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ || hasN)) {
|
|
|
10918 |
SERIAL_ERROR_START();
|
|
|
10919 |
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
|
|
10920 |
}
|
|
|
10921 |
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
10922 |
SERIAL_ERROR_START();
|
|
|
10923 |
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
|
10924 |
}
|
|
|
10925 |
else
|
|
|
10926 |
ubl.z_values[ix][iy] = hasN ? NAN : parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
|
|
|
10927 |
}
|
|
|
10928 |
|
|
|
10929 |
#endif // AUTO_BED_LEVELING_UBL
|
|
|
10930 |
|
|
|
10931 |
#if HAS_M206_COMMAND
|
|
|
10932 |
|
|
|
10933 |
/**
|
|
|
10934 |
* M428: Set home_offset based on the distance between the
|
|
|
10935 |
* current_position and the nearest "reference point."
|
|
|
10936 |
* If an axis is past center its endstop position
|
|
|
10937 |
* is the reference-point. Otherwise it uses 0. This allows
|
|
|
10938 |
* the Z offset to be set near the bed when using a max endstop.
|
|
|
10939 |
*
|
|
|
10940 |
* M428 can't be used more than 2cm away from 0 or an endstop.
|
|
|
10941 |
*
|
|
|
10942 |
* Use M206 to set these values directly.
|
|
|
10943 |
*/
|
|
|
10944 |
inline void gcode_M428() {
|
|
|
10945 |
if (axis_unhomed_error()) return;
|
|
|
10946 |
|
|
|
10947 |
float diff[XYZ];
|
|
|
10948 |
LOOP_XYZ(i) {
|
|
|
10949 |
diff[i] = base_home_pos((AxisEnum)i) - current_position[i];
|
|
|
10950 |
if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)
|
|
|
10951 |
diff[i] = -current_position[i];
|
|
|
10952 |
if (!WITHIN(diff[i], -20, 20)) {
|
|
|
10953 |
SERIAL_ERROR_START();
|
|
|
10954 |
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
|
|
|
10955 |
LCD_ALERTMESSAGEPGM("Err: Too far!");
|
|
|
10956 |
BUZZ(200, 40);
|
|
|
10957 |
return;
|
|
|
10958 |
}
|
|
|
10959 |
}
|
|
|
10960 |
|
|
|
10961 |
LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);
|
|
|
10962 |
report_current_position();
|
|
|
10963 |
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
|
|
|
10964 |
BUZZ(100, 659);
|
|
|
10965 |
BUZZ(100, 698);
|
|
|
10966 |
}
|
|
|
10967 |
|
|
|
10968 |
#endif // HAS_M206_COMMAND
|
|
|
10969 |
|
|
|
10970 |
/**
|
|
|
10971 |
* M500: Store settings in EEPROM
|
|
|
10972 |
*/
|
|
|
10973 |
inline void gcode_M500() {
|
|
|
10974 |
(void)settings.save();
|
|
|
10975 |
}
|
|
|
10976 |
|
|
|
10977 |
/**
|
|
|
10978 |
* M501: Read settings from EEPROM
|
|
|
10979 |
*/
|
|
|
10980 |
inline void gcode_M501() {
|
|
|
10981 |
(void)settings.load();
|
|
|
10982 |
}
|
|
|
10983 |
|
|
|
10984 |
/**
|
|
|
10985 |
* M502: Revert to default settings
|
|
|
10986 |
*/
|
|
|
10987 |
inline void gcode_M502() {
|
|
|
10988 |
(void)settings.reset();
|
|
|
10989 |
}
|
|
|
10990 |
|
|
|
10991 |
#if DISABLED(DISABLE_M503)
|
|
|
10992 |
/**
|
|
|
10993 |
* M503: print settings currently in memory
|
|
|
10994 |
*/
|
|
|
10995 |
inline void gcode_M503() {
|
|
|
10996 |
(void)settings.report(parser.seen('S') && !parser.value_bool());
|
|
|
10997 |
}
|
|
|
10998 |
#endif
|
|
|
10999 |
|
|
|
11000 |
#if ENABLED(EEPROM_SETTINGS)
|
|
|
11001 |
/**
|
|
|
11002 |
* M504: Validate EEPROM Contents
|
|
|
11003 |
*/
|
|
|
11004 |
inline void gcode_M504() {
|
|
|
11005 |
if (settings.validate()) {
|
|
|
11006 |
SERIAL_ECHO_START();
|
|
|
11007 |
SERIAL_ECHOLNPGM("EEPROM OK");
|
|
|
11008 |
}
|
|
|
11009 |
}
|
|
|
11010 |
#endif
|
|
|
11011 |
|
|
|
11012 |
#if ENABLED(SDSUPPORT)
|
|
|
11013 |
|
|
|
11014 |
/**
|
|
|
11015 |
* M524: Abort the current SD print job (started with M24)
|
|
|
11016 |
*/
|
|
|
11017 |
inline void gcode_M524() {
|
|
|
11018 |
if (IS_SD_PRINTING()) card.abort_sd_printing = true;
|
|
|
11019 |
}
|
|
|
11020 |
|
|
|
11021 |
#endif // SDSUPPORT
|
|
|
11022 |
|
|
|
11023 |
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
11024 |
|
|
|
11025 |
/**
|
|
|
11026 |
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
|
|
11027 |
*/
|
|
|
11028 |
inline void gcode_M540() {
|
|
|
11029 |
if (parser.seen('S')) planner.abort_on_endstop_hit = parser.value_bool();
|
|
|
11030 |
}
|
|
|
11031 |
|
|
|
11032 |
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
11033 |
|
|
|
11034 |
#if HAS_BED_PROBE
|
|
|
11035 |
|
|
|
11036 |
inline void gcode_M851() {
|
|
|
11037 |
if (parser.seenval('Z')) {
|
|
|
11038 |
const float value = parser.value_linear_units();
|
|
|
11039 |
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX))
|
|
|
11040 |
zprobe_zoffset = value;
|
|
|
11041 |
else {
|
|
|
11042 |
SERIAL_ERROR_START();
|
|
|
11043 |
SERIAL_ERRORLNPGM("?Z out of range (" STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " to " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX) ")");
|
|
|
11044 |
}
|
|
|
11045 |
return;
|
|
|
11046 |
}
|
|
|
11047 |
SERIAL_ECHO_START();
|
|
|
11048 |
SERIAL_ECHOPGM(MSG_PROBE_Z_OFFSET);
|
|
|
11049 |
SERIAL_ECHOLNPAIR(": ", zprobe_zoffset);
|
|
|
11050 |
}
|
|
|
11051 |
|
|
|
11052 |
#endif // HAS_BED_PROBE
|
|
|
11053 |
|
|
|
11054 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
11055 |
|
|
|
11056 |
/**
|
|
|
11057 |
* M852: Get or set the machine skew factors. Reports current values with no arguments.
|
|
|
11058 |
*
|
|
|
11059 |
* S[xy_factor] - Alias for 'I'
|
|
|
11060 |
* I[xy_factor] - New XY skew factor
|
|
|
11061 |
* J[xz_factor] - New XZ skew factor
|
|
|
11062 |
* K[yz_factor] - New YZ skew factor
|
|
|
11063 |
*/
|
|
|
11064 |
inline void gcode_M852() {
|
|
|
11065 |
uint8_t ijk = 0, badval = 0, setval = 0;
|
|
|
11066 |
|
|
|
11067 |
if (parser.seen('I') || parser.seen('S')) {
|
|
|
11068 |
++ijk;
|
|
|
11069 |
const float value = parser.value_linear_units();
|
|
|
11070 |
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
|
|
|
11071 |
if (planner.xy_skew_factor != value) {
|
|
|
11072 |
planner.xy_skew_factor = value;
|
|
|
11073 |
++setval;
|
|
|
11074 |
}
|
|
|
11075 |
}
|
|
|
11076 |
else
|
|
|
11077 |
++badval;
|
|
|
11078 |
}
|
|
|
11079 |
|
|
|
11080 |
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
11081 |
|
|
|
11082 |
if (parser.seen('J')) {
|
|
|
11083 |
++ijk;
|
|
|
11084 |
const float value = parser.value_linear_units();
|
|
|
11085 |
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
|
|
|
11086 |
if (planner.xz_skew_factor != value) {
|
|
|
11087 |
planner.xz_skew_factor = value;
|
|
|
11088 |
++setval;
|
|
|
11089 |
}
|
|
|
11090 |
}
|
|
|
11091 |
else
|
|
|
11092 |
++badval;
|
|
|
11093 |
}
|
|
|
11094 |
|
|
|
11095 |
if (parser.seen('K')) {
|
|
|
11096 |
++ijk;
|
|
|
11097 |
const float value = parser.value_linear_units();
|
|
|
11098 |
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
|
|
|
11099 |
if (planner.yz_skew_factor != value) {
|
|
|
11100 |
planner.yz_skew_factor = value;
|
|
|
11101 |
++setval;
|
|
|
11102 |
}
|
|
|
11103 |
}
|
|
|
11104 |
else
|
|
|
11105 |
++badval;
|
|
|
11106 |
}
|
|
|
11107 |
|
|
|
11108 |
#endif
|
|
|
11109 |
|
|
|
11110 |
if (badval)
|
|
|
11111 |
SERIAL_ECHOLNPGM(MSG_SKEW_MIN " " STRINGIFY(SKEW_FACTOR_MIN) " " MSG_SKEW_MAX " " STRINGIFY(SKEW_FACTOR_MAX));
|
|
|
11112 |
|
|
|
11113 |
// When skew is changed the current position changes
|
|
|
11114 |
if (setval) {
|
|
|
11115 |
set_current_from_steppers_for_axis(ALL_AXES);
|
|
|
11116 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
11117 |
report_current_position();
|
|
|
11118 |
}
|
|
|
11119 |
|
|
|
11120 |
if (!ijk) {
|
|
|
11121 |
SERIAL_ECHO_START();
|
|
|
11122 |
SERIAL_ECHOPGM(MSG_SKEW_FACTOR " XY: ");
|
|
|
11123 |
SERIAL_ECHO_F(planner.xy_skew_factor, 6);
|
|
|
11124 |
SERIAL_EOL();
|
|
|
11125 |
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
11126 |
SERIAL_ECHOPAIR(" XZ: ", planner.xz_skew_factor);
|
|
|
11127 |
SERIAL_ECHOLNPAIR(" YZ: ", planner.yz_skew_factor);
|
|
|
11128 |
#else
|
|
|
11129 |
SERIAL_EOL();
|
|
|
11130 |
#endif
|
|
|
11131 |
}
|
|
|
11132 |
}
|
|
|
11133 |
|
|
|
11134 |
#endif // SKEW_CORRECTION_GCODE
|
|
|
11135 |
|
|
|
11136 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
11137 |
|
|
|
11138 |
/**
|
|
|
11139 |
* M600: Pause for filament change
|
|
|
11140 |
*
|
|
|
11141 |
* E[distance] - Retract the filament this far
|
|
|
11142 |
* Z[distance] - Move the Z axis by this distance
|
|
|
11143 |
* X[position] - Move to this X position, with Y
|
|
|
11144 |
* Y[position] - Move to this Y position, with X
|
|
|
11145 |
* U[distance] - Retract distance for removal (manual reload)
|
|
|
11146 |
* L[distance] - Extrude distance for insertion (manual reload)
|
|
|
11147 |
* B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
|
|
|
11148 |
* T[toolhead] - Select extruder for filament change
|
|
|
11149 |
*
|
|
|
11150 |
* Default values are used for omitted arguments.
|
|
|
11151 |
*/
|
|
|
11152 |
inline void gcode_M600() {
|
|
|
11153 |
point_t park_point = NOZZLE_PARK_POINT;
|
|
|
11154 |
|
|
|
11155 |
if (get_target_extruder_from_command(600)) return;
|
|
|
11156 |
|
|
|
11157 |
// Show initial message
|
|
|
11158 |
#if ENABLED(ULTIPANEL)
|
|
|
11159 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT, ADVANCED_PAUSE_MODE_PAUSE_PRINT, target_extruder);
|
|
|
11160 |
#endif
|
|
|
11161 |
|
|
|
11162 |
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
|
|
|
11163 |
// Don't allow filament change without homing first
|
|
|
11164 |
if (axis_unhomed_error()) home_all_axes();
|
|
|
11165 |
#endif
|
|
|
11166 |
|
|
|
11167 |
#if EXTRUDERS > 1
|
|
|
11168 |
// Change toolhead if specified
|
|
|
11169 |
uint8_t active_extruder_before_filament_change = active_extruder;
|
|
|
11170 |
if (active_extruder != target_extruder)
|
|
|
11171 |
tool_change(target_extruder, 0, true);
|
|
|
11172 |
#endif
|
|
|
11173 |
|
|
|
11174 |
// Initial retract before move to filament change position
|
|
|
11175 |
const float retract = -ABS(parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
|
|
|
11176 |
#ifdef PAUSE_PARK_RETRACT_LENGTH
|
|
|
11177 |
+ (PAUSE_PARK_RETRACT_LENGTH)
|
|
|
11178 |
#endif
|
|
|
11179 |
);
|
|
|
11180 |
|
|
|
11181 |
// Lift Z axis
|
|
|
11182 |
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
|
|
|
11183 |
|
|
|
11184 |
// Move XY axes to filament change position or given position
|
|
|
11185 |
if (parser.seenval('X')) park_point.x = parser.linearval('X');
|
|
|
11186 |
if (parser.seenval('Y')) park_point.y = parser.linearval('Y');
|
|
|
11187 |
|
|
|
11188 |
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) && DISABLED(DELTA)
|
|
|
11189 |
park_point.x += (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0);
|
|
|
11190 |
park_point.y += (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0);
|
|
|
11191 |
#endif
|
|
|
11192 |
|
|
|
11193 |
// Unload filament
|
|
|
11194 |
const float unload_length = -ABS(parser.seen('U') ? parser.value_axis_units(E_AXIS) :
|
|
|
11195 |
filament_change_unload_length[active_extruder]);
|
|
|
11196 |
|
|
|
11197 |
// Slow load filament
|
|
|
11198 |
constexpr float slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;
|
|
|
11199 |
|
|
|
11200 |
// Fast load filament
|
|
|
11201 |
const float fast_load_length = ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) :
|
|
|
11202 |
filament_change_load_length[active_extruder]);
|
|
|
11203 |
|
|
|
11204 |
const int beep_count = parser.intval('B',
|
|
|
11205 |
#ifdef FILAMENT_CHANGE_ALERT_BEEPS
|
|
|
11206 |
FILAMENT_CHANGE_ALERT_BEEPS
|
|
|
11207 |
#else
|
|
|
11208 |
-1
|
|
|
11209 |
#endif
|
|
|
11210 |
);
|
|
|
11211 |
|
|
|
11212 |
const bool job_running = print_job_timer.isRunning();
|
|
|
11213 |
|
|
|
11214 |
if (pause_print(retract, park_point, unload_length, true)) {
|
|
|
11215 |
wait_for_filament_reload(beep_count);
|
|
|
11216 |
resume_print(slow_load_length, fast_load_length, ADVANCED_PAUSE_PURGE_LENGTH, beep_count);
|
|
|
11217 |
}
|
|
|
11218 |
|
|
|
11219 |
#if EXTRUDERS > 1
|
|
|
11220 |
// Restore toolhead if it was changed
|
|
|
11221 |
if (active_extruder_before_filament_change != active_extruder)
|
|
|
11222 |
tool_change(active_extruder_before_filament_change, 0, true);
|
|
|
11223 |
#endif
|
|
|
11224 |
|
|
|
11225 |
// Resume the print job timer if it was running
|
|
|
11226 |
if (job_running) print_job_timer.start();
|
|
|
11227 |
}
|
|
|
11228 |
|
|
|
11229 |
/**
|
|
|
11230 |
* M603: Configure filament change
|
|
|
11231 |
*
|
|
|
11232 |
* T[toolhead] - Select extruder to configure, active extruder if not specified
|
|
|
11233 |
* U[distance] - Retract distance for removal, for the specified extruder
|
|
|
11234 |
* L[distance] - Extrude distance for insertion, for the specified extruder
|
|
|
11235 |
*
|
|
|
11236 |
*/
|
|
|
11237 |
inline void gcode_M603() {
|
|
|
11238 |
|
|
|
11239 |
if (get_target_extruder_from_command(603)) return;
|
|
|
11240 |
|
|
|
11241 |
// Unload length
|
|
|
11242 |
if (parser.seen('U')) {
|
|
|
11243 |
filament_change_unload_length[target_extruder] = ABS(parser.value_axis_units(E_AXIS));
|
|
|
11244 |
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
|
11245 |
NOMORE(filament_change_unload_length[target_extruder], EXTRUDE_MAXLENGTH);
|
|
|
11246 |
#endif
|
|
|
11247 |
}
|
|
|
11248 |
|
|
|
11249 |
// Load length
|
|
|
11250 |
if (parser.seen('L')) {
|
|
|
11251 |
filament_change_load_length[target_extruder] = ABS(parser.value_axis_units(E_AXIS));
|
|
|
11252 |
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
|
11253 |
NOMORE(filament_change_load_length[target_extruder], EXTRUDE_MAXLENGTH);
|
|
|
11254 |
#endif
|
|
|
11255 |
}
|
|
|
11256 |
}
|
|
|
11257 |
|
|
|
11258 |
#endif // ADVANCED_PAUSE_FEATURE
|
|
|
11259 |
|
|
|
11260 |
#if ENABLED(MK2_MULTIPLEXER)
|
|
|
11261 |
|
|
|
11262 |
inline void select_multiplexed_stepper(const uint8_t e) {
|
|
|
11263 |
planner.synchronize();
|
|
|
11264 |
disable_e_steppers();
|
|
|
11265 |
WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
|
|
|
11266 |
WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
|
|
|
11267 |
WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
|
|
|
11268 |
safe_delay(100);
|
|
|
11269 |
}
|
|
|
11270 |
|
|
|
11271 |
#endif // MK2_MULTIPLEXER
|
|
|
11272 |
|
|
|
11273 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
11274 |
|
|
|
11275 |
/**
|
|
|
11276 |
* M605: Set dual x-carriage movement mode
|
|
|
11277 |
*
|
|
|
11278 |
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
|
|
11279 |
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
|
|
11280 |
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
|
|
11281 |
* units x-offset and an optional differential hotend temperature of
|
|
|
11282 |
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
|
|
11283 |
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
|
|
11284 |
*
|
|
|
11285 |
* Note: the X axis should be homed after changing dual x-carriage mode.
|
|
|
11286 |
*/
|
|
|
11287 |
inline void gcode_M605() {
|
|
|
11288 |
planner.synchronize();
|
|
|
11289 |
if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
|
|
|
11290 |
switch (dual_x_carriage_mode) {
|
|
|
11291 |
case DXC_FULL_CONTROL_MODE:
|
|
|
11292 |
case DXC_AUTO_PARK_MODE:
|
|
|
11293 |
break;
|
|
|
11294 |
case DXC_DUPLICATION_MODE:
|
|
|
11295 |
if (parser.seen('X')) duplicate_extruder_x_offset = MAX(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
|
|
|
11296 |
if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
|
|
|
11297 |
SERIAL_ECHO_START();
|
|
|
11298 |
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
|
11299 |
SERIAL_CHAR(' ');
|
|
|
11300 |
SERIAL_ECHO(hotend_offset[X_AXIS][0]);
|
|
|
11301 |
SERIAL_CHAR(',');
|
|
|
11302 |
SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
|
|
|
11303 |
SERIAL_CHAR(' ');
|
|
|
11304 |
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
|
11305 |
SERIAL_CHAR(',');
|
|
|
11306 |
SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
|
|
|
11307 |
break;
|
|
|
11308 |
default:
|
|
|
11309 |
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
|
11310 |
break;
|
|
|
11311 |
}
|
|
|
11312 |
active_extruder_parked = false;
|
|
|
11313 |
extruder_duplication_enabled = false;
|
|
|
11314 |
delayed_move_time = 0;
|
|
|
11315 |
}
|
|
|
11316 |
|
|
|
11317 |
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
11318 |
|
|
|
11319 |
inline void gcode_M605() {
|
|
|
11320 |
planner.synchronize();
|
|
|
11321 |
extruder_duplication_enabled = parser.intval('S') == int(DXC_DUPLICATION_MODE);
|
|
|
11322 |
SERIAL_ECHO_START();
|
|
|
11323 |
SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
|
|
|
11324 |
}
|
|
|
11325 |
|
|
|
11326 |
#endif // DUAL_NOZZLE_DUPLICATION_MODE
|
|
|
11327 |
|
|
|
11328 |
#if ENABLED(FILAMENT_LOAD_UNLOAD_GCODES)
|
|
|
11329 |
|
|
|
11330 |
/**
|
|
|
11331 |
* M701: Load filament
|
|
|
11332 |
*
|
|
|
11333 |
* T<extruder> - Optional extruder number. Current extruder if omitted.
|
|
|
11334 |
* Z<distance> - Move the Z axis by this distance
|
|
|
11335 |
* L<distance> - Extrude distance for insertion (positive value) (manual reload)
|
|
|
11336 |
*
|
|
|
11337 |
* Default values are used for omitted arguments.
|
|
|
11338 |
*/
|
|
|
11339 |
inline void gcode_M701() {
|
|
|
11340 |
point_t park_point = NOZZLE_PARK_POINT;
|
|
|
11341 |
|
|
|
11342 |
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
11343 |
// Only raise Z if the machine is homed
|
|
|
11344 |
if (axis_unhomed_error()) park_point.z = 0;
|
|
|
11345 |
#endif
|
|
|
11346 |
|
|
|
11347 |
if (get_target_extruder_from_command(701)) return;
|
|
|
11348 |
|
|
|
11349 |
// Z axis lift
|
|
|
11350 |
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
|
|
|
11351 |
|
|
|
11352 |
// Show initial "wait for load" message
|
|
|
11353 |
#if ENABLED(ULTIPANEL)
|
|
|
11354 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD, ADVANCED_PAUSE_MODE_LOAD_FILAMENT, target_extruder);
|
|
|
11355 |
#endif
|
|
|
11356 |
|
|
|
11357 |
#if EXTRUDERS > 1
|
|
|
11358 |
// Change toolhead if specified
|
|
|
11359 |
uint8_t active_extruder_before_filament_change = active_extruder;
|
|
|
11360 |
if (active_extruder != target_extruder)
|
|
|
11361 |
tool_change(target_extruder, 0, true);
|
|
|
11362 |
#endif
|
|
|
11363 |
|
|
|
11364 |
// Lift Z axis
|
|
|
11365 |
if (park_point.z > 0)
|
|
|
11366 |
do_blocking_move_to_z(MIN(current_position[Z_AXIS] + park_point.z, Z_MAX_POS), NOZZLE_PARK_Z_FEEDRATE);
|
|
|
11367 |
|
|
|
11368 |
constexpr float slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;
|
|
|
11369 |
const float fast_load_length = ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) : filament_change_load_length[active_extruder]);
|
|
|
11370 |
load_filament(slow_load_length, fast_load_length, ADVANCED_PAUSE_PURGE_LENGTH, FILAMENT_CHANGE_ALERT_BEEPS,
|
|
|
11371 |
true, thermalManager.wait_for_heating(target_extruder), ADVANCED_PAUSE_MODE_LOAD_FILAMENT);
|
|
|
11372 |
|
|
|
11373 |
// Restore Z axis
|
|
|
11374 |
if (park_point.z > 0)
|
|
|
11375 |
do_blocking_move_to_z(MAX(current_position[Z_AXIS] - park_point.z, 0), NOZZLE_PARK_Z_FEEDRATE);
|
|
|
11376 |
|
|
|
11377 |
#if EXTRUDERS > 1
|
|
|
11378 |
// Restore toolhead if it was changed
|
|
|
11379 |
if (active_extruder_before_filament_change != active_extruder)
|
|
|
11380 |
tool_change(active_extruder_before_filament_change, 0, true);
|
|
|
11381 |
#endif
|
|
|
11382 |
|
|
|
11383 |
// Show status screen
|
|
|
11384 |
#if ENABLED(ULTIPANEL)
|
|
|
11385 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
|
|
11386 |
#endif
|
|
|
11387 |
}
|
|
|
11388 |
|
|
|
11389 |
/**
|
|
|
11390 |
* M702: Unload filament
|
|
|
11391 |
*
|
|
|
11392 |
* T<extruder> - Optional extruder number. If omitted, current extruder
|
|
|
11393 |
* (or ALL extruders with FILAMENT_UNLOAD_ALL_EXTRUDERS).
|
|
|
11394 |
* Z<distance> - Move the Z axis by this distance
|
|
|
11395 |
* U<distance> - Retract distance for removal (manual reload)
|
|
|
11396 |
*
|
|
|
11397 |
* Default values are used for omitted arguments.
|
|
|
11398 |
*/
|
|
|
11399 |
inline void gcode_M702() {
|
|
|
11400 |
point_t park_point = NOZZLE_PARK_POINT;
|
|
|
11401 |
|
|
|
11402 |
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
11403 |
// Only raise Z if the machine is homed
|
|
|
11404 |
if (axis_unhomed_error()) park_point.z = 0;
|
|
|
11405 |
#endif
|
|
|
11406 |
|
|
|
11407 |
if (get_target_extruder_from_command(702)) return;
|
|
|
11408 |
|
|
|
11409 |
// Z axis lift
|
|
|
11410 |
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
|
|
|
11411 |
|
|
|
11412 |
// Show initial message
|
|
|
11413 |
#if ENABLED(ULTIPANEL)
|
|
|
11414 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT, target_extruder);
|
|
|
11415 |
#endif
|
|
|
11416 |
|
|
|
11417 |
#if EXTRUDERS > 1
|
|
|
11418 |
// Change toolhead if specified
|
|
|
11419 |
uint8_t active_extruder_before_filament_change = active_extruder;
|
|
|
11420 |
if (active_extruder != target_extruder)
|
|
|
11421 |
tool_change(target_extruder, 0, true);
|
|
|
11422 |
#endif
|
|
|
11423 |
|
|
|
11424 |
// Lift Z axis
|
|
|
11425 |
if (park_point.z > 0)
|
|
|
11426 |
do_blocking_move_to_z(MIN(current_position[Z_AXIS] + park_point.z, Z_MAX_POS), NOZZLE_PARK_Z_FEEDRATE);
|
|
|
11427 |
|
|
|
11428 |
// Unload filament
|
|
|
11429 |
#if EXTRUDERS > 1 && ENABLED(FILAMENT_UNLOAD_ALL_EXTRUDERS)
|
|
|
11430 |
if (!parser.seenval('T')) {
|
|
|
11431 |
HOTEND_LOOP() {
|
|
|
11432 |
if (e != active_extruder) tool_change(e, 0, true);
|
|
|
11433 |
unload_filament(-filament_change_unload_length[e], true, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT);
|
|
|
11434 |
}
|
|
|
11435 |
}
|
|
|
11436 |
else
|
|
|
11437 |
#endif
|
|
|
11438 |
{
|
|
|
11439 |
// Unload length
|
|
|
11440 |
const float unload_length = -ABS(parser.seen('U') ? parser.value_axis_units(E_AXIS) :
|
|
|
11441 |
filament_change_unload_length[target_extruder]);
|
|
|
11442 |
|
|
|
11443 |
unload_filament(unload_length, true, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT);
|
|
|
11444 |
}
|
|
|
11445 |
|
|
|
11446 |
// Restore Z axis
|
|
|
11447 |
if (park_point.z > 0)
|
|
|
11448 |
do_blocking_move_to_z(MAX(current_position[Z_AXIS] - park_point.z, 0), NOZZLE_PARK_Z_FEEDRATE);
|
|
|
11449 |
|
|
|
11450 |
#if EXTRUDERS > 1
|
|
|
11451 |
// Restore toolhead if it was changed
|
|
|
11452 |
if (active_extruder_before_filament_change != active_extruder)
|
|
|
11453 |
tool_change(active_extruder_before_filament_change, 0, true);
|
|
|
11454 |
#endif
|
|
|
11455 |
|
|
|
11456 |
// Show status screen
|
|
|
11457 |
#if ENABLED(ULTIPANEL)
|
|
|
11458 |
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
|
|
11459 |
#endif
|
|
|
11460 |
}
|
|
|
11461 |
|
|
|
11462 |
#endif // FILAMENT_LOAD_UNLOAD_GCODES
|
|
|
11463 |
|
|
|
11464 |
#if ENABLED(MAX7219_GCODE)
|
|
|
11465 |
/**
|
|
|
11466 |
* M7219: Control the Max7219 LED matrix
|
|
|
11467 |
*
|
|
|
11468 |
* I - Initialize (clear) the matrix
|
|
|
11469 |
* F - Fill the matrix (set all bits)
|
|
|
11470 |
* P - Dump the LEDs[] array values
|
|
|
11471 |
* C<column> - Set a column to the 8-bit value V
|
|
|
11472 |
* R<row> - Set a row to the 8-bit value V
|
|
|
11473 |
* X<pos> - X position of an LED to set or toggle
|
|
|
11474 |
* Y<pos> - Y position of an LED to set or toggle
|
|
|
11475 |
* V<value> - The potentially 32-bit value or on/off state to set
|
|
|
11476 |
* (for example: a chain of 4 Max7219 devices can have 32 bit
|
|
|
11477 |
* rows or columns depending upon rotation)
|
|
|
11478 |
*/
|
|
|
11479 |
inline void gcode_M7219() {
|
|
|
11480 |
if (parser.seen('I')) {
|
|
|
11481 |
max7219.register_setup();
|
|
|
11482 |
max7219.clear();
|
|
|
11483 |
}
|
|
|
11484 |
|
|
|
11485 |
if (parser.seen('F')) max7219.fill();
|
|
|
11486 |
|
|
|
11487 |
const uint32_t v = parser.ulongval('V');
|
|
|
11488 |
|
|
|
11489 |
if (parser.seenval('R')) {
|
|
|
11490 |
const uint8_t r = parser.value_byte();
|
|
|
11491 |
max7219.set_row(r, v);
|
|
|
11492 |
}
|
|
|
11493 |
else if (parser.seenval('C')) {
|
|
|
11494 |
const uint8_t c = parser.value_byte();
|
|
|
11495 |
max7219.set_column(c, v);
|
|
|
11496 |
}
|
|
|
11497 |
else if (parser.seenval('X') || parser.seenval('Y')) {
|
|
|
11498 |
const uint8_t x = parser.byteval('X'), y = parser.byteval('Y');
|
|
|
11499 |
if (parser.seenval('V'))
|
|
|
11500 |
max7219.led_set(x, y, parser.boolval('V'));
|
|
|
11501 |
else
|
|
|
11502 |
max7219.led_toggle(x, y);
|
|
|
11503 |
}
|
|
|
11504 |
else if (parser.seen('D')) {
|
|
|
11505 |
const uint8_t line = parser.byteval('D') + (parser.byteval('U') << 3);
|
|
|
11506 |
if (line < MAX7219_LINES) {
|
|
|
11507 |
max7219.led_line[line] = v;
|
|
|
11508 |
return max7219.refresh_line(line);
|
|
|
11509 |
}
|
|
|
11510 |
}
|
|
|
11511 |
|
|
|
11512 |
if (parser.seen('P')) {
|
|
|
11513 |
for (uint8_t r = 0; r < MAX7219_LINES; r++) {
|
|
|
11514 |
SERIAL_ECHOPGM("led_line[");
|
|
|
11515 |
if (r < 10) SERIAL_CHAR(' ');
|
|
|
11516 |
SERIAL_ECHO(int(r));
|
|
|
11517 |
SERIAL_ECHOPGM("]=");
|
|
|
11518 |
for (uint8_t b = 8; b--;) SERIAL_CHAR('0' + TEST(max7219.led_line[r], b));
|
|
|
11519 |
SERIAL_EOL();
|
|
|
11520 |
}
|
|
|
11521 |
}
|
|
|
11522 |
}
|
|
|
11523 |
#endif // MAX7219_GCODE
|
|
|
11524 |
|
|
|
11525 |
#if ENABLED(LIN_ADVANCE)
|
|
|
11526 |
/**
|
|
|
11527 |
* M900: Get or Set Linear Advance K-factor
|
|
|
11528 |
*
|
|
|
11529 |
* K<factor> Set advance K factor
|
|
|
11530 |
*/
|
|
|
11531 |
inline void gcode_M900() {
|
|
|
11532 |
if (parser.seenval('K')) {
|
|
|
11533 |
const float newK = parser.floatval('K');
|
|
|
11534 |
if (WITHIN(newK, 0, 10)) {
|
|
|
11535 |
planner.synchronize();
|
|
|
11536 |
planner.extruder_advance_K = newK;
|
|
|
11537 |
}
|
|
|
11538 |
else
|
|
|
11539 |
SERIAL_PROTOCOLLNPGM("?K value out of range (0-10).");
|
|
|
11540 |
}
|
|
|
11541 |
else {
|
|
|
11542 |
SERIAL_ECHO_START();
|
|
|
11543 |
SERIAL_ECHOLNPAIR("Advance K=", planner.extruder_advance_K);
|
|
|
11544 |
}
|
|
|
11545 |
}
|
|
|
11546 |
#endif // LIN_ADVANCE
|
|
|
11547 |
|
|
|
11548 |
#if HAS_TRINAMIC
|
|
|
11549 |
#if ENABLED(TMC_DEBUG)
|
|
|
11550 |
inline void gcode_M122() {
|
|
|
11551 |
if (parser.seen('S'))
|
|
|
11552 |
tmc_set_report_status(parser.value_bool());
|
|
|
11553 |
else
|
|
|
11554 |
tmc_report_all();
|
|
|
11555 |
}
|
|
|
11556 |
#endif // TMC_DEBUG
|
|
|
11557 |
|
|
|
11558 |
/**
|
|
|
11559 |
* M906: Set motor current in milliamps using axis codes X, Y, Z, E
|
|
|
11560 |
* Uses axis codes A, B, C, D, E for Hangprinter
|
|
|
11561 |
* Report driver currents when no axis specified
|
|
|
11562 |
*/
|
|
|
11563 |
inline void gcode_M906() {
|
|
|
11564 |
#define TMC_SAY_CURRENT(Q) tmc_get_current(stepper##Q, TMC_##Q)
|
|
|
11565 |
#define TMC_SET_CURRENT(Q) tmc_set_current(stepper##Q, value)
|
|
|
11566 |
|
|
|
11567 |
bool report = true;
|
|
|
11568 |
const uint8_t index = parser.byteval('I');
|
|
|
11569 |
LOOP_NUM_AXIS(i) if (uint16_t value = parser.intval(RAW_AXIS_CODES(i))) {
|
|
|
11570 |
|
|
|
11571 |
report = false;
|
|
|
11572 |
switch (i) {
|
|
|
11573 |
// Assumes {A_AXIS, B_AXIS, C_AXIS} == {X_AXIS, Y_AXIS, Z_AXIS}
|
|
|
11574 |
case X_AXIS:
|
|
|
11575 |
#if AXIS_IS_TMC(X)
|
|
|
11576 |
if (index < 2) TMC_SET_CURRENT(X);
|
|
|
11577 |
#endif
|
|
|
11578 |
#if AXIS_IS_TMC(X2)
|
|
|
11579 |
if (!(index & 1)) TMC_SET_CURRENT(X2);
|
|
|
11580 |
#endif
|
|
|
11581 |
break;
|
|
|
11582 |
case Y_AXIS:
|
|
|
11583 |
#if AXIS_IS_TMC(Y)
|
|
|
11584 |
if (index < 2) TMC_SET_CURRENT(Y);
|
|
|
11585 |
#endif
|
|
|
11586 |
#if AXIS_IS_TMC(Y2)
|
|
|
11587 |
if (!(index & 1)) TMC_SET_CURRENT(Y2);
|
|
|
11588 |
#endif
|
|
|
11589 |
break;
|
|
|
11590 |
case Z_AXIS:
|
|
|
11591 |
#if AXIS_IS_TMC(Z)
|
|
|
11592 |
if (index < 2) TMC_SET_CURRENT(Z);
|
|
|
11593 |
#endif
|
|
|
11594 |
#if AXIS_IS_TMC(Z2)
|
|
|
11595 |
if (!(index & 1)) TMC_SET_CURRENT(Z2);
|
|
|
11596 |
#endif
|
|
|
11597 |
break;
|
|
|
11598 |
case E_AXIS: {
|
|
|
11599 |
if (get_target_extruder_from_command(906)) return;
|
|
|
11600 |
switch (target_extruder) {
|
|
|
11601 |
#if AXIS_IS_TMC(E0)
|
|
|
11602 |
case 0: TMC_SET_CURRENT(E0); break;
|
|
|
11603 |
#endif
|
|
|
11604 |
#if ENABLED(HANGPRINTER)
|
|
|
11605 |
// Avoid setting the D-current
|
|
|
11606 |
#if AXIS_IS_TMC(E1) && EXTRUDERS > 1
|
|
|
11607 |
case 1: TMC_SET_CURRENT(E1); break;
|
|
|
11608 |
#endif
|
|
|
11609 |
#if AXIS_IS_TMC(E2) && EXTRUDERS > 2
|
|
|
11610 |
case 2: TMC_SET_CURRENT(E2); break;
|
|
|
11611 |
#endif
|
|
|
11612 |
#if AXIS_IS_TMC(E3) && EXTRUDERS > 3
|
|
|
11613 |
case 3: TMC_SET_CURRENT(E3); break;
|
|
|
11614 |
#endif
|
|
|
11615 |
#if AXIS_IS_TMC(E4) && EXTRUDERS > 4
|
|
|
11616 |
case 4: TMC_SET_CURRENT(E4); break;
|
|
|
11617 |
#endif
|
|
|
11618 |
#else
|
|
|
11619 |
#if AXIS_IS_TMC(E1)
|
|
|
11620 |
case 1: TMC_SET_CURRENT(E1); break;
|
|
|
11621 |
#endif
|
|
|
11622 |
#if AXIS_IS_TMC(E2)
|
|
|
11623 |
case 2: TMC_SET_CURRENT(E2); break;
|
|
|
11624 |
#endif
|
|
|
11625 |
#if AXIS_IS_TMC(E3)
|
|
|
11626 |
case 3: TMC_SET_CURRENT(E3); break;
|
|
|
11627 |
#endif
|
|
|
11628 |
#if AXIS_IS_TMC(E4)
|
|
|
11629 |
case 4: TMC_SET_CURRENT(E4); break;
|
|
|
11630 |
#endif
|
|
|
11631 |
#endif
|
|
|
11632 |
}
|
|
|
11633 |
} break;
|
|
|
11634 |
#if ENABLED(HANGPRINTER)
|
|
|
11635 |
case D_AXIS:
|
|
|
11636 |
// D is connected on the first of E1, E2, E3, E4 output that is not an extruder
|
|
|
11637 |
#if AXIS_IS_TMC(E1) && EXTRUDERS == 1
|
|
|
11638 |
TMC_SET_CURRENT(E1); break;
|
|
|
11639 |
#endif
|
|
|
11640 |
#if AXIS_IS_TMC(E2) && EXTRUDERS == 2
|
|
|
11641 |
TMC_SET_CURRENT(E2); break;
|
|
|
11642 |
#endif
|
|
|
11643 |
#if AXIS_IS_TMC(E3) && EXTRUDERS == 3
|
|
|
11644 |
TMC_SET_CURRENT(E3); break;
|
|
|
11645 |
#endif
|
|
|
11646 |
#if AXIS_IS_TMC(E4) && EXTRUDERS == 4
|
|
|
11647 |
TMC_SET_CURRENT(E4); break;
|
|
|
11648 |
#endif
|
|
|
11649 |
#endif
|
|
|
11650 |
}
|
|
|
11651 |
}
|
|
|
11652 |
|
|
|
11653 |
if (report) {
|
|
|
11654 |
#if AXIS_IS_TMC(X)
|
|
|
11655 |
TMC_SAY_CURRENT(X);
|
|
|
11656 |
#endif
|
|
|
11657 |
#if AXIS_IS_TMC(X2)
|
|
|
11658 |
TMC_SAY_CURRENT(X2);
|
|
|
11659 |
#endif
|
|
|
11660 |
#if AXIS_IS_TMC(Y)
|
|
|
11661 |
TMC_SAY_CURRENT(Y);
|
|
|
11662 |
#endif
|
|
|
11663 |
#if AXIS_IS_TMC(Y2)
|
|
|
11664 |
TMC_SAY_CURRENT(Y2);
|
|
|
11665 |
#endif
|
|
|
11666 |
#if AXIS_IS_TMC(Z)
|
|
|
11667 |
TMC_SAY_CURRENT(Z);
|
|
|
11668 |
#endif
|
|
|
11669 |
#if AXIS_IS_TMC(Z2)
|
|
|
11670 |
TMC_SAY_CURRENT(Z2);
|
|
|
11671 |
#endif
|
|
|
11672 |
#if AXIS_IS_TMC(E0)
|
|
|
11673 |
TMC_SAY_CURRENT(E0);
|
|
|
11674 |
#endif
|
|
|
11675 |
#if ENABLED(HANGPRINTER)
|
|
|
11676 |
// D is connected on the first of E1, E2, E3, E4 output that is not an extruder
|
|
|
11677 |
#if AXIS_IS_TMC(E1) && EXTRUDERS == 1
|
|
|
11678 |
TMC_SAY_CURRENT(E1);
|
|
|
11679 |
#endif
|
|
|
11680 |
#if AXIS_IS_TMC(E2) && EXTRUDERS == 2
|
|
|
11681 |
TMC_SAY_CURRENT(E2);
|
|
|
11682 |
#endif
|
|
|
11683 |
#if AXIS_IS_TMC(E3) && EXTRUDERS == 3
|
|
|
11684 |
TMC_SAY_CURRENT(E3);
|
|
|
11685 |
#endif
|
|
|
11686 |
#if AXIS_IS_TMC(E4) && EXTRUDERS == 4
|
|
|
11687 |
TMC_SAY_CURRENT(E4);
|
|
|
11688 |
#endif
|
|
|
11689 |
#else
|
|
|
11690 |
#if AXIS_IS_TMC(E1)
|
|
|
11691 |
TMC_SAY_CURRENT(E1);
|
|
|
11692 |
#endif
|
|
|
11693 |
#if AXIS_IS_TMC(E2)
|
|
|
11694 |
TMC_SAY_CURRENT(E2);
|
|
|
11695 |
#endif
|
|
|
11696 |
#if AXIS_IS_TMC(E3)
|
|
|
11697 |
TMC_SAY_CURRENT(E3);
|
|
|
11698 |
#endif
|
|
|
11699 |
#if AXIS_IS_TMC(E4)
|
|
|
11700 |
TMC_SAY_CURRENT(E4);
|
|
|
11701 |
#endif
|
|
|
11702 |
#endif
|
|
|
11703 |
}
|
|
|
11704 |
}
|
|
|
11705 |
|
|
|
11706 |
#define M91x_USE(ST) (AXIS_DRIVER_TYPE(ST, TMC2130) || (AXIS_DRIVER_TYPE(ST, TMC2208) && PIN_EXISTS(ST##_SERIAL_RX)))
|
|
|
11707 |
#define M91x_USE_E(N) (E_STEPPERS > N && M91x_USE(E##N))
|
|
|
11708 |
|
|
|
11709 |
/**
|
|
|
11710 |
* M911: Report TMC stepper driver overtemperature pre-warn flag
|
|
|
11711 |
* This flag is held by the library, persisting until cleared by M912
|
|
|
11712 |
*/
|
|
|
11713 |
inline void gcode_M911() {
|
|
|
11714 |
#if M91x_USE(X)
|
|
|
11715 |
tmc_report_otpw(stepperX, TMC_X);
|
|
|
11716 |
#endif
|
|
|
11717 |
#if M91x_USE(X2)
|
|
|
11718 |
tmc_report_otpw(stepperX2, TMC_X2);
|
|
|
11719 |
#endif
|
|
|
11720 |
#if M91x_USE(Y)
|
|
|
11721 |
tmc_report_otpw(stepperY, TMC_Y);
|
|
|
11722 |
#endif
|
|
|
11723 |
#if M91x_USE(Y2)
|
|
|
11724 |
tmc_report_otpw(stepperY2, TMC_Y2);
|
|
|
11725 |
#endif
|
|
|
11726 |
#if M91x_USE(Z)
|
|
|
11727 |
tmc_report_otpw(stepperZ, TMC_Z);
|
|
|
11728 |
#endif
|
|
|
11729 |
#if M91x_USE(Z2)
|
|
|
11730 |
tmc_report_otpw(stepperZ2, TMC_Z2);
|
|
|
11731 |
#endif
|
|
|
11732 |
#if M91x_USE_E(0)
|
|
|
11733 |
tmc_report_otpw(stepperE0, TMC_E0);
|
|
|
11734 |
#endif
|
|
|
11735 |
#if M91x_USE_E(1)
|
|
|
11736 |
tmc_report_otpw(stepperE1, TMC_E1);
|
|
|
11737 |
#endif
|
|
|
11738 |
#if M91x_USE_E(2)
|
|
|
11739 |
tmc_report_otpw(stepperE2, TMC_E2);
|
|
|
11740 |
#endif
|
|
|
11741 |
#if M91x_USE_E(3)
|
|
|
11742 |
tmc_report_otpw(stepperE3, TMC_E3);
|
|
|
11743 |
#endif
|
|
|
11744 |
#if M91x_USE_E(4)
|
|
|
11745 |
tmc_report_otpw(stepperE4, TMC_E4);
|
|
|
11746 |
#endif
|
|
|
11747 |
}
|
|
|
11748 |
|
|
|
11749 |
/**
|
|
|
11750 |
* M912: Clear TMC stepper driver overtemperature pre-warn flag held by the library
|
|
|
11751 |
* Specify one or more axes with X, Y, Z, X1, Y1, Z1, X2, Y2, Z2, and E[index].
|
|
|
11752 |
* If no axes are given, clear all.
|
|
|
11753 |
*
|
|
|
11754 |
* Examples:
|
|
|
11755 |
* M912 X ; clear X and X2
|
|
|
11756 |
* M912 X1 ; clear X1 only
|
|
|
11757 |
* M912 X2 ; clear X2 only
|
|
|
11758 |
* M912 X E ; clear X, X2, and all E
|
|
|
11759 |
* M912 E1 ; clear E1 only
|
|
|
11760 |
*/
|
|
|
11761 |
inline void gcode_M912() {
|
|
|
11762 |
const bool hasX = parser.seen(axis_codes[X_AXIS]),
|
|
|
11763 |
hasY = parser.seen(axis_codes[Y_AXIS]),
|
|
|
11764 |
hasZ = parser.seen(axis_codes[Z_AXIS]),
|
|
|
11765 |
hasE = parser.seen(axis_codes[E_CART]),
|
|
|
11766 |
hasNone = !hasX && !hasY && !hasZ && !hasE;
|
|
|
11767 |
|
|
|
11768 |
#if M91x_USE(X) || M91x_USE(X2)
|
|
|
11769 |
const uint8_t xval = parser.byteval(axis_codes[X_AXIS], 10);
|
|
|
11770 |
#if M91x_USE(X)
|
|
|
11771 |
if (hasNone || xval == 1 || (hasX && xval == 10)) tmc_clear_otpw(stepperX, TMC_X);
|
|
|
11772 |
#endif
|
|
|
11773 |
#if M91x_USE(X2)
|
|
|
11774 |
if (hasNone || xval == 2 || (hasX && xval == 10)) tmc_clear_otpw(stepperX2, TMC_X2);
|
|
|
11775 |
#endif
|
|
|
11776 |
#endif
|
|
|
11777 |
|
|
|
11778 |
#if M91x_USE(Y) || M91x_USE(Y2)
|
|
|
11779 |
const uint8_t yval = parser.byteval(axis_codes[Y_AXIS], 10);
|
|
|
11780 |
#if M91x_USE(Y)
|
|
|
11781 |
if (hasNone || yval == 1 || (hasY && yval == 10)) tmc_clear_otpw(stepperY, TMC_Y);
|
|
|
11782 |
#endif
|
|
|
11783 |
#if M91x_USE(Y2)
|
|
|
11784 |
if (hasNone || yval == 2 || (hasY && yval == 10)) tmc_clear_otpw(stepperY2, TMC_Y2);
|
|
|
11785 |
#endif
|
|
|
11786 |
#endif
|
|
|
11787 |
|
|
|
11788 |
#if M91x_USE(Z) || M91x_USE(Z2)
|
|
|
11789 |
const uint8_t zval = parser.byteval(axis_codes[Z_AXIS], 10);
|
|
|
11790 |
#if M91x_USE(Z)
|
|
|
11791 |
if (hasNone || zval == 1 || (hasZ && zval == 10)) tmc_clear_otpw(stepperZ, TMC_Z);
|
|
|
11792 |
#endif
|
|
|
11793 |
#if M91x_USE(Z2)
|
|
|
11794 |
if (hasNone || zval == 2 || (hasZ && zval == 10)) tmc_clear_otpw(stepperZ2, TMC_Z2);
|
|
|
11795 |
#endif
|
|
|
11796 |
#endif
|
|
|
11797 |
|
|
|
11798 |
// TODO: If this is a Hangprinter, E_AXIS will not correspond to E0, E1, etc in this way
|
|
|
11799 |
#if M91x_USE_E(0) || M91x_USE_E(1) || M91x_USE_E(2) || M91x_USE_E(3) || M91x_USE_E(4)
|
|
|
11800 |
const uint8_t eval = parser.byteval(axis_codes[E_AXIS], 10);
|
|
|
11801 |
#if M91x_USE_E(0)
|
|
|
11802 |
if (hasNone || eval == 0 || (hasE && eval == 10)) tmc_clear_otpw(stepperE0, TMC_E0);
|
|
|
11803 |
#endif
|
|
|
11804 |
#if M91x_USE_E(1)
|
|
|
11805 |
if (hasNone || eval == 1 || (hasE && eval == 10)) tmc_clear_otpw(stepperE1, TMC_E1);
|
|
|
11806 |
#endif
|
|
|
11807 |
#if M91x_USE_E(2)
|
|
|
11808 |
if (hasNone || eval == 2 || (hasE && eval == 10)) tmc_clear_otpw(stepperE2, TMC_E2);
|
|
|
11809 |
#endif
|
|
|
11810 |
#if M91x_USE_E(3)
|
|
|
11811 |
if (hasNone || eval == 3 || (hasE && eval == 10)) tmc_clear_otpw(stepperE3, TMC_E3);
|
|
|
11812 |
#endif
|
|
|
11813 |
#if M91x_USE_E(4)
|
|
|
11814 |
if (hasNone || eval == 4 || (hasE && eval == 10)) tmc_clear_otpw(stepperE4, TMC_E4);
|
|
|
11815 |
#endif
|
|
|
11816 |
#endif
|
|
|
11817 |
}
|
|
|
11818 |
|
|
|
11819 |
/**
|
|
|
11820 |
* M913: Set HYBRID_THRESHOLD speed.
|
|
|
11821 |
*/
|
|
|
11822 |
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
11823 |
inline void gcode_M913() {
|
|
|
11824 |
#define TMC_SAY_PWMTHRS(A,Q) tmc_get_pwmthrs(stepper##Q, TMC_##Q, planner.axis_steps_per_mm[_AXIS(A)])
|
|
|
11825 |
#define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, value, planner.axis_steps_per_mm[_AXIS(A)])
|
|
|
11826 |
#define TMC_SAY_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_get_pwmthrs(stepperE##E, TMC_E##E, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)
|
|
|
11827 |
#define TMC_SET_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_set_pwmthrs(stepperE##E, value, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)
|
|
|
11828 |
|
|
|
11829 |
bool report = true;
|
|
|
11830 |
const uint8_t index = parser.byteval('I');
|
|
|
11831 |
LOOP_XYZE(i) if (int32_t value = parser.longval(axis_codes[i])) {
|
|
|
11832 |
report = false;
|
|
|
11833 |
switch (i) {
|
|
|
11834 |
case X_AXIS:
|
|
|
11835 |
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
11836 |
if (index < 2) TMC_SET_PWMTHRS(X,X);
|
|
|
11837 |
#endif
|
|
|
11838 |
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
11839 |
if (!(index & 1)) TMC_SET_PWMTHRS(X,X2);
|
|
|
11840 |
#endif
|
|
|
11841 |
break;
|
|
|
11842 |
case Y_AXIS:
|
|
|
11843 |
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
11844 |
if (index < 2) TMC_SET_PWMTHRS(Y,Y);
|
|
|
11845 |
#endif
|
|
|
11846 |
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
11847 |
if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2);
|
|
|
11848 |
#endif
|
|
|
11849 |
break;
|
|
|
11850 |
case Z_AXIS:
|
|
|
11851 |
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
11852 |
if (index < 2) TMC_SET_PWMTHRS(Z,Z);
|
|
|
11853 |
#endif
|
|
|
11854 |
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
11855 |
if (!(index & 1)) TMC_SET_PWMTHRS(Z,Z2);
|
|
|
11856 |
#endif
|
|
|
11857 |
break;
|
|
|
11858 |
case E_CART: {
|
|
|
11859 |
if (get_target_extruder_from_command(913)) return;
|
|
|
11860 |
switch (target_extruder) {
|
|
|
11861 |
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
11862 |
case 0: TMC_SET_PWMTHRS_E(0); break;
|
|
|
11863 |
#endif
|
|
|
11864 |
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
|
|
|
11865 |
case 1: TMC_SET_PWMTHRS_E(1); break;
|
|
|
11866 |
#endif
|
|
|
11867 |
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
|
|
|
11868 |
case 2: TMC_SET_PWMTHRS_E(2); break;
|
|
|
11869 |
#endif
|
|
|
11870 |
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
|
|
|
11871 |
case 3: TMC_SET_PWMTHRS_E(3); break;
|
|
|
11872 |
#endif
|
|
|
11873 |
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
|
|
|
11874 |
case 4: TMC_SET_PWMTHRS_E(4); break;
|
|
|
11875 |
#endif
|
|
|
11876 |
}
|
|
|
11877 |
} break;
|
|
|
11878 |
}
|
|
|
11879 |
}
|
|
|
11880 |
|
|
|
11881 |
if (report) {
|
|
|
11882 |
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
11883 |
TMC_SAY_PWMTHRS(X,X);
|
|
|
11884 |
#endif
|
|
|
11885 |
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
11886 |
TMC_SAY_PWMTHRS(X,X2);
|
|
|
11887 |
#endif
|
|
|
11888 |
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
11889 |
TMC_SAY_PWMTHRS(Y,Y);
|
|
|
11890 |
#endif
|
|
|
11891 |
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
11892 |
TMC_SAY_PWMTHRS(Y,Y2);
|
|
|
11893 |
#endif
|
|
|
11894 |
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
11895 |
TMC_SAY_PWMTHRS(Z,Z);
|
|
|
11896 |
#endif
|
|
|
11897 |
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
11898 |
TMC_SAY_PWMTHRS(Z,Z2);
|
|
|
11899 |
#endif
|
|
|
11900 |
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
11901 |
TMC_SAY_PWMTHRS_E(0);
|
|
|
11902 |
#endif
|
|
|
11903 |
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
|
|
|
11904 |
TMC_SAY_PWMTHRS_E(1);
|
|
|
11905 |
#endif
|
|
|
11906 |
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
|
|
|
11907 |
TMC_SAY_PWMTHRS_E(2);
|
|
|
11908 |
#endif
|
|
|
11909 |
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
|
|
|
11910 |
TMC_SAY_PWMTHRS_E(3);
|
|
|
11911 |
#endif
|
|
|
11912 |
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
|
|
|
11913 |
TMC_SAY_PWMTHRS_E(4);
|
|
|
11914 |
#endif
|
|
|
11915 |
}
|
|
|
11916 |
}
|
|
|
11917 |
#endif // HYBRID_THRESHOLD
|
|
|
11918 |
|
|
|
11919 |
/**
|
|
|
11920 |
* M914: Set SENSORLESS_HOMING sensitivity.
|
|
|
11921 |
*/
|
|
|
11922 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
11923 |
inline void gcode_M914() {
|
|
|
11924 |
#define TMC_SAY_SGT(Q) tmc_get_sgt(stepper##Q, TMC_##Q)
|
|
|
11925 |
#define TMC_SET_SGT(Q) tmc_set_sgt(stepper##Q, value)
|
|
|
11926 |
|
|
|
11927 |
bool report = true;
|
|
|
11928 |
const uint8_t index = parser.byteval('I');
|
|
|
11929 |
LOOP_XYZ(i) if (parser.seen(axis_codes[i])) {
|
|
|
11930 |
const int8_t value = (int8_t)constrain(parser.value_int(), -64, 63);
|
|
|
11931 |
report = false;
|
|
|
11932 |
switch (i) {
|
|
|
11933 |
#if X_SENSORLESS
|
|
|
11934 |
case X_AXIS:
|
|
|
11935 |
#if AXIS_HAS_STALLGUARD(X)
|
|
|
11936 |
if (index < 2) TMC_SET_SGT(X);
|
|
|
11937 |
#endif
|
|
|
11938 |
#if AXIS_HAS_STALLGUARD(X2)
|
|
|
11939 |
if (!(index & 1)) TMC_SET_SGT(X2);
|
|
|
11940 |
#endif
|
|
|
11941 |
break;
|
|
|
11942 |
#endif
|
|
|
11943 |
#if Y_SENSORLESS
|
|
|
11944 |
case Y_AXIS:
|
|
|
11945 |
#if AXIS_HAS_STALLGUARD(Y)
|
|
|
11946 |
if (index < 2) TMC_SET_SGT(Y);
|
|
|
11947 |
#endif
|
|
|
11948 |
#if AXIS_HAS_STALLGUARD(Y2)
|
|
|
11949 |
if (!(index & 1)) TMC_SET_SGT(Y2);
|
|
|
11950 |
#endif
|
|
|
11951 |
break;
|
|
|
11952 |
#endif
|
|
|
11953 |
#if Z_SENSORLESS
|
|
|
11954 |
case Z_AXIS:
|
|
|
11955 |
#if AXIS_HAS_STALLGUARD(Z)
|
|
|
11956 |
if (index < 2) TMC_SET_SGT(Z);
|
|
|
11957 |
#endif
|
|
|
11958 |
#if AXIS_HAS_STALLGUARD(Z2)
|
|
|
11959 |
if (!(index & 1)) TMC_SET_SGT(Z2);
|
|
|
11960 |
#endif
|
|
|
11961 |
break;
|
|
|
11962 |
#endif
|
|
|
11963 |
}
|
|
|
11964 |
}
|
|
|
11965 |
|
|
|
11966 |
if (report) {
|
|
|
11967 |
#if X_SENSORLESS
|
|
|
11968 |
#if AXIS_HAS_STALLGUARD(X)
|
|
|
11969 |
TMC_SAY_SGT(X);
|
|
|
11970 |
#endif
|
|
|
11971 |
#if AXIS_HAS_STALLGUARD(X2)
|
|
|
11972 |
TMC_SAY_SGT(X2);
|
|
|
11973 |
#endif
|
|
|
11974 |
#endif
|
|
|
11975 |
#if Y_SENSORLESS
|
|
|
11976 |
#if AXIS_HAS_STALLGUARD(Y)
|
|
|
11977 |
TMC_SAY_SGT(Y);
|
|
|
11978 |
#endif
|
|
|
11979 |
#if AXIS_HAS_STALLGUARD(Y2)
|
|
|
11980 |
TMC_SAY_SGT(Y2);
|
|
|
11981 |
#endif
|
|
|
11982 |
#endif
|
|
|
11983 |
#if Z_SENSORLESS
|
|
|
11984 |
#if AXIS_HAS_STALLGUARD(Z)
|
|
|
11985 |
TMC_SAY_SGT(Z);
|
|
|
11986 |
#endif
|
|
|
11987 |
#if AXIS_HAS_STALLGUARD(Z2)
|
|
|
11988 |
TMC_SAY_SGT(Z2);
|
|
|
11989 |
#endif
|
|
|
11990 |
#endif
|
|
|
11991 |
}
|
|
|
11992 |
}
|
|
|
11993 |
#endif // SENSORLESS_HOMING
|
|
|
11994 |
|
|
|
11995 |
/**
|
|
|
11996 |
* TMC Z axis calibration routine
|
|
|
11997 |
*/
|
|
|
11998 |
#if ENABLED(TMC_Z_CALIBRATION)
|
|
|
11999 |
inline void gcode_M915() {
|
|
|
12000 |
const uint16_t _rms = parser.seenval('S') ? parser.value_int() : CALIBRATION_CURRENT,
|
|
|
12001 |
_z = parser.seenval('Z') ? parser.value_linear_units() : CALIBRATION_EXTRA_HEIGHT;
|
|
|
12002 |
|
|
|
12003 |
if (!TEST(axis_known_position, Z_AXIS)) {
|
|
|
12004 |
SERIAL_ECHOLNPGM("\nPlease home Z axis first");
|
|
|
12005 |
return;
|
|
|
12006 |
}
|
|
|
12007 |
|
|
|
12008 |
#if AXIS_IS_TMC(Z)
|
|
|
12009 |
const uint16_t Z_current_1 = stepperZ.getCurrent();
|
|
|
12010 |
stepperZ.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
|
|
|
12011 |
#endif
|
|
|
12012 |
#if AXIS_IS_TMC(Z2)
|
|
|
12013 |
const uint16_t Z2_current_1 = stepperZ2.getCurrent();
|
|
|
12014 |
stepperZ2.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
|
|
|
12015 |
#endif
|
|
|
12016 |
|
|
|
12017 |
SERIAL_ECHOPAIR("\nCalibration current: Z", _rms);
|
|
|
12018 |
|
|
|
12019 |
soft_endstops_enabled = false;
|
|
|
12020 |
|
|
|
12021 |
do_blocking_move_to_z(Z_MAX_POS+_z);
|
|
|
12022 |
|
|
|
12023 |
#if AXIS_IS_TMC(Z)
|
|
|
12024 |
stepperZ.setCurrent(Z_current_1, R_SENSE, HOLD_MULTIPLIER);
|
|
|
12025 |
#endif
|
|
|
12026 |
#if AXIS_IS_TMC(Z2)
|
|
|
12027 |
stepperZ2.setCurrent(Z2_current_1, R_SENSE, HOLD_MULTIPLIER);
|
|
|
12028 |
#endif
|
|
|
12029 |
|
|
|
12030 |
do_blocking_move_to_z(Z_MAX_POS);
|
|
|
12031 |
soft_endstops_enabled = true;
|
|
|
12032 |
|
|
|
12033 |
SERIAL_ECHOLNPGM("\nHoming Z due to lost steps");
|
|
|
12034 |
enqueue_and_echo_commands_P(PSTR("G28 Z"));
|
|
|
12035 |
}
|
|
|
12036 |
#endif
|
|
|
12037 |
|
|
|
12038 |
#endif // HAS_TRINAMIC
|
|
|
12039 |
|
|
|
12040 |
/**
|
|
|
12041 |
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
|
|
12042 |
*/
|
|
|
12043 |
inline void gcode_M907() {
|
|
|
12044 |
#if HAS_DIGIPOTSS
|
|
|
12045 |
|
|
|
12046 |
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
|
|
|
12047 |
if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
|
|
|
12048 |
if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
|
|
|
12049 |
|
|
|
12050 |
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
12051 |
|
|
|
12052 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
|
12053 |
if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
|
|
|
12054 |
#endif
|
|
|
12055 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
|
12056 |
if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
|
|
|
12057 |
#endif
|
|
|
12058 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
|
12059 |
if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
|
|
|
12060 |
#endif
|
|
|
12061 |
|
|
|
12062 |
#endif
|
|
|
12063 |
|
|
|
12064 |
#if ENABLED(DIGIPOT_I2C)
|
|
|
12065 |
// this one uses actual amps in floating point
|
|
|
12066 |
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
|
|
|
12067 |
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
|
12068 |
for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
|
|
|
12069 |
#endif
|
|
|
12070 |
|
|
|
12071 |
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
|
12072 |
if (parser.seen('S')) {
|
|
|
12073 |
const float dac_percent = parser.value_float();
|
|
|
12074 |
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
|
|
12075 |
}
|
|
|
12076 |
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
|
|
|
12077 |
#endif
|
|
|
12078 |
}
|
|
|
12079 |
|
|
|
12080 |
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
12081 |
|
|
|
12082 |
/**
|
|
|
12083 |
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
|
|
12084 |
*/
|
|
|
12085 |
inline void gcode_M908() {
|
|
|
12086 |
#if HAS_DIGIPOTSS
|
|
|
12087 |
stepper.digitalPotWrite(
|
|
|
12088 |
parser.intval('P'),
|
|
|
12089 |
parser.intval('S')
|
|
|
12090 |
);
|
|
|
12091 |
#endif
|
|
|
12092 |
#ifdef DAC_STEPPER_CURRENT
|
|
|
12093 |
dac_current_raw(
|
|
|
12094 |
parser.byteval('P', -1),
|
|
|
12095 |
parser.ushortval('S', 0)
|
|
|
12096 |
);
|
|
|
12097 |
#endif
|
|
|
12098 |
}
|
|
|
12099 |
|
|
|
12100 |
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
12101 |
|
|
|
12102 |
inline void gcode_M909() { dac_print_values(); }
|
|
|
12103 |
|
|
|
12104 |
inline void gcode_M910() { dac_commit_eeprom(); }
|
|
|
12105 |
|
|
|
12106 |
#endif
|
|
|
12107 |
|
|
|
12108 |
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
|
|
12109 |
|
|
|
12110 |
#if HAS_MICROSTEPS
|
|
|
12111 |
|
|
|
12112 |
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
|
12113 |
inline void gcode_M350() {
|
|
|
12114 |
if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
|
|
|
12115 |
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
|
|
|
12116 |
if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
|
|
|
12117 |
stepper.microstep_readings();
|
|
|
12118 |
}
|
|
|
12119 |
|
|
|
12120 |
/**
|
|
|
12121 |
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
|
|
12122 |
* S# determines MS1 or MS2, X# sets the pin high/low.
|
|
|
12123 |
*/
|
|
|
12124 |
inline void gcode_M351() {
|
|
|
12125 |
if (parser.seenval('S')) switch (parser.value_byte()) {
|
|
|
12126 |
case 1:
|
|
|
12127 |
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
|
|
|
12128 |
if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
|
|
|
12129 |
break;
|
|
|
12130 |
case 2:
|
|
|
12131 |
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
|
|
|
12132 |
if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
|
|
|
12133 |
break;
|
|
|
12134 |
}
|
|
|
12135 |
stepper.microstep_readings();
|
|
|
12136 |
}
|
|
|
12137 |
|
|
|
12138 |
#endif // HAS_MICROSTEPS
|
|
|
12139 |
|
|
|
12140 |
#if HAS_CASE_LIGHT
|
|
|
12141 |
|
|
|
12142 |
#ifndef INVERT_CASE_LIGHT
|
|
|
12143 |
#define INVERT_CASE_LIGHT false
|
|
|
12144 |
#endif
|
|
|
12145 |
uint8_t case_light_brightness; // LCD routine wants INT
|
|
|
12146 |
bool case_light_on;
|
|
|
12147 |
|
|
|
12148 |
#if ENABLED(CASE_LIGHT_USE_NEOPIXEL)
|
|
|
12149 |
LEDColor case_light_color =
|
|
|
12150 |
#ifdef CASE_LIGHT_NEOPIXEL_COLOR
|
|
|
12151 |
CASE_LIGHT_NEOPIXEL_COLOR
|
|
|
12152 |
#else
|
|
|
12153 |
{ 255, 255, 255, 255 }
|
|
|
12154 |
#endif
|
|
|
12155 |
;
|
|
|
12156 |
#endif
|
|
|
12157 |
|
|
|
12158 |
void update_case_light() {
|
|
|
12159 |
const uint8_t i = case_light_on ? case_light_brightness : 0, n10ct = INVERT_CASE_LIGHT ? 255 - i : i;
|
|
|
12160 |
|
|
|
12161 |
#if ENABLED(CASE_LIGHT_USE_NEOPIXEL)
|
|
|
12162 |
|
|
|
12163 |
leds.set_color(
|
|
|
12164 |
MakeLEDColor(case_light_color.r, case_light_color.g, case_light_color.b, case_light_color.w, n10ct),
|
|
|
12165 |
false
|
|
|
12166 |
);
|
|
|
12167 |
|
|
|
12168 |
#else // !CASE_LIGHT_USE_NEOPIXEL
|
|
|
12169 |
|
|
|
12170 |
SET_OUTPUT(CASE_LIGHT_PIN);
|
|
|
12171 |
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
|
|
|
12172 |
analogWrite(CASE_LIGHT_PIN, n10ct);
|
|
|
12173 |
else {
|
|
|
12174 |
const bool s = case_light_on ? !INVERT_CASE_LIGHT : INVERT_CASE_LIGHT;
|
|
|
12175 |
WRITE(CASE_LIGHT_PIN, s ? HIGH : LOW);
|
|
|
12176 |
}
|
|
|
12177 |
|
|
|
12178 |
#endif // !CASE_LIGHT_USE_NEOPIXEL
|
|
|
12179 |
}
|
|
|
12180 |
#endif // HAS_CASE_LIGHT
|
|
|
12181 |
|
|
|
12182 |
/**
|
|
|
12183 |
* M355: Turn case light on/off and set brightness
|
|
|
12184 |
*
|
|
|
12185 |
* P<byte> Set case light brightness (PWM pin required - ignored otherwise)
|
|
|
12186 |
*
|
|
|
12187 |
* S<bool> Set case light on/off
|
|
|
12188 |
*
|
|
|
12189 |
* When S turns on the light on a PWM pin then the current brightness level is used/restored
|
|
|
12190 |
*
|
|
|
12191 |
* M355 P200 S0 turns off the light & sets the brightness level
|
|
|
12192 |
* M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
|
|
|
12193 |
*/
|
|
|
12194 |
inline void gcode_M355() {
|
|
|
12195 |
#if HAS_CASE_LIGHT
|
|
|
12196 |
uint8_t args = 0;
|
|
|
12197 |
if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
|
|
|
12198 |
if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
|
|
|
12199 |
if (args) update_case_light();
|
|
|
12200 |
|
|
|
12201 |
// always report case light status
|
|
|
12202 |
SERIAL_ECHO_START();
|
|
|
12203 |
if (!case_light_on) {
|
|
|
12204 |
SERIAL_ECHOLNPGM("Case light: off");
|
|
|
12205 |
}
|
|
|
12206 |
else {
|
|
|
12207 |
if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLNPGM("Case light: on");
|
|
|
12208 |
else SERIAL_ECHOLNPAIR("Case light: ", int(case_light_brightness));
|
|
|
12209 |
}
|
|
|
12210 |
|
|
|
12211 |
#else
|
|
|
12212 |
SERIAL_ERROR_START();
|
|
|
12213 |
SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
|
|
|
12214 |
#endif // HAS_CASE_LIGHT
|
|
|
12215 |
}
|
|
|
12216 |
|
|
|
12217 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
12218 |
|
|
|
12219 |
/**
|
|
|
12220 |
* M163: Set a single mix factor for a mixing extruder
|
|
|
12221 |
* This is called "weight" by some systems.
|
|
|
12222 |
* The 'P' values must sum to 1.0 or must be followed by M164 to normalize them.
|
|
|
12223 |
*
|
|
|
12224 |
* S[index] The channel index to set
|
|
|
12225 |
* P[float] The mix value
|
|
|
12226 |
*/
|
|
|
12227 |
inline void gcode_M163() {
|
|
|
12228 |
const int mix_index = parser.intval('S');
|
|
|
12229 |
if (mix_index < MIXING_STEPPERS)
|
|
|
12230 |
mixing_factor[mix_index] = MAX(parser.floatval('P'), 0.0);
|
|
|
12231 |
}
|
|
|
12232 |
|
|
|
12233 |
/**
|
|
|
12234 |
* M164: Normalize and commit the mix.
|
|
|
12235 |
* If 'S' is given store as a virtual tool. (Requires MIXING_VIRTUAL_TOOLS > 1)
|
|
|
12236 |
*
|
|
|
12237 |
* S[index] The virtual tool to store
|
|
|
12238 |
*/
|
|
|
12239 |
inline void gcode_M164() {
|
|
|
12240 |
normalize_mix();
|
|
|
12241 |
#if MIXING_VIRTUAL_TOOLS > 1
|
|
|
12242 |
const int tool_index = parser.intval('S', -1);
|
|
|
12243 |
if (WITHIN(tool_index, 0, MIXING_VIRTUAL_TOOLS - 1)) {
|
|
|
12244 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
12245 |
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
|
|
|
12246 |
}
|
|
|
12247 |
#endif
|
|
|
12248 |
}
|
|
|
12249 |
|
|
|
12250 |
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
|
12251 |
/**
|
|
|
12252 |
* M165: Set multiple mix factors for a mixing extruder.
|
|
|
12253 |
* Factors that are left out will be set to 0.
|
|
|
12254 |
* All factors should sum to 1.0, but they will be normalized regardless.
|
|
|
12255 |
*
|
|
|
12256 |
* A[factor] Mix factor for extruder stepper 1
|
|
|
12257 |
* B[factor] Mix factor for extruder stepper 2
|
|
|
12258 |
* C[factor] Mix factor for extruder stepper 3
|
|
|
12259 |
* D[factor] Mix factor for extruder stepper 4
|
|
|
12260 |
* H[factor] Mix factor for extruder stepper 5
|
|
|
12261 |
* I[factor] Mix factor for extruder stepper 6
|
|
|
12262 |
*/
|
|
|
12263 |
inline void gcode_M165() { gcode_get_mix(); }
|
|
|
12264 |
#endif
|
|
|
12265 |
|
|
|
12266 |
#endif // MIXING_EXTRUDER
|
|
|
12267 |
|
|
|
12268 |
/**
|
|
|
12269 |
* M999: Restart after being stopped
|
|
|
12270 |
*
|
|
|
12271 |
* Default behaviour is to flush the serial buffer and request
|
|
|
12272 |
* a resend to the host starting on the last N line received.
|
|
|
12273 |
*
|
|
|
12274 |
* Sending "M999 S1" will resume printing without flushing the
|
|
|
12275 |
* existing command buffer.
|
|
|
12276 |
*
|
|
|
12277 |
*/
|
|
|
12278 |
inline void gcode_M999() {
|
|
|
12279 |
Running = true;
|
|
|
12280 |
lcd_reset_alert_level();
|
|
|
12281 |
|
|
|
12282 |
if (parser.boolval('S')) return;
|
|
|
12283 |
|
|
|
12284 |
// gcode_LastN = Stopped_gcode_LastN;
|
|
|
12285 |
flush_and_request_resend();
|
|
|
12286 |
}
|
|
|
12287 |
|
|
|
12288 |
#if DO_SWITCH_EXTRUDER
|
|
|
12289 |
#if EXTRUDERS > 3
|
|
|
12290 |
#define REQ_ANGLES 4
|
|
|
12291 |
#define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
|
|
|
12292 |
#else
|
|
|
12293 |
#define REQ_ANGLES 2
|
|
|
12294 |
#define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
|
|
|
12295 |
#endif
|
|
|
12296 |
inline void move_extruder_servo(const uint8_t e) {
|
|
|
12297 |
constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
|
|
|
12298 |
static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
|
|
|
12299 |
planner.synchronize();
|
|
|
12300 |
#if EXTRUDERS & 1
|
|
|
12301 |
if (e < EXTRUDERS - 1)
|
|
|
12302 |
#endif
|
|
|
12303 |
{
|
|
|
12304 |
MOVE_SERVO(_SERVO_NR, angles[e]);
|
|
|
12305 |
safe_delay(500);
|
|
|
12306 |
}
|
|
|
12307 |
}
|
|
|
12308 |
#endif // DO_SWITCH_EXTRUDER
|
|
|
12309 |
|
|
|
12310 |
#if ENABLED(SWITCHING_NOZZLE)
|
|
|
12311 |
inline void move_nozzle_servo(const uint8_t e) {
|
|
|
12312 |
const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
|
|
|
12313 |
planner.synchronize();
|
|
|
12314 |
MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
|
|
|
12315 |
safe_delay(500);
|
|
|
12316 |
}
|
|
|
12317 |
#endif
|
|
|
12318 |
|
|
|
12319 |
inline void invalid_extruder_error(const uint8_t e) {
|
|
|
12320 |
SERIAL_ECHO_START();
|
|
|
12321 |
SERIAL_CHAR('T');
|
|
|
12322 |
SERIAL_ECHO_F(e, DEC);
|
|
|
12323 |
SERIAL_CHAR(' ');
|
|
|
12324 |
SERIAL_ECHOLNPGM(MSG_INVALID_EXTRUDER);
|
|
|
12325 |
}
|
|
|
12326 |
|
|
|
12327 |
#if ENABLED(PARKING_EXTRUDER)
|
|
|
12328 |
|
|
|
12329 |
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
|
12330 |
#define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
|
|
|
12331 |
#else
|
|
|
12332 |
#define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
|
|
|
12333 |
#endif
|
|
|
12334 |
|
|
|
12335 |
void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
|
|
|
12336 |
switch (extruder_num) {
|
|
|
12337 |
case 1: OUT_WRITE(SOL1_PIN, state); break;
|
|
|
12338 |
default: OUT_WRITE(SOL0_PIN, state); break;
|
|
|
12339 |
}
|
|
|
12340 |
#if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
|
|
|
12341 |
dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
|
|
|
12342 |
#endif
|
|
|
12343 |
}
|
|
|
12344 |
|
|
|
12345 |
inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
|
|
|
12346 |
inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
|
|
|
12347 |
|
|
|
12348 |
#endif // PARKING_EXTRUDER
|
|
|
12349 |
|
|
|
12350 |
#if HAS_FANMUX
|
|
|
12351 |
|
|
|
12352 |
void fanmux_switch(const uint8_t e) {
|
|
|
12353 |
WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
|
|
|
12354 |
#if PIN_EXISTS(FANMUX1)
|
|
|
12355 |
WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
|
|
|
12356 |
#if PIN_EXISTS(FANMUX2)
|
|
|
12357 |
WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
|
|
|
12358 |
#endif
|
|
|
12359 |
#endif
|
|
|
12360 |
}
|
|
|
12361 |
|
|
|
12362 |
FORCE_INLINE void fanmux_init(void) {
|
|
|
12363 |
SET_OUTPUT(FANMUX0_PIN);
|
|
|
12364 |
#if PIN_EXISTS(FANMUX1)
|
|
|
12365 |
SET_OUTPUT(FANMUX1_PIN);
|
|
|
12366 |
#if PIN_EXISTS(FANMUX2)
|
|
|
12367 |
SET_OUTPUT(FANMUX2_PIN);
|
|
|
12368 |
#endif
|
|
|
12369 |
#endif
|
|
|
12370 |
fanmux_switch(0);
|
|
|
12371 |
}
|
|
|
12372 |
|
|
|
12373 |
#endif // HAS_FANMUX
|
|
|
12374 |
|
|
|
12375 |
/**
|
|
|
12376 |
* Tool Change functions
|
|
|
12377 |
*/
|
|
|
12378 |
|
|
|
12379 |
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
|
12380 |
|
|
|
12381 |
inline void mixing_tool_change(const uint8_t tmp_extruder) {
|
|
|
12382 |
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
|
|
|
12383 |
return invalid_extruder_error(tmp_extruder);
|
|
|
12384 |
|
|
|
12385 |
// T0-Tnnn: Switch virtual tool by changing the mix
|
|
|
12386 |
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
|
|
|
12387 |
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
|
|
|
12388 |
}
|
|
|
12389 |
|
|
|
12390 |
#endif // MIXING_EXTRUDER && MIXING_VIRTUAL_TOOLS > 1
|
|
|
12391 |
|
|
|
12392 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
12393 |
|
|
|
12394 |
inline void dualx_tool_change(const uint8_t tmp_extruder, bool &no_move) {
|
|
|
12395 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12396 |
if (DEBUGGING(LEVELING)) {
|
|
|
12397 |
SERIAL_ECHOPGM("Dual X Carriage Mode ");
|
|
|
12398 |
switch (dual_x_carriage_mode) {
|
|
|
12399 |
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
|
|
|
12400 |
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
|
|
|
12401 |
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
|
|
|
12402 |
}
|
|
|
12403 |
}
|
|
|
12404 |
#endif
|
|
|
12405 |
|
|
|
12406 |
const float xhome = x_home_pos(active_extruder);
|
|
|
12407 |
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
|
|
|
12408 |
&& IsRunning()
|
|
|
12409 |
&& (delayed_move_time || current_position[X_AXIS] != xhome)
|
|
|
12410 |
) {
|
|
|
12411 |
float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
|
|
|
12412 |
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
|
|
|
12413 |
NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
|
|
|
12414 |
#endif
|
|
|
12415 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12416 |
if (DEBUGGING(LEVELING)) {
|
|
|
12417 |
SERIAL_ECHOLNPAIR("Raise to ", raised_z);
|
|
|
12418 |
SERIAL_ECHOLNPAIR("MoveX to ", xhome);
|
|
|
12419 |
SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
|
|
|
12420 |
}
|
|
|
12421 |
#endif
|
|
|
12422 |
// Park old head: 1) raise 2) move to park position 3) lower
|
|
|
12423 |
for (uint8_t i = 0; i < 3; i++)
|
|
|
12424 |
planner.buffer_line(
|
|
|
12425 |
i == 0 ? current_position[X_AXIS] : xhome,
|
|
|
12426 |
current_position[Y_AXIS],
|
|
|
12427 |
i == 2 ? current_position[Z_AXIS] : raised_z,
|
|
|
12428 |
current_position[E_CART],
|
|
|
12429 |
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
|
|
|
12430 |
active_extruder
|
|
|
12431 |
);
|
|
|
12432 |
planner.synchronize();
|
|
|
12433 |
}
|
|
|
12434 |
|
|
|
12435 |
// Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
|
|
|
12436 |
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
|
|
|
12437 |
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
|
|
12438 |
|
|
|
12439 |
// Activate the new extruder ahead of calling set_axis_is_at_home!
|
|
|
12440 |
active_extruder = tmp_extruder;
|
|
|
12441 |
|
|
|
12442 |
// This function resets the max/min values - the current position may be overwritten below.
|
|
|
12443 |
set_axis_is_at_home(X_AXIS);
|
|
|
12444 |
|
|
|
12445 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12446 |
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
|
|
|
12447 |
#endif
|
|
|
12448 |
|
|
|
12449 |
// Only when auto-parking are carriages safe to move
|
|
|
12450 |
if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
|
|
|
12451 |
|
|
|
12452 |
switch (dual_x_carriage_mode) {
|
|
|
12453 |
case DXC_FULL_CONTROL_MODE:
|
|
|
12454 |
// New current position is the position of the activated extruder
|
|
|
12455 |
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
|
12456 |
// Save the inactive extruder's position (from the old current_position)
|
|
|
12457 |
inactive_extruder_x_pos = destination[X_AXIS];
|
|
|
12458 |
break;
|
|
|
12459 |
case DXC_AUTO_PARK_MODE:
|
|
|
12460 |
// record raised toolhead position for use by unpark
|
|
|
12461 |
COPY(raised_parked_position, current_position);
|
|
|
12462 |
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
|
|
12463 |
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
|
|
|
12464 |
NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
|
|
|
12465 |
#endif
|
|
|
12466 |
active_extruder_parked = true;
|
|
|
12467 |
delayed_move_time = 0;
|
|
|
12468 |
break;
|
|
|
12469 |
case DXC_DUPLICATION_MODE:
|
|
|
12470 |
// If the new extruder is the left one, set it "parked"
|
|
|
12471 |
// This triggers the second extruder to move into the duplication position
|
|
|
12472 |
active_extruder_parked = (active_extruder == 0);
|
|
|
12473 |
current_position[X_AXIS] = active_extruder_parked ? inactive_extruder_x_pos : destination[X_AXIS] + duplicate_extruder_x_offset;
|
|
|
12474 |
inactive_extruder_x_pos = destination[X_AXIS];
|
|
|
12475 |
extruder_duplication_enabled = false;
|
|
|
12476 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12477 |
if (DEBUGGING(LEVELING)) {
|
|
|
12478 |
SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
|
|
|
12479 |
SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
|
|
|
12480 |
}
|
|
|
12481 |
#endif
|
|
|
12482 |
break;
|
|
|
12483 |
}
|
|
|
12484 |
|
|
|
12485 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12486 |
if (DEBUGGING(LEVELING)) {
|
|
|
12487 |
SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
|
|
|
12488 |
DEBUG_POS("New extruder (parked)", current_position);
|
|
|
12489 |
}
|
|
|
12490 |
#endif
|
|
|
12491 |
|
|
|
12492 |
// No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
|
|
|
12493 |
}
|
|
|
12494 |
|
|
|
12495 |
#endif // DUAL_X_CARRIAGE
|
|
|
12496 |
|
|
|
12497 |
#if ENABLED(PARKING_EXTRUDER)
|
|
|
12498 |
|
|
|
12499 |
inline void parking_extruder_tool_change(const uint8_t tmp_extruder, bool no_move) {
|
|
|
12500 |
constexpr float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
|
|
|
12501 |
|
|
|
12502 |
if (!no_move) {
|
|
|
12503 |
|
|
|
12504 |
const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
|
|
|
12505 |
midpos = (parkingposx[0] + parkingposx[1]) * 0.5 + hotend_offset[X_AXIS][active_extruder],
|
|
|
12506 |
grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
|
|
|
12507 |
+ (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
|
|
|
12508 |
/**
|
|
|
12509 |
* Steps:
|
|
|
12510 |
* 1. Raise Z-Axis to give enough clearance
|
|
|
12511 |
* 2. Move to park position of old extruder
|
|
|
12512 |
* 3. Disengage magnetic field, wait for delay
|
|
|
12513 |
* 4. Move near new extruder
|
|
|
12514 |
* 5. Engage magnetic field for new extruder
|
|
|
12515 |
* 6. Move to parking incl. offset of new extruder
|
|
|
12516 |
* 7. Lower Z-Axis
|
|
|
12517 |
*/
|
|
|
12518 |
|
|
|
12519 |
// STEP 1
|
|
|
12520 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12521 |
SERIAL_ECHOLNPGM("Starting Autopark");
|
|
|
12522 |
if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
|
|
|
12523 |
#endif
|
|
|
12524 |
current_position[Z_AXIS] += z_raise;
|
|
|
12525 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12526 |
SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
|
|
|
12527 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
|
|
|
12528 |
#endif
|
|
|
12529 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
|
|
12530 |
planner.synchronize();
|
|
|
12531 |
|
|
|
12532 |
// STEP 2
|
|
|
12533 |
current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
|
|
|
12534 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12535 |
SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
|
|
|
12536 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
|
|
|
12537 |
#endif
|
|
|
12538 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
|
12539 |
planner.synchronize();
|
|
|
12540 |
|
|
|
12541 |
// STEP 3
|
|
|
12542 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12543 |
SERIAL_ECHOLNPGM("(3) Disengage magnet ");
|
|
|
12544 |
#endif
|
|
|
12545 |
pe_deactivate_magnet(active_extruder);
|
|
|
12546 |
|
|
|
12547 |
// STEP 4
|
|
|
12548 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12549 |
SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
|
|
|
12550 |
#endif
|
|
|
12551 |
current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
|
|
|
12552 |
|
|
|
12553 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12554 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
|
|
|
12555 |
#endif
|
|
|
12556 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
|
12557 |
planner.synchronize();
|
|
|
12558 |
|
|
|
12559 |
// STEP 5
|
|
|
12560 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12561 |
SERIAL_ECHOLNPGM("(5) Engage magnetic field");
|
|
|
12562 |
#endif
|
|
|
12563 |
|
|
|
12564 |
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
|
12565 |
pe_activate_magnet(active_extruder); //just save power for inverted magnets
|
|
|
12566 |
#endif
|
|
|
12567 |
pe_activate_magnet(tmp_extruder);
|
|
|
12568 |
|
|
|
12569 |
// STEP 6
|
|
|
12570 |
current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
|
|
|
12571 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
|
12572 |
current_position[X_AXIS] = grabpos;
|
|
|
12573 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12574 |
SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
|
|
|
12575 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
|
|
|
12576 |
#endif
|
|
|
12577 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
|
|
|
12578 |
planner.synchronize();
|
|
|
12579 |
|
|
|
12580 |
// Step 7
|
|
|
12581 |
current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
|
|
|
12582 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12583 |
SERIAL_ECHOLNPGM("(7) Move midway between hotends");
|
|
|
12584 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
|
|
|
12585 |
#endif
|
|
|
12586 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
|
12587 |
planner.synchronize();
|
|
|
12588 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12589 |
SERIAL_ECHOLNPGM("Autopark done.");
|
|
|
12590 |
#endif
|
|
|
12591 |
}
|
|
|
12592 |
else { // nomove == true
|
|
|
12593 |
// Only engage magnetic field for new extruder
|
|
|
12594 |
pe_activate_magnet(tmp_extruder);
|
|
|
12595 |
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
|
12596 |
pe_activate_magnet(active_extruder); // Just save power for inverted magnets
|
|
|
12597 |
#endif
|
|
|
12598 |
}
|
|
|
12599 |
current_position[Z_AXIS] += hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
|
|
12600 |
|
|
|
12601 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12602 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
|
|
|
12603 |
#endif
|
|
|
12604 |
}
|
|
|
12605 |
|
|
|
12606 |
#endif // PARKING_EXTRUDER
|
|
|
12607 |
|
|
|
12608 |
/**
|
|
|
12609 |
* Perform a tool-change, which may result in moving the
|
|
|
12610 |
* previous tool out of the way and the new tool into place.
|
|
|
12611 |
*/
|
|
|
12612 |
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
|
|
|
12613 |
planner.synchronize();
|
|
|
12614 |
|
|
|
12615 |
#if HAS_LEVELING
|
|
|
12616 |
// Set current position to the physical position
|
|
|
12617 |
const bool leveling_was_active = planner.leveling_active;
|
|
|
12618 |
set_bed_leveling_enabled(false);
|
|
|
12619 |
#endif
|
|
|
12620 |
|
|
|
12621 |
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
|
12622 |
|
|
|
12623 |
mixing_tool_change(tmp_extruder);
|
|
|
12624 |
|
|
|
12625 |
#else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
|
|
12626 |
|
|
|
12627 |
if (tmp_extruder >= EXTRUDERS)
|
|
|
12628 |
return invalid_extruder_error(tmp_extruder);
|
|
|
12629 |
|
|
|
12630 |
#if HOTENDS > 1
|
|
|
12631 |
|
|
|
12632 |
const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
|
|
|
12633 |
|
|
|
12634 |
feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
12635 |
|
|
|
12636 |
if (tmp_extruder != active_extruder) {
|
|
|
12637 |
if (!no_move && axis_unhomed_error()) {
|
|
|
12638 |
no_move = true;
|
|
|
12639 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12640 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
|
|
|
12641 |
#endif
|
|
|
12642 |
}
|
|
|
12643 |
|
|
|
12644 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
12645 |
|
|
|
12646 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
12647 |
// Update the X software endstops early
|
|
|
12648 |
active_extruder = tmp_extruder;
|
|
|
12649 |
update_software_endstops(X_AXIS);
|
|
|
12650 |
active_extruder = !tmp_extruder;
|
|
|
12651 |
#endif
|
|
|
12652 |
|
|
|
12653 |
// Don't move the new extruder out of bounds
|
|
|
12654 |
if (!WITHIN(current_position[X_AXIS], soft_endstop_min[X_AXIS], soft_endstop_max[X_AXIS]))
|
|
|
12655 |
no_move = true;
|
|
|
12656 |
|
|
|
12657 |
if (!no_move) set_destination_from_current();
|
|
|
12658 |
dualx_tool_change(tmp_extruder, no_move); // Can modify no_move
|
|
|
12659 |
|
|
|
12660 |
#else // !DUAL_X_CARRIAGE
|
|
|
12661 |
|
|
|
12662 |
set_destination_from_current();
|
|
|
12663 |
|
|
|
12664 |
#if ENABLED(PARKING_EXTRUDER)
|
|
|
12665 |
parking_extruder_tool_change(tmp_extruder, no_move);
|
|
|
12666 |
#endif
|
|
|
12667 |
|
|
|
12668 |
#if ENABLED(SWITCHING_NOZZLE)
|
|
|
12669 |
// Always raise by at least 1 to avoid workpiece
|
|
|
12670 |
const float zdiff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
|
|
12671 |
current_position[Z_AXIS] += (zdiff > 0.0 ? zdiff : 0.0) + 1;
|
|
|
12672 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
|
|
12673 |
move_nozzle_servo(tmp_extruder);
|
|
|
12674 |
#endif
|
|
|
12675 |
|
|
|
12676 |
const float xdiff = hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
|
|
|
12677 |
ydiff = hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder];
|
|
|
12678 |
|
|
|
12679 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12680 |
if (DEBUGGING(LEVELING)) {
|
|
|
12681 |
SERIAL_ECHOPAIR("Offset Tool XY by { ", xdiff);
|
|
|
12682 |
SERIAL_ECHOPAIR(", ", ydiff);
|
|
|
12683 |
SERIAL_ECHOLNPGM(" }");
|
|
|
12684 |
}
|
|
|
12685 |
#endif
|
|
|
12686 |
|
|
|
12687 |
// The newly-selected extruder XY is actually at...
|
|
|
12688 |
current_position[X_AXIS] += xdiff;
|
|
|
12689 |
current_position[Y_AXIS] += ydiff;
|
|
|
12690 |
|
|
|
12691 |
// Set the new active extruder
|
|
|
12692 |
active_extruder = tmp_extruder;
|
|
|
12693 |
|
|
|
12694 |
#endif // !DUAL_X_CARRIAGE
|
|
|
12695 |
|
|
|
12696 |
#if ENABLED(SWITCHING_NOZZLE)
|
|
|
12697 |
// The newly-selected extruder Z is actually at...
|
|
|
12698 |
current_position[Z_AXIS] -= zdiff;
|
|
|
12699 |
#endif
|
|
|
12700 |
|
|
|
12701 |
// Tell the planner the new "current position"
|
|
|
12702 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
12703 |
|
|
|
12704 |
#if ENABLED(DELTA)
|
|
|
12705 |
//LOOP_XYZ(i) update_software_endstops(i); // or modify the constrain function
|
|
|
12706 |
const bool safe_to_move = current_position[Z_AXIS] < delta_clip_start_height - 1;
|
|
|
12707 |
#else
|
|
|
12708 |
constexpr bool safe_to_move = true;
|
|
|
12709 |
#endif
|
|
|
12710 |
|
|
|
12711 |
// Raise, move, and lower again
|
|
|
12712 |
if (safe_to_move && !no_move && IsRunning()) {
|
|
|
12713 |
#if DISABLED(SWITCHING_NOZZLE)
|
|
|
12714 |
// Do a small lift to avoid the workpiece in the move back (below)
|
|
|
12715 |
current_position[Z_AXIS] += 1.0;
|
|
|
12716 |
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
|
|
12717 |
#endif
|
|
|
12718 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12719 |
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
|
|
|
12720 |
#endif
|
|
|
12721 |
// Move back to the original (or tweaked) position
|
|
|
12722 |
do_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);
|
|
|
12723 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
12724 |
active_extruder_parked = false;
|
|
|
12725 |
#endif
|
|
|
12726 |
}
|
|
|
12727 |
#if ENABLED(SWITCHING_NOZZLE)
|
|
|
12728 |
else {
|
|
|
12729 |
// Move back down. (Including when the new tool is higher.)
|
|
|
12730 |
do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);
|
|
|
12731 |
}
|
|
|
12732 |
#endif
|
|
|
12733 |
} // (tmp_extruder != active_extruder)
|
|
|
12734 |
|
|
|
12735 |
planner.synchronize();
|
|
|
12736 |
|
|
|
12737 |
#if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
|
|
|
12738 |
disable_all_solenoids();
|
|
|
12739 |
enable_solenoid_on_active_extruder();
|
|
|
12740 |
#endif
|
|
|
12741 |
|
|
|
12742 |
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
12743 |
|
|
|
12744 |
#if HAS_SOFTWARE_ENDSTOPS && ENABLED(DUAL_X_CARRIAGE)
|
|
|
12745 |
update_software_endstops(X_AXIS);
|
|
|
12746 |
#endif
|
|
|
12747 |
|
|
|
12748 |
#else // HOTENDS <= 1
|
|
|
12749 |
|
|
|
12750 |
UNUSED(fr_mm_s);
|
|
|
12751 |
UNUSED(no_move);
|
|
|
12752 |
|
|
|
12753 |
#if ENABLED(MK2_MULTIPLEXER)
|
|
|
12754 |
if (tmp_extruder >= E_STEPPERS)
|
|
|
12755 |
return invalid_extruder_error(tmp_extruder);
|
|
|
12756 |
|
|
|
12757 |
select_multiplexed_stepper(tmp_extruder);
|
|
|
12758 |
#endif
|
|
|
12759 |
|
|
|
12760 |
// Set the new active extruder
|
|
|
12761 |
active_extruder = tmp_extruder;
|
|
|
12762 |
|
|
|
12763 |
#endif // HOTENDS <= 1
|
|
|
12764 |
|
|
|
12765 |
#if DO_SWITCH_EXTRUDER
|
|
|
12766 |
planner.synchronize();
|
|
|
12767 |
move_extruder_servo(active_extruder);
|
|
|
12768 |
#endif
|
|
|
12769 |
|
|
|
12770 |
#if HAS_FANMUX
|
|
|
12771 |
fanmux_switch(active_extruder);
|
|
|
12772 |
#endif
|
|
|
12773 |
|
|
|
12774 |
#if HAS_LEVELING
|
|
|
12775 |
// Restore leveling to re-establish the logical position
|
|
|
12776 |
set_bed_leveling_enabled(leveling_was_active);
|
|
|
12777 |
#endif
|
|
|
12778 |
|
|
|
12779 |
SERIAL_ECHO_START();
|
|
|
12780 |
SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(active_extruder));
|
|
|
12781 |
|
|
|
12782 |
#endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
|
|
12783 |
}
|
|
|
12784 |
|
|
|
12785 |
/**
|
|
|
12786 |
* T0-T3: Switch tool, usually switching extruders
|
|
|
12787 |
*
|
|
|
12788 |
* F[units/min] Set the movement feedrate
|
|
|
12789 |
* S1 Don't move the tool in XY after change
|
|
|
12790 |
*/
|
|
|
12791 |
inline void gcode_T(const uint8_t tmp_extruder) {
|
|
|
12792 |
|
|
|
12793 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12794 |
if (DEBUGGING(LEVELING)) {
|
|
|
12795 |
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
|
|
|
12796 |
SERIAL_CHAR(')');
|
|
|
12797 |
SERIAL_EOL();
|
|
|
12798 |
DEBUG_POS("BEFORE", current_position);
|
|
|
12799 |
}
|
|
|
12800 |
#endif
|
|
|
12801 |
|
|
|
12802 |
#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
|
|
|
12803 |
|
|
|
12804 |
tool_change(tmp_extruder);
|
|
|
12805 |
|
|
|
12806 |
#elif HOTENDS > 1
|
|
|
12807 |
|
|
|
12808 |
tool_change(
|
|
|
12809 |
tmp_extruder,
|
|
|
12810 |
MMM_TO_MMS(parser.linearval('F')),
|
|
|
12811 |
(tmp_extruder == active_extruder) || parser.boolval('S')
|
|
|
12812 |
);
|
|
|
12813 |
|
|
|
12814 |
#endif
|
|
|
12815 |
|
|
|
12816 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
12817 |
if (DEBUGGING(LEVELING)) {
|
|
|
12818 |
DEBUG_POS("AFTER", current_position);
|
|
|
12819 |
SERIAL_ECHOLNPGM("<<< gcode_T");
|
|
|
12820 |
}
|
|
|
12821 |
#endif
|
|
|
12822 |
}
|
|
|
12823 |
|
|
|
12824 |
/**
|
|
|
12825 |
* Process the parsed command and dispatch it to its handler
|
|
|
12826 |
*/
|
|
|
12827 |
void process_parsed_command() {
|
|
|
12828 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
12829 |
|
|
|
12830 |
// Handle a known G, M, or T
|
|
|
12831 |
switch (parser.command_letter) {
|
|
|
12832 |
case 'G': switch (parser.codenum) {
|
|
|
12833 |
|
|
|
12834 |
case 0: case 1: gcode_G0_G1( // G0: Fast Move, G1: Linear Move
|
|
|
12835 |
#if IS_SCARA
|
|
|
12836 |
parser.codenum == 0
|
|
|
12837 |
#endif
|
|
|
12838 |
); break;
|
|
|
12839 |
|
|
|
12840 |
#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
|
|
|
12841 |
case 2: case 3: gcode_G2_G3(parser.codenum == 2); break; // G2: CW ARC, G3: CCW ARC
|
|
|
12842 |
#endif
|
|
|
12843 |
|
|
|
12844 |
case 4: gcode_G4(); break; // G4: Dwell
|
|
|
12845 |
|
|
|
12846 |
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
12847 |
case 5: gcode_G5(); break; // G5: Cubic B_spline
|
|
|
12848 |
#endif
|
|
|
12849 |
|
|
|
12850 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
12851 |
case 6: gcode_G6(); break; // G6: Direct stepper move
|
|
|
12852 |
#endif
|
|
|
12853 |
|
|
|
12854 |
#if ENABLED(FWRETRACT)
|
|
|
12855 |
case 10: gcode_G10(); break; // G10: Retract
|
|
|
12856 |
case 11: gcode_G11(); break; // G11: Prime
|
|
|
12857 |
#endif
|
|
|
12858 |
|
|
|
12859 |
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
|
|
12860 |
case 12: gcode_G12(); break; // G12: Clean Nozzle
|
|
|
12861 |
#endif
|
|
|
12862 |
|
|
|
12863 |
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
12864 |
case 17: gcode_G17(); break; // G17: Select Plane XY
|
|
|
12865 |
case 18: gcode_G18(); break; // G18: Select Plane ZX
|
|
|
12866 |
case 19: gcode_G19(); break; // G19: Select Plane YZ
|
|
|
12867 |
#endif
|
|
|
12868 |
|
|
|
12869 |
#if ENABLED(INCH_MODE_SUPPORT)
|
|
|
12870 |
case 20: gcode_G20(); break; // G20: Inch Units
|
|
|
12871 |
case 21: gcode_G21(); break; // G21: Millimeter Units
|
|
|
12872 |
#endif
|
|
|
12873 |
|
|
|
12874 |
#if ENABLED(G26_MESH_VALIDATION)
|
|
|
12875 |
case 26: gcode_G26(); break; // G26: Mesh Validation Pattern
|
|
|
12876 |
#endif
|
|
|
12877 |
|
|
|
12878 |
#if ENABLED(NOZZLE_PARK_FEATURE)
|
|
|
12879 |
case 27: gcode_G27(); break; // G27: Park Nozzle
|
|
|
12880 |
#endif
|
|
|
12881 |
|
|
|
12882 |
case 28: gcode_G28(false); break; // G28: Home one or more axes
|
|
|
12883 |
|
|
|
12884 |
#if HAS_LEVELING
|
|
|
12885 |
case 29: gcode_G29(); break; // G29: Detailed Z probe
|
|
|
12886 |
#endif
|
|
|
12887 |
|
|
|
12888 |
#if HAS_BED_PROBE
|
|
|
12889 |
case 30: gcode_G30(); break; // G30: Single Z probe
|
|
|
12890 |
#endif
|
|
|
12891 |
|
|
|
12892 |
#if ENABLED(Z_PROBE_SLED)
|
|
|
12893 |
case 31: gcode_G31(); break; // G31: Dock sled
|
|
|
12894 |
case 32: gcode_G32(); break; // G32: Undock sled
|
|
|
12895 |
#endif
|
|
|
12896 |
|
|
|
12897 |
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
12898 |
case 33: gcode_G33(); break; // G33: Delta Auto-Calibration
|
|
|
12899 |
#endif
|
|
|
12900 |
|
|
|
12901 |
#if ENABLED(G38_PROBE_TARGET)
|
|
|
12902 |
case 38:
|
|
|
12903 |
if (parser.subcode == 2 || parser.subcode == 3)
|
|
|
12904 |
gcode_G38(parser.subcode == 2); // G38.2, G38.3: Probe towards object
|
|
|
12905 |
break;
|
|
|
12906 |
#endif
|
|
|
12907 |
|
|
|
12908 |
#if HAS_MESH
|
|
|
12909 |
case 42: gcode_G42(); break; // G42: Move to mesh point
|
|
|
12910 |
#endif
|
|
|
12911 |
|
|
|
12912 |
case 90: relative_mode = false; break; // G90: Absolute coordinates
|
|
|
12913 |
case 91: relative_mode = true; break; // G91: Relative coordinates
|
|
|
12914 |
|
|
|
12915 |
case 92: gcode_G92(); break; // G92: Set Position
|
|
|
12916 |
#if ENABLED(MECHADUINO_I2C_COMMANDS)
|
|
|
12917 |
case 95: gcode_G95(); break; // G95: Set torque mode
|
|
|
12918 |
case 96: gcode_G96(); break; // G96: Mark encoder reference point
|
|
|
12919 |
#endif
|
|
|
12920 |
|
|
|
12921 |
#if ENABLED(DEBUG_GCODE_PARSER)
|
|
|
12922 |
case 800: parser.debug(); break; // G800: GCode Parser Test for G
|
|
|
12923 |
#endif
|
|
|
12924 |
|
|
|
12925 |
default: parser.unknown_command_error();
|
|
|
12926 |
}
|
|
|
12927 |
break;
|
|
|
12928 |
|
|
|
12929 |
case 'M': switch (parser.codenum) {
|
|
|
12930 |
#if HAS_RESUME_CONTINUE
|
|
|
12931 |
case 0: case 1: gcode_M0_M1(); break; // M0: Unconditional stop, M1: Conditional stop
|
|
|
12932 |
#endif
|
|
|
12933 |
|
|
|
12934 |
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
|
12935 |
case 3: gcode_M3_M4(true); break; // M3: Laser/CW-Spindle Power
|
|
|
12936 |
case 4: gcode_M3_M4(false); break; // M4: Laser/CCW-Spindle Power
|
|
|
12937 |
case 5: gcode_M5(); break; // M5: Laser/Spindle OFF
|
|
|
12938 |
#endif
|
|
|
12939 |
|
|
|
12940 |
case 17: gcode_M17(); break; // M17: Enable all steppers
|
|
|
12941 |
|
|
|
12942 |
#if ENABLED(SDSUPPORT)
|
|
|
12943 |
case 20: gcode_M20(); break; // M20: List SD Card
|
|
|
12944 |
case 21: gcode_M21(); break; // M21: Init SD Card
|
|
|
12945 |
case 22: gcode_M22(); break; // M22: Release SD Card
|
|
|
12946 |
case 23: gcode_M23(); break; // M23: Select File
|
|
|
12947 |
case 24: gcode_M24(); break; // M24: Start SD Print
|
|
|
12948 |
case 25: gcode_M25(); break; // M25: Pause SD Print
|
|
|
12949 |
case 26: gcode_M26(); break; // M26: Set SD Index
|
|
|
12950 |
case 27: gcode_M27(); break; // M27: Get SD Status
|
|
|
12951 |
case 28: gcode_M28(); break; // M28: Start SD Write
|
|
|
12952 |
case 29: gcode_M29(); break; // M29: Stop SD Write
|
|
|
12953 |
case 30: gcode_M30(); break; // M30: Delete File
|
|
|
12954 |
case 32: gcode_M32(); break; // M32: Select file, Start SD Print
|
|
|
12955 |
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
|
12956 |
case 33: gcode_M33(); break; // M33: Report longname path
|
|
|
12957 |
#endif
|
|
|
12958 |
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
|
|
|
12959 |
case 34: gcode_M34(); break; // M34: Set SD card sorting options
|
|
|
12960 |
#endif
|
|
|
12961 |
case 928: gcode_M928(); break; // M928: Start SD write
|
|
|
12962 |
#endif // SDSUPPORT
|
|
|
12963 |
|
|
|
12964 |
case 31: gcode_M31(); break; // M31: Report print job elapsed time
|
|
|
12965 |
|
|
|
12966 |
case 42: gcode_M42(); break; // M42: Change pin state
|
|
|
12967 |
#if ENABLED(PINS_DEBUGGING)
|
|
|
12968 |
case 43: gcode_M43(); break; // M43: Read/monitor pin and endstop states
|
|
|
12969 |
#endif
|
|
|
12970 |
|
|
|
12971 |
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
12972 |
case 48: gcode_M48(); break; // M48: Z probe repeatability test
|
|
|
12973 |
#endif
|
|
|
12974 |
#if ENABLED(G26_MESH_VALIDATION)
|
|
|
12975 |
case 49: gcode_M49(); break; // M49: Toggle the G26 Debug Flag
|
|
|
12976 |
#endif
|
|
|
12977 |
|
|
|
12978 |
#if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
|
|
|
12979 |
case 73: gcode_M73(); break; // M73: Set Print Progress %
|
|
|
12980 |
#endif
|
|
|
12981 |
case 75: gcode_M75(); break; // M75: Start Print Job Timer
|
|
|
12982 |
case 76: gcode_M76(); break; // M76: Pause Print Job Timer
|
|
|
12983 |
case 77: gcode_M77(); break; // M77: Stop Print Job Timer
|
|
|
12984 |
#if ENABLED(PRINTCOUNTER)
|
|
|
12985 |
case 78: gcode_M78(); break; // M78: Report Print Statistics
|
|
|
12986 |
#endif
|
|
|
12987 |
|
|
|
12988 |
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
|
12989 |
case 100: gcode_M100(); break; // M100: Free Memory Report
|
|
|
12990 |
#endif
|
|
|
12991 |
|
|
|
12992 |
case 104: gcode_M104(); break; // M104: Set Hotend Temperature
|
|
|
12993 |
case 110: gcode_M110(); break; // M110: Set Current Line Number
|
|
|
12994 |
case 111: gcode_M111(); break; // M111: Set Debug Flags
|
|
|
12995 |
|
|
|
12996 |
#if DISABLED(EMERGENCY_PARSER)
|
|
|
12997 |
case 108: gcode_M108(); break; // M108: Cancel Waiting
|
|
|
12998 |
case 112: gcode_M112(); break; // M112: Emergency Stop
|
|
|
12999 |
case 410: gcode_M410(); break; // M410: Quickstop. Abort all planned moves
|
|
|
13000 |
#else
|
|
|
13001 |
case 108: case 112: case 410: break; // Silently drop as handled by emergency parser
|
|
|
13002 |
#endif
|
|
|
13003 |
|
|
|
13004 |
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
13005 |
case 113: gcode_M113(); break; // M113: Set Host Keepalive Interval
|
|
|
13006 |
#endif
|
|
|
13007 |
|
|
|
13008 |
case 105: gcode_M105(); KEEPALIVE_STATE(NOT_BUSY); return; // M105: Report Temperatures (and say "ok")
|
|
|
13009 |
|
|
|
13010 |
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
13011 |
case 155: gcode_M155(); break; // M155: Set Temperature Auto-report Interval
|
|
|
13012 |
#endif
|
|
|
13013 |
|
|
|
13014 |
case 109: gcode_M109(); break; // M109: Set Hotend Temperature. Wait for target.
|
|
|
13015 |
|
|
|
13016 |
#if HAS_HEATED_BED
|
|
|
13017 |
case 140: gcode_M140(); break; // M140: Set Bed Temperature
|
|
|
13018 |
case 190: gcode_M190(); break; // M190: Set Bed Temperature. Wait for target.
|
|
|
13019 |
#endif
|
|
|
13020 |
|
|
|
13021 |
#if FAN_COUNT > 0
|
|
|
13022 |
case 106: gcode_M106(); break; // M106: Set Fan Speed
|
|
|
13023 |
case 107: gcode_M107(); break; // M107: Fan Off
|
|
|
13024 |
#endif
|
|
|
13025 |
|
|
|
13026 |
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
|
13027 |
case 125: gcode_M125(); break; // M125: Park (for Filament Change)
|
|
|
13028 |
#endif
|
|
|
13029 |
|
|
|
13030 |
#if ENABLED(BARICUDA)
|
|
|
13031 |
#if HAS_HEATER_1
|
|
|
13032 |
case 126: gcode_M126(); break; // M126: Valve 1 Open
|
|
|
13033 |
case 127: gcode_M127(); break; // M127: Valve 1 Closed
|
|
|
13034 |
#endif
|
|
|
13035 |
#if HAS_HEATER_2
|
|
|
13036 |
case 128: gcode_M128(); break; // M128: Valve 2 Open
|
|
|
13037 |
case 129: gcode_M129(); break; // M129: Valve 2 Closed
|
|
|
13038 |
#endif
|
|
|
13039 |
#endif
|
|
|
13040 |
|
|
|
13041 |
#if HAS_POWER_SWITCH
|
|
|
13042 |
case 80: gcode_M80(); break; // M80: Turn on Power Supply
|
|
|
13043 |
#endif
|
|
|
13044 |
case 81: gcode_M81(); break; // M81: Turn off Power and Power Supply
|
|
|
13045 |
|
|
|
13046 |
case 82: gcode_M82(); break; // M82: Disable Relative E-Axis
|
|
|
13047 |
case 83: gcode_M83(); break; // M83: Set Relative E-Axis
|
|
|
13048 |
case 18: case 84: gcode_M18_M84(); break; // M18/M84: Disable Steppers / Set Timeout
|
|
|
13049 |
case 85: gcode_M85(); break; // M85: Set inactivity stepper shutdown timeout
|
|
|
13050 |
case 92: gcode_M92(); break; // M92: Set steps-per-unit
|
|
|
13051 |
case 114: gcode_M114(); break; // M114: Report Current Position
|
|
|
13052 |
case 115: gcode_M115(); break; // M115: Capabilities Report
|
|
|
13053 |
case 117: gcode_M117(); break; // M117: Set LCD message text
|
|
|
13054 |
case 118: gcode_M118(); break; // M118: Print a message in the host console
|
|
|
13055 |
case 119: gcode_M119(); break; // M119: Report Endstop states
|
|
|
13056 |
case 120: gcode_M120(); break; // M120: Enable Endstops
|
|
|
13057 |
case 121: gcode_M121(); break; // M121: Disable Endstops
|
|
|
13058 |
|
|
|
13059 |
#if ENABLED(ULTIPANEL)
|
|
|
13060 |
case 145: gcode_M145(); break; // M145: Set material heatup parameters
|
|
|
13061 |
#endif
|
|
|
13062 |
|
|
|
13063 |
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
|
13064 |
case 149: gcode_M149(); break; // M149: Set Temperature Units, C F K
|
|
|
13065 |
#endif
|
|
|
13066 |
|
|
|
13067 |
#if HAS_COLOR_LEDS
|
|
|
13068 |
case 150: gcode_M150(); break; // M150: Set Status LED Color
|
|
|
13069 |
#endif
|
|
|
13070 |
|
|
|
13071 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
13072 |
case 163: gcode_M163(); break; // M163: Set Mixing Component
|
|
|
13073 |
#if MIXING_VIRTUAL_TOOLS > 1
|
|
|
13074 |
case 164: gcode_M164(); break; // M164: Save Current Mix
|
|
|
13075 |
#endif
|
|
|
13076 |
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
|
13077 |
case 165: gcode_M165(); break; // M165: Set Multiple Mixing Components
|
|
|
13078 |
#endif
|
|
|
13079 |
#endif
|
|
|
13080 |
|
|
|
13081 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
13082 |
case 200: gcode_M200(); break; // M200: Set Filament Diameter, Volumetric Extrusion
|
|
|
13083 |
#endif
|
|
|
13084 |
|
|
|
13085 |
case 201: gcode_M201(); break; // M201: Set Max Printing Acceleration (units/sec^2)
|
|
|
13086 |
#if 0
|
|
|
13087 |
case 202: gcode_M202(); break; // M202: Not used for Sprinter/grbl gen6
|
|
|
13088 |
#endif
|
|
|
13089 |
case 203: gcode_M203(); break; // M203: Set Max Feedrate (units/sec)
|
|
|
13090 |
case 204: gcode_M204(); break; // M204: Set Acceleration
|
|
|
13091 |
case 205: gcode_M205(); break; // M205: Set Advanced settings
|
|
|
13092 |
|
|
|
13093 |
#if HAS_M206_COMMAND
|
|
|
13094 |
case 206: gcode_M206(); break; // M206: Set Home Offsets
|
|
|
13095 |
case 428: gcode_M428(); break; // M428: Set Home Offsets based on current position
|
|
|
13096 |
#endif
|
|
|
13097 |
|
|
|
13098 |
#if ENABLED(FWRETRACT)
|
|
|
13099 |
case 207: gcode_M207(); break; // M207: Set Retract Length, Feedrate, Z lift
|
|
|
13100 |
case 208: gcode_M208(); break; // M208: Set Additional Prime Length and Feedrate
|
|
|
13101 |
case 209:
|
|
|
13102 |
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209(); // M209: Turn Auto-Retract on/off
|
|
|
13103 |
break;
|
|
|
13104 |
#endif
|
|
|
13105 |
|
|
|
13106 |
case 211: gcode_M211(); break; // M211: Enable/Disable/Report Software Endstops
|
|
|
13107 |
|
|
|
13108 |
#if HOTENDS > 1
|
|
|
13109 |
case 218: gcode_M218(); break; // M218: Set Tool Offset
|
|
|
13110 |
#endif
|
|
|
13111 |
|
|
|
13112 |
case 220: gcode_M220(); break; // M220: Set Feedrate Percentage
|
|
|
13113 |
case 221: gcode_M221(); break; // M221: Set Flow Percentage
|
|
|
13114 |
case 226: gcode_M226(); break; // M226: Wait for Pin State
|
|
|
13115 |
|
|
|
13116 |
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
|
13117 |
case 240: gcode_M240(); break; // M240: Trigger Camera
|
|
|
13118 |
#endif
|
|
|
13119 |
|
|
|
13120 |
#if HAS_LCD_CONTRAST
|
|
|
13121 |
case 250: gcode_M250(); break; // M250: Set LCD Contrast
|
|
|
13122 |
#endif
|
|
|
13123 |
|
|
|
13124 |
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
13125 |
case 260: gcode_M260(); break; // M260: Send Data to i2c slave
|
|
|
13126 |
case 261: gcode_M261(); break; // M261: Request Data from i2c slave
|
|
|
13127 |
#endif
|
|
|
13128 |
|
|
|
13129 |
#if HAS_SERVOS
|
|
|
13130 |
case 280: gcode_M280(); break; // M280: Set Servo Position
|
|
|
13131 |
#endif
|
|
|
13132 |
|
|
|
13133 |
#if ENABLED(BABYSTEPPING)
|
|
|
13134 |
case 290: gcode_M290(); break; // M290: Babystepping
|
|
|
13135 |
#endif
|
|
|
13136 |
|
|
|
13137 |
#if HAS_BUZZER
|
|
|
13138 |
case 300: gcode_M300(); break; // M300: Add Tone/Buzz to Queue
|
|
|
13139 |
#endif
|
|
|
13140 |
|
|
|
13141 |
#if ENABLED(PIDTEMP)
|
|
|
13142 |
case 301: gcode_M301(); break; // M301: Set Hotend PID parameters
|
|
|
13143 |
#endif
|
|
|
13144 |
|
|
|
13145 |
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
13146 |
case 302: gcode_M302(); break; // M302: Set Minimum Extrusion Temp
|
|
|
13147 |
#endif
|
|
|
13148 |
|
|
|
13149 |
case 303: gcode_M303(); break; // M303: PID Autotune
|
|
|
13150 |
|
|
|
13151 |
#if ENABLED(PIDTEMPBED)
|
|
|
13152 |
case 304: gcode_M304(); break; // M304: Set Bed PID parameters
|
|
|
13153 |
#endif
|
|
|
13154 |
|
|
|
13155 |
#if HAS_MICROSTEPS
|
|
|
13156 |
case 350: gcode_M350(); break; // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
|
13157 |
case 351: gcode_M351(); break; // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
|
13158 |
#endif
|
|
|
13159 |
|
|
|
13160 |
case 355: gcode_M355(); break; // M355: Set Case Light brightness
|
|
|
13161 |
|
|
|
13162 |
#if ENABLED(MORGAN_SCARA)
|
|
|
13163 |
case 360: if (gcode_M360()) return; break; // M360: SCARA Theta pos1
|
|
|
13164 |
case 361: if (gcode_M361()) return; break; // M361: SCARA Theta pos2
|
|
|
13165 |
case 362: if (gcode_M362()) return; break; // M362: SCARA Psi pos1
|
|
|
13166 |
case 363: if (gcode_M363()) return; break; // M363: SCARA Psi pos2
|
|
|
13167 |
case 364: if (gcode_M364()) return; break; // M364: SCARA Psi pos3 (90 deg to Theta)
|
|
|
13168 |
#endif
|
|
|
13169 |
|
|
|
13170 |
case 400: gcode_M400(); break; // M400: Synchronize. Wait for moves to finish.
|
|
|
13171 |
|
|
|
13172 |
#if HAS_BED_PROBE
|
|
|
13173 |
case 401: gcode_M401(); break; // M401: Deploy Probe
|
|
|
13174 |
case 402: gcode_M402(); break; // M402: Stow Probe
|
|
|
13175 |
#endif
|
|
|
13176 |
|
|
|
13177 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
13178 |
case 404: gcode_M404(); break; // M404: Set/Report Nominal Filament Width
|
|
|
13179 |
case 405: gcode_M405(); break; // M405: Enable Filament Width Sensor
|
|
|
13180 |
case 406: gcode_M406(); break; // M406: Disable Filament Width Sensor
|
|
|
13181 |
case 407: gcode_M407(); break; // M407: Report Measured Filament Width
|
|
|
13182 |
#endif
|
|
|
13183 |
|
|
|
13184 |
#if HAS_LEVELING
|
|
|
13185 |
case 420: gcode_M420(); break; // M420: Set Bed Leveling Enabled / Fade
|
|
|
13186 |
#endif
|
|
|
13187 |
|
|
|
13188 |
#if HAS_MESH
|
|
|
13189 |
case 421: gcode_M421(); break; // M421: Set a Mesh Z value
|
|
|
13190 |
#endif
|
|
|
13191 |
|
|
|
13192 |
case 500: gcode_M500(); break; // M500: Store Settings in EEPROM
|
|
|
13193 |
case 501: gcode_M501(); break; // M501: Read Settings from EEPROM
|
|
|
13194 |
case 502: gcode_M502(); break; // M502: Revert Settings to defaults
|
|
|
13195 |
#if DISABLED(DISABLE_M503)
|
|
|
13196 |
case 503: gcode_M503(); break; // M503: Report Settings (in SRAM)
|
|
|
13197 |
#endif
|
|
|
13198 |
#if ENABLED(EEPROM_SETTINGS)
|
|
|
13199 |
case 504: gcode_M504(); break; // M504: Validate EEPROM
|
|
|
13200 |
#endif
|
|
|
13201 |
|
|
|
13202 |
#if ENABLED(SDSUPPORT)
|
|
|
13203 |
case 524: gcode_M524(); break; // M524: Abort SD print job
|
|
|
13204 |
#endif
|
|
|
13205 |
|
|
|
13206 |
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
13207 |
case 540: gcode_M540(); break; // M540: Set Abort on Endstop Hit for SD Printing
|
|
|
13208 |
#endif
|
|
|
13209 |
|
|
|
13210 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
13211 |
case 600: gcode_M600(); break; // M600: Pause for Filament Change
|
|
|
13212 |
case 603: gcode_M603(); break; // M603: Configure Filament Change
|
|
|
13213 |
#endif
|
|
|
13214 |
|
|
|
13215 |
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
13216 |
case 605: gcode_M605(); break; // M605: Set Dual X Carriage movement mode
|
|
|
13217 |
#endif
|
|
|
13218 |
|
|
|
13219 |
#if ENABLED(DELTA) || ENABLED(HANGPRINTER)
|
|
|
13220 |
case 665: gcode_M665(); break; // M665: Delta / Hangprinter Configuration
|
|
|
13221 |
#endif
|
|
|
13222 |
#if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
13223 |
case 666: gcode_M666(); break; // M666: DELTA/Dual Endstop Adjustment
|
|
|
13224 |
#endif
|
|
|
13225 |
|
|
|
13226 |
#if ENABLED(FILAMENT_LOAD_UNLOAD_GCODES)
|
|
|
13227 |
case 701: gcode_M701(); break; // M701: Load Filament
|
|
|
13228 |
case 702: gcode_M702(); break; // M702: Unload Filament
|
|
|
13229 |
#endif
|
|
|
13230 |
|
|
|
13231 |
#if ENABLED(MAX7219_GCODE)
|
|
|
13232 |
case 7219: gcode_M7219(); break; // M7219: Set LEDs, columns, and rows
|
|
|
13233 |
#endif
|
|
|
13234 |
|
|
|
13235 |
#if ENABLED(DEBUG_GCODE_PARSER)
|
|
|
13236 |
case 800: parser.debug(); break; // M800: GCode Parser Test for M
|
|
|
13237 |
#endif
|
|
|
13238 |
|
|
|
13239 |
#if HAS_BED_PROBE
|
|
|
13240 |
case 851: gcode_M851(); break; // M851: Set Z Probe Z Offset
|
|
|
13241 |
#endif
|
|
|
13242 |
|
|
|
13243 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
13244 |
case 852: gcode_M852(); break; // M852: Set Skew factors
|
|
|
13245 |
#endif
|
|
|
13246 |
|
|
|
13247 |
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
13248 |
case 860: gcode_M860(); break; // M860: Report encoder module position
|
|
|
13249 |
case 861: gcode_M861(); break; // M861: Report encoder module status
|
|
|
13250 |
case 862: gcode_M862(); break; // M862: Perform axis test
|
|
|
13251 |
case 863: gcode_M863(); break; // M863: Calibrate steps/mm
|
|
|
13252 |
case 864: gcode_M864(); break; // M864: Change module address
|
|
|
13253 |
case 865: gcode_M865(); break; // M865: Check module firmware version
|
|
|
13254 |
case 866: gcode_M866(); break; // M866: Report axis error count
|
|
|
13255 |
case 867: gcode_M867(); break; // M867: Toggle error correction
|
|
|
13256 |
case 868: gcode_M868(); break; // M868: Set error correction threshold
|
|
|
13257 |
case 869: gcode_M869(); break; // M869: Report axis error
|
|
|
13258 |
#endif
|
|
|
13259 |
|
|
|
13260 |
#if ENABLED(LIN_ADVANCE)
|
|
|
13261 |
case 900: gcode_M900(); break; // M900: Set Linear Advance K factor
|
|
|
13262 |
#endif
|
|
|
13263 |
|
|
|
13264 |
case 907: gcode_M907(); break; // M907: Set Digital Trimpot Motor Current using axis codes.
|
|
|
13265 |
|
|
|
13266 |
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
13267 |
case 908: gcode_M908(); break; // M908: Direct Control Digital Trimpot
|
|
|
13268 |
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
|
13269 |
case 909: gcode_M909(); break; // M909: Print Digipot/DAC current value (As with Printrbot RevF)
|
|
|
13270 |
case 910: gcode_M910(); break; // M910: Commit Digipot/DAC value to External EEPROM (As with Printrbot RevF)
|
|
|
13271 |
#endif
|
|
|
13272 |
#endif
|
|
|
13273 |
|
|
|
13274 |
#if HAS_DRIVER(TMC2130) || HAS_DRIVER(TMC2208)
|
|
|
13275 |
#if ENABLED(TMC_DEBUG)
|
|
|
13276 |
case 122: gcode_M122(); break; // M122: Debug TMC steppers
|
|
|
13277 |
#endif
|
|
|
13278 |
case 906: gcode_M906(); break; // M906: Set motor current in milliamps using axis codes X, Y, Z, E
|
|
|
13279 |
case 911: gcode_M911(); break; // M911: Report TMC prewarn triggered flags
|
|
|
13280 |
case 912: gcode_M912(); break; // M911: Clear TMC prewarn triggered flags
|
|
|
13281 |
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
13282 |
case 913: gcode_M913(); break; // M913: Set HYBRID_THRESHOLD speed.
|
|
|
13283 |
#endif
|
|
|
13284 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
13285 |
case 914: gcode_M914(); break; // M914: Set SENSORLESS_HOMING sensitivity.
|
|
|
13286 |
#endif
|
|
|
13287 |
#if ENABLED(TMC_Z_CALIBRATION)
|
|
|
13288 |
case 915: gcode_M915(); break; // M915: TMC Z axis calibration routine
|
|
|
13289 |
#endif
|
|
|
13290 |
#endif
|
|
|
13291 |
|
|
|
13292 |
case 999: gcode_M999(); break; // M999: Restart after being Stopped
|
|
|
13293 |
|
|
|
13294 |
default: parser.unknown_command_error();
|
|
|
13295 |
}
|
|
|
13296 |
break;
|
|
|
13297 |
|
|
|
13298 |
case 'T': gcode_T(parser.codenum); break; // T: Tool Select
|
|
|
13299 |
|
|
|
13300 |
default: parser.unknown_command_error();
|
|
|
13301 |
}
|
|
|
13302 |
|
|
|
13303 |
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
13304 |
ok_to_send();
|
|
|
13305 |
}
|
|
|
13306 |
|
|
|
13307 |
void process_next_command() {
|
|
|
13308 |
char * const current_command = command_queue[cmd_queue_index_r];
|
|
|
13309 |
|
|
|
13310 |
if (DEBUGGING(ECHO)) {
|
|
|
13311 |
SERIAL_ECHO_START();
|
|
|
13312 |
SERIAL_ECHOLN(current_command);
|
|
|
13313 |
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
|
13314 |
SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
|
|
|
13315 |
M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
|
|
|
13316 |
#endif
|
|
|
13317 |
}
|
|
|
13318 |
|
|
|
13319 |
// Parse the next command in the queue
|
|
|
13320 |
parser.parse(current_command);
|
|
|
13321 |
process_parsed_command();
|
|
|
13322 |
}
|
|
|
13323 |
|
|
|
13324 |
/**
|
|
|
13325 |
* Send a "Resend: nnn" message to the host to
|
|
|
13326 |
* indicate that a command needs to be re-sent.
|
|
|
13327 |
*/
|
|
|
13328 |
void flush_and_request_resend() {
|
|
|
13329 |
//char command_queue[cmd_queue_index_r][100]="Resend:";
|
|
|
13330 |
SERIAL_FLUSH();
|
|
|
13331 |
SERIAL_PROTOCOLPGM(MSG_RESEND);
|
|
|
13332 |
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
|
13333 |
ok_to_send();
|
|
|
13334 |
}
|
|
|
13335 |
|
|
|
13336 |
/**
|
|
|
13337 |
* Send an "ok" message to the host, indicating
|
|
|
13338 |
* that a command was successfully processed.
|
|
|
13339 |
*
|
|
|
13340 |
* If ADVANCED_OK is enabled also include:
|
|
|
13341 |
* N<int> Line number of the command, if any
|
|
|
13342 |
* P<int> Planner space remaining
|
|
|
13343 |
* B<int> Block queue space remaining
|
|
|
13344 |
*/
|
|
|
13345 |
void ok_to_send() {
|
|
|
13346 |
if (!send_ok[cmd_queue_index_r]) return;
|
|
|
13347 |
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
|
13348 |
#if ENABLED(ADVANCED_OK)
|
|
|
13349 |
char* p = command_queue[cmd_queue_index_r];
|
|
|
13350 |
if (*p == 'N') {
|
|
|
13351 |
SERIAL_PROTOCOL(' ');
|
|
|
13352 |
SERIAL_ECHO(*p++);
|
|
|
13353 |
while (NUMERIC_SIGNED(*p))
|
|
|
13354 |
SERIAL_ECHO(*p++);
|
|
|
13355 |
}
|
|
|
13356 |
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
|
|
|
13357 |
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
|
|
|
13358 |
#endif
|
|
|
13359 |
SERIAL_EOL();
|
|
|
13360 |
}
|
|
|
13361 |
|
|
|
13362 |
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
13363 |
|
|
|
13364 |
/**
|
|
|
13365 |
* Constrain the given coordinates to the software endstops.
|
|
|
13366 |
*
|
|
|
13367 |
* For DELTA/SCARA the XY constraint is based on the smallest
|
|
|
13368 |
* radius within the set software endstops.
|
|
|
13369 |
*/
|
|
|
13370 |
void clamp_to_software_endstops(float target[XYZ]) {
|
|
|
13371 |
if (!soft_endstops_enabled) return;
|
|
|
13372 |
#if IS_KINEMATIC
|
|
|
13373 |
const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
|
|
|
13374 |
if (dist_2 > soft_endstop_radius_2) {
|
|
|
13375 |
const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
|
|
|
13376 |
target[X_AXIS] *= ratio;
|
|
|
13377 |
target[Y_AXIS] *= ratio;
|
|
|
13378 |
}
|
|
|
13379 |
#else
|
|
|
13380 |
#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
|
|
|
13381 |
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
|
|
|
13382 |
#endif
|
|
|
13383 |
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
|
|
|
13384 |
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
|
|
|
13385 |
#endif
|
|
|
13386 |
#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
|
|
|
13387 |
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
|
|
|
13388 |
#endif
|
|
|
13389 |
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
|
|
|
13390 |
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
|
|
|
13391 |
#endif
|
|
|
13392 |
#endif
|
|
|
13393 |
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
|
|
|
13394 |
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
|
|
|
13395 |
#endif
|
|
|
13396 |
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
|
|
|
13397 |
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
|
|
|
13398 |
#endif
|
|
|
13399 |
}
|
|
|
13400 |
|
|
|
13401 |
#endif
|
|
|
13402 |
|
|
|
13403 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
13404 |
|
|
|
13405 |
// Get the Z adjustment for non-linear bed leveling
|
|
|
13406 |
float bilinear_z_offset(const float raw[XYZ]) {
|
|
|
13407 |
|
|
|
13408 |
static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
|
|
|
13409 |
last_x = -999.999, last_y = -999.999;
|
|
|
13410 |
|
|
|
13411 |
// Whole units for the grid line indices. Constrained within bounds.
|
|
|
13412 |
static int8_t gridx, gridy, nextx, nexty,
|
|
|
13413 |
last_gridx = -99, last_gridy = -99;
|
|
|
13414 |
|
|
|
13415 |
// XY relative to the probed area
|
|
|
13416 |
const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
|
|
|
13417 |
ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
|
|
|
13418 |
|
|
|
13419 |
#if ENABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
|
13420 |
// Keep using the last grid box
|
|
|
13421 |
#define FAR_EDGE_OR_BOX 2
|
|
|
13422 |
#else
|
|
|
13423 |
// Just use the grid far edge
|
|
|
13424 |
#define FAR_EDGE_OR_BOX 1
|
|
|
13425 |
#endif
|
|
|
13426 |
|
|
|
13427 |
if (last_x != rx) {
|
|
|
13428 |
last_x = rx;
|
|
|
13429 |
ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
|
|
|
13430 |
const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
|
|
|
13431 |
ratio_x -= gx; // Subtract whole to get the ratio within the grid box
|
|
|
13432 |
|
|
|
13433 |
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
|
13434 |
// Beyond the grid maintain height at grid edges
|
|
|
13435 |
NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
|
|
|
13436 |
#endif
|
|
|
13437 |
|
|
|
13438 |
gridx = gx;
|
|
|
13439 |
nextx = MIN(gridx + 1, ABL_BG_POINTS_X - 1);
|
|
|
13440 |
}
|
|
|
13441 |
|
|
|
13442 |
if (last_y != ry || last_gridx != gridx) {
|
|
|
13443 |
|
|
|
13444 |
if (last_y != ry) {
|
|
|
13445 |
last_y = ry;
|
|
|
13446 |
ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
|
|
|
13447 |
const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
|
|
|
13448 |
ratio_y -= gy;
|
|
|
13449 |
|
|
|
13450 |
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
|
13451 |
// Beyond the grid maintain height at grid edges
|
|
|
13452 |
NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
|
|
|
13453 |
#endif
|
|
|
13454 |
|
|
|
13455 |
gridy = gy;
|
|
|
13456 |
nexty = MIN(gridy + 1, ABL_BG_POINTS_Y - 1);
|
|
|
13457 |
}
|
|
|
13458 |
|
|
|
13459 |
if (last_gridx != gridx || last_gridy != gridy) {
|
|
|
13460 |
last_gridx = gridx;
|
|
|
13461 |
last_gridy = gridy;
|
|
|
13462 |
// Z at the box corners
|
|
|
13463 |
z1 = ABL_BG_GRID(gridx, gridy); // left-front
|
|
|
13464 |
d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
|
|
|
13465 |
z3 = ABL_BG_GRID(nextx, gridy); // right-front
|
|
|
13466 |
d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
|
|
|
13467 |
}
|
|
|
13468 |
|
|
|
13469 |
// Bilinear interpolate. Needed since ry or gridx has changed.
|
|
|
13470 |
L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
|
|
|
13471 |
const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
|
|
|
13472 |
|
|
|
13473 |
D = R - L;
|
|
|
13474 |
}
|
|
|
13475 |
|
|
|
13476 |
const float offset = L + ratio_x * D; // the offset almost always changes
|
|
|
13477 |
|
|
|
13478 |
/*
|
|
|
13479 |
static float last_offset = 0;
|
|
|
13480 |
if (ABS(last_offset - offset) > 0.2) {
|
|
|
13481 |
SERIAL_ECHOPGM("Sudden Shift at ");
|
|
|
13482 |
SERIAL_ECHOPAIR("x=", rx);
|
|
|
13483 |
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
|
|
|
13484 |
SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
|
|
|
13485 |
SERIAL_ECHOPAIR(" y=", ry);
|
|
|
13486 |
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
|
|
|
13487 |
SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
|
|
|
13488 |
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
|
|
|
13489 |
SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
|
|
|
13490 |
SERIAL_ECHOPAIR(" z1=", z1);
|
|
|
13491 |
SERIAL_ECHOPAIR(" z2=", z2);
|
|
|
13492 |
SERIAL_ECHOPAIR(" z3=", z3);
|
|
|
13493 |
SERIAL_ECHOLNPAIR(" z4=", z4);
|
|
|
13494 |
SERIAL_ECHOPAIR(" L=", L);
|
|
|
13495 |
SERIAL_ECHOPAIR(" R=", R);
|
|
|
13496 |
SERIAL_ECHOLNPAIR(" offset=", offset);
|
|
|
13497 |
}
|
|
|
13498 |
last_offset = offset;
|
|
|
13499 |
//*/
|
|
|
13500 |
|
|
|
13501 |
return offset;
|
|
|
13502 |
}
|
|
|
13503 |
|
|
|
13504 |
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
13505 |
|
|
|
13506 |
#if ENABLED(DELTA)
|
|
|
13507 |
|
|
|
13508 |
/**
|
|
|
13509 |
* Recalculate factors used for delta kinematics whenever
|
|
|
13510 |
* settings have been changed (e.g., by M665).
|
|
|
13511 |
*/
|
|
|
13512 |
void recalc_delta_settings() {
|
|
|
13513 |
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
|
13514 |
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
13515 |
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
|
|
|
13516 |
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
|
|
|
13517 |
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
|
|
|
13518 |
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
|
|
|
13519 |
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
|
|
|
13520 |
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
|
|
|
13521 |
delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
|
|
|
13522 |
delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
|
|
|
13523 |
delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
|
|
|
13524 |
update_software_endstops(Z_AXIS);
|
|
|
13525 |
axis_homed = 0;
|
|
|
13526 |
}
|
|
|
13527 |
|
|
|
13528 |
/**
|
|
|
13529 |
* Delta Inverse Kinematics
|
|
|
13530 |
*
|
|
|
13531 |
* Calculate the tower positions for a given machine
|
|
|
13532 |
* position, storing the result in the delta[] array.
|
|
|
13533 |
*
|
|
|
13534 |
* This is an expensive calculation, requiring 3 square
|
|
|
13535 |
* roots per segmented linear move, and strains the limits
|
|
|
13536 |
* of a Mega2560 with a Graphical Display.
|
|
|
13537 |
*
|
|
|
13538 |
* Suggested optimizations include:
|
|
|
13539 |
*
|
|
|
13540 |
* - Disable the home_offset (M206) and/or position_shift (G92)
|
|
|
13541 |
* features to remove up to 12 float additions.
|
|
|
13542 |
*/
|
|
|
13543 |
|
|
|
13544 |
#define DELTA_DEBUG(VAR) do { \
|
|
|
13545 |
SERIAL_ECHOPAIR("cartesian X:", VAR[X_AXIS]); \
|
|
|
13546 |
SERIAL_ECHOPAIR(" Y:", VAR[Y_AXIS]); \
|
|
|
13547 |
SERIAL_ECHOLNPAIR(" Z:", VAR[Z_AXIS]); \
|
|
|
13548 |
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
|
|
|
13549 |
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
|
|
|
13550 |
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
|
|
|
13551 |
}while(0)
|
|
|
13552 |
|
|
|
13553 |
void inverse_kinematics(const float raw[XYZ]) {
|
|
|
13554 |
#if HOTENDS > 1
|
|
|
13555 |
// Delta hotend offsets must be applied in Cartesian space with no "spoofing"
|
|
|
13556 |
const float pos[XYZ] = {
|
|
|
13557 |
raw[X_AXIS] - hotend_offset[X_AXIS][active_extruder],
|
|
|
13558 |
raw[Y_AXIS] - hotend_offset[Y_AXIS][active_extruder],
|
|
|
13559 |
raw[Z_AXIS]
|
|
|
13560 |
};
|
|
|
13561 |
DELTA_IK(pos);
|
|
|
13562 |
//DELTA_DEBUG(pos);
|
|
|
13563 |
#else
|
|
|
13564 |
DELTA_IK(raw);
|
|
|
13565 |
//DELTA_DEBUG(raw);
|
|
|
13566 |
#endif
|
|
|
13567 |
}
|
|
|
13568 |
|
|
|
13569 |
/**
|
|
|
13570 |
* Calculate the highest Z position where the
|
|
|
13571 |
* effector has the full range of XY motion.
|
|
|
13572 |
*/
|
|
|
13573 |
float delta_safe_distance_from_top() {
|
|
|
13574 |
float cartesian[XYZ] = { 0, 0, 0 };
|
|
|
13575 |
inverse_kinematics(cartesian);
|
|
|
13576 |
const float centered_extent = delta[A_AXIS];
|
|
|
13577 |
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
|
|
|
13578 |
inverse_kinematics(cartesian);
|
|
|
13579 |
return ABS(centered_extent - delta[A_AXIS]);
|
|
|
13580 |
}
|
|
|
13581 |
|
|
|
13582 |
/**
|
|
|
13583 |
* Delta Forward Kinematics
|
|
|
13584 |
*
|
|
|
13585 |
* See the Wikipedia article "Trilateration"
|
|
|
13586 |
* https://en.wikipedia.org/wiki/Trilateration
|
|
|
13587 |
*
|
|
|
13588 |
* Establish a new coordinate system in the plane of the
|
|
|
13589 |
* three carriage points. This system has its origin at
|
|
|
13590 |
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
|
|
|
13591 |
* plane with a Z component of zero.
|
|
|
13592 |
* We will define unit vectors in this coordinate system
|
|
|
13593 |
* in our original coordinate system. Then when we calculate
|
|
|
13594 |
* the Xnew, Ynew and Znew values, we can translate back into
|
|
|
13595 |
* the original system by moving along those unit vectors
|
|
|
13596 |
* by the corresponding values.
|
|
|
13597 |
*
|
|
|
13598 |
* Variable names matched to Marlin, c-version, and avoid the
|
|
|
13599 |
* use of any vector library.
|
|
|
13600 |
*
|
|
|
13601 |
* by Andreas Hardtung 2016-06-07
|
|
|
13602 |
* based on a Java function from "Delta Robot Kinematics V3"
|
|
|
13603 |
* by Steve Graves
|
|
|
13604 |
*
|
|
|
13605 |
* The result is stored in the cartes[] array.
|
|
|
13606 |
*/
|
|
|
13607 |
void forward_kinematics_DELTA(const float &z1, const float &z2, const float &z3) {
|
|
|
13608 |
// Create a vector in old coordinates along x axis of new coordinate
|
|
|
13609 |
const float p12[] = {
|
|
|
13610 |
delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
|
|
|
13611 |
delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
|
|
|
13612 |
z2 - z1
|
|
|
13613 |
},
|
|
|
13614 |
|
|
|
13615 |
// Get the reciprocal of Magnitude of vector.
|
|
|
13616 |
d2 = sq(p12[0]) + sq(p12[1]) + sq(p12[2]), inv_d = RSQRT(d2),
|
|
|
13617 |
|
|
|
13618 |
// Create unit vector by multiplying by the inverse of the magnitude.
|
|
|
13619 |
ex[3] = { p12[0] * inv_d, p12[1] * inv_d, p12[2] * inv_d },
|
|
|
13620 |
|
|
|
13621 |
// Get the vector from the origin of the new system to the third point.
|
|
|
13622 |
p13[3] = {
|
|
|
13623 |
delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
|
|
|
13624 |
delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
|
|
|
13625 |
z3 - z1
|
|
|
13626 |
},
|
|
|
13627 |
|
|
|
13628 |
// Use the dot product to find the component of this vector on the X axis.
|
|
|
13629 |
i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2],
|
|
|
13630 |
|
|
|
13631 |
// Create a vector along the x axis that represents the x component of p13.
|
|
|
13632 |
iex[] = { ex[0] * i, ex[1] * i, ex[2] * i };
|
|
|
13633 |
|
|
|
13634 |
// Subtract the X component from the original vector leaving only Y. We use the
|
|
|
13635 |
// variable that will be the unit vector after we scale it.
|
|
|
13636 |
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
|
|
|
13637 |
|
|
|
13638 |
// The magnitude and the inverse of the magnitude of Y component
|
|
|
13639 |
const float j2 = sq(ey[0]) + sq(ey[1]) + sq(ey[2]), inv_j = RSQRT(j2);
|
|
|
13640 |
|
|
|
13641 |
// Convert to a unit vector
|
|
|
13642 |
ey[0] *= inv_j; ey[1] *= inv_j; ey[2] *= inv_j;
|
|
|
13643 |
|
|
|
13644 |
// The cross product of the unit x and y is the unit z
|
|
|
13645 |
// float[] ez = vectorCrossProd(ex, ey);
|
|
|
13646 |
const float ez[3] = {
|
|
|
13647 |
ex[1] * ey[2] - ex[2] * ey[1],
|
|
|
13648 |
ex[2] * ey[0] - ex[0] * ey[2],
|
|
|
13649 |
ex[0] * ey[1] - ex[1] * ey[0]
|
|
|
13650 |
},
|
|
|
13651 |
// We now have the d, i and j values defined in Wikipedia.
|
|
|
13652 |
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
|
|
|
13653 |
Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + d2) * inv_d * 0.5,
|
|
|
13654 |
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + sq(i) + j2) * 0.5 - i * Xnew) * inv_j,
|
|
|
13655 |
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
|
|
|
13656 |
|
|
|
13657 |
// Start from the origin of the old coordinates and add vectors in the
|
|
|
13658 |
// old coords that represent the Xnew, Ynew and Znew to find the point
|
|
|
13659 |
// in the old system.
|
|
|
13660 |
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
|
|
|
13661 |
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
|
|
|
13662 |
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
|
|
|
13663 |
}
|
|
|
13664 |
|
|
|
13665 |
void forward_kinematics_DELTA(const float (&point)[ABC]) {
|
|
|
13666 |
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
|
|
|
13667 |
}
|
|
|
13668 |
|
|
|
13669 |
#endif // DELTA
|
|
|
13670 |
|
|
|
13671 |
#if ENABLED(HANGPRINTER)
|
|
|
13672 |
|
|
|
13673 |
/**
|
|
|
13674 |
* Recalculate factors used for hangprinter kinematics whenever
|
|
|
13675 |
* settings have been changed (e.g., by M665).
|
|
|
13676 |
*/
|
|
|
13677 |
void recalc_hangprinter_settings(){
|
|
|
13678 |
HANGPRINTER_IK_ORIGIN(line_lengths_origin);
|
|
|
13679 |
|
|
|
13680 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
13681 |
|
|
|
13682 |
const uint8_t mech_adv_tmp[MOV_AXIS] = MECHANICAL_ADVANTAGE,
|
|
|
13683 |
actn_pts_tmp[MOV_AXIS] = ACTION_POINTS;
|
|
|
13684 |
const uint16_t m_g_t_tmp[MOV_AXIS] = MOTOR_GEAR_TEETH,
|
|
|
13685 |
s_g_t_tmp[MOV_AXIS] = SPOOL_GEAR_TEETH;
|
|
|
13686 |
const float mnt_l_tmp[MOV_AXIS] = MOUNTED_LINE;
|
|
|
13687 |
float s_r2_tmp[MOV_AXIS] = SPOOL_RADII,
|
|
|
13688 |
steps_per_unit_times_r_tmp[MOV_AXIS];
|
|
|
13689 |
uint8_t nr_lines_dir_tmp[MOV_AXIS];
|
|
|
13690 |
|
|
|
13691 |
LOOP_MOV_AXIS(i){
|
|
|
13692 |
steps_per_unit_times_r_tmp[i] = (float(mech_adv_tmp[i])*STEPS_PER_MOTOR_REVOLUTION*s_g_t_tmp[i])/(2*M_PI*m_g_t_tmp[i]);
|
|
|
13693 |
nr_lines_dir_tmp[i] = mech_adv_tmp[i]*actn_pts_tmp[i];
|
|
|
13694 |
s_r2_tmp[i] *= s_r2_tmp[i];
|
|
|
13695 |
planner.k2[i] = -(float)nr_lines_dir_tmp[i]*SPOOL_BUILDUP_FACTOR;
|
|
|
13696 |
planner.k0[i] = 2.0*steps_per_unit_times_r_tmp[i]/planner.k2[i];
|
|
|
13697 |
}
|
|
|
13698 |
|
|
|
13699 |
// Assumes spools are mounted near D-anchor in ceiling
|
|
|
13700 |
#define HYP3D(x,y,z) SQRT(sq(x) + sq(y) + sq(z))
|
|
|
13701 |
float line_on_spool_origin_tmp[MOV_AXIS];
|
|
|
13702 |
line_on_spool_origin_tmp[A_AXIS] = actn_pts_tmp[A_AXIS] * mnt_l_tmp[A_AXIS]
|
|
|
13703 |
- actn_pts_tmp[A_AXIS] * HYPOT(anchor_A_y, anchor_D_z - anchor_A_z)
|
|
|
13704 |
- nr_lines_dir_tmp[A_AXIS] * line_lengths_origin[A_AXIS];
|
|
|
13705 |
line_on_spool_origin_tmp[B_AXIS] = actn_pts_tmp[B_AXIS] * mnt_l_tmp[B_AXIS]
|
|
|
13706 |
- actn_pts_tmp[B_AXIS] * HYP3D(anchor_B_x, anchor_B_y, anchor_D_z - anchor_B_z)
|
|
|
13707 |
- nr_lines_dir_tmp[B_AXIS] * line_lengths_origin[B_AXIS];
|
|
|
13708 |
line_on_spool_origin_tmp[C_AXIS] = actn_pts_tmp[C_AXIS] * mnt_l_tmp[C_AXIS]
|
|
|
13709 |
- actn_pts_tmp[C_AXIS] * HYP3D(anchor_C_x, anchor_C_y, anchor_D_z - anchor_C_z)
|
|
|
13710 |
- nr_lines_dir_tmp[C_AXIS] * line_lengths_origin[C_AXIS];
|
|
|
13711 |
line_on_spool_origin_tmp[D_AXIS] = actn_pts_tmp[D_AXIS] * mnt_l_tmp[D_AXIS]
|
|
|
13712 |
- nr_lines_dir_tmp[D_AXIS] * line_lengths_origin[D_AXIS];
|
|
|
13713 |
|
|
|
13714 |
LOOP_MOV_AXIS(i) {
|
|
|
13715 |
planner.axis_steps_per_mm[i] = steps_per_unit_times_r_tmp[i] /
|
|
|
13716 |
SQRT((SPOOL_BUILDUP_FACTOR) * line_on_spool_origin_tmp[i] + s_r2_tmp[i]);
|
|
|
13717 |
planner.k1[i] = (SPOOL_BUILDUP_FACTOR) *
|
|
|
13718 |
(line_on_spool_origin_tmp[i] + nr_lines_dir_tmp[i] * line_lengths_origin[i]) + s_r2_tmp[i];
|
|
|
13719 |
|
|
|
13720 |
planner.sqrtk1[i] = SQRT(planner.k1[i]);
|
|
|
13721 |
}
|
|
|
13722 |
planner.axis_steps_per_mm[E_AXIS] = DEFAULT_E_AXIS_STEPS_PER_UNIT;
|
|
|
13723 |
|
|
|
13724 |
#endif // LINE_BUILDUP_COMPENSATION_FEATURE
|
|
|
13725 |
|
|
|
13726 |
SYNC_PLAN_POSITION_KINEMATIC(); // recalcs line lengths in case anchor was moved
|
|
|
13727 |
}
|
|
|
13728 |
|
|
|
13729 |
/**
|
|
|
13730 |
* Hangprinter inverse kinematics
|
|
|
13731 |
*/
|
|
|
13732 |
void inverse_kinematics(const float raw[XYZ]) {
|
|
|
13733 |
HANGPRINTER_IK(raw);
|
|
|
13734 |
}
|
|
|
13735 |
|
|
|
13736 |
/**
|
|
|
13737 |
* Hangprinter forward kinematics
|
|
|
13738 |
* Basic idea is to subtract squared line lengths to get linear equations.
|
|
|
13739 |
* Subtracting d*d from a*a, b*b, and c*c gives the cleanest derivation:
|
|
|
13740 |
*
|
|
|
13741 |
* a*a - d*d = k1 + k2*y + k3*z <---- a line (I)
|
|
|
13742 |
* b*b - d*d = k4 + k5*x + k6*y + k7*z <---- a plane (II)
|
|
|
13743 |
* c*c - d*d = k8 + k9*x + k10*y + k11*z <---- a plane (III)
|
|
|
13744 |
*
|
|
|
13745 |
* Use (I) to reduce (II) and (III) into lines. Eliminate y, keep z.
|
|
|
13746 |
*
|
|
|
13747 |
* (II): b*b - d*d = k12 + k13*x + k14*z
|
|
|
13748 |
* <=> x = k0b + k1b*z, <---- a line (IV)
|
|
|
13749 |
*
|
|
|
13750 |
* (III): c*c - d*d = k15 + k16*x + k17*z
|
|
|
13751 |
* <=> x = k0c + k1c*z, <---- a line (V)
|
|
|
13752 |
*
|
|
|
13753 |
* where k1, k2, ..., k17, k0b, k0c, k1b, and k1c are known constants.
|
|
|
13754 |
*
|
|
|
13755 |
* These two straight lines are not parallel, so they will cross in exactly one point.
|
|
|
13756 |
* Find z by setting (IV) = (V)
|
|
|
13757 |
* Find x by inserting z into (V)
|
|
|
13758 |
* Find y by inserting z into (I)
|
|
|
13759 |
*
|
|
|
13760 |
* Warning: truncation errors will typically be in the order of a few tens of microns.
|
|
|
13761 |
*/
|
|
|
13762 |
void forward_kinematics_HANGPRINTER(float a, float b, float c, float d){
|
|
|
13763 |
const float Asq = sq(anchor_A_y) + sq(anchor_A_z),
|
|
|
13764 |
Bsq = sq(anchor_B_x) + sq(anchor_B_y) + sq(anchor_B_z),
|
|
|
13765 |
Csq = sq(anchor_C_x) + sq(anchor_C_y) + sq(anchor_C_z),
|
|
|
13766 |
Dsq = sq(anchor_D_z),
|
|
|
13767 |
aa = sq(a),
|
|
|
13768 |
dd = sq(d),
|
|
|
13769 |
k0b = (-sq(b) + Bsq - Dsq + dd) / (2.0 * anchor_B_x) + (anchor_B_y / (2.0 * anchor_A_y * anchor_B_x)) * (Dsq - Asq + aa - dd),
|
|
|
13770 |
k0c = (-sq(c) + Csq - Dsq + dd) / (2.0 * anchor_C_x) + (anchor_C_y / (2.0 * anchor_A_y * anchor_C_x)) * (Dsq - Asq + aa - dd),
|
|
|
13771 |
k1b = (anchor_B_y * (anchor_A_z - anchor_D_z)) / (anchor_A_y * anchor_B_x) + (anchor_D_z - anchor_B_z) / anchor_B_x,
|
|
|
13772 |
k1c = (anchor_C_y * (anchor_A_z - anchor_D_z)) / (anchor_A_y * anchor_C_x) + (anchor_D_z - anchor_C_z) / anchor_C_x;
|
|
|
13773 |
|
|
|
13774 |
cartes[Z_AXIS] = (k0b - k0c) / (k1c - k1b);
|
|
|
13775 |
cartes[X_AXIS] = k0c + k1c * cartes[Z_AXIS];
|
|
|
13776 |
cartes[Y_AXIS] = (Asq - Dsq - aa + dd) / (2.0 * anchor_A_y) + ((anchor_D_z - anchor_A_z) / anchor_A_y) * cartes[Z_AXIS];
|
|
|
13777 |
}
|
|
|
13778 |
#endif // HANGPRINTER
|
|
|
13779 |
|
|
|
13780 |
/**
|
|
|
13781 |
* Get the stepper positions in the cartes[] array.
|
|
|
13782 |
* Forward kinematics are applied for DELTA and SCARA.
|
|
|
13783 |
*
|
|
|
13784 |
* The result is in the current coordinate space with
|
|
|
13785 |
* leveling applied. The coordinates need to be run through
|
|
|
13786 |
* unapply_leveling to obtain machine coordinates suitable
|
|
|
13787 |
* for current_position, etc.
|
|
|
13788 |
*/
|
|
|
13789 |
void get_cartesian_from_steppers() {
|
|
|
13790 |
#if ENABLED(DELTA)
|
|
|
13791 |
forward_kinematics_DELTA(
|
|
|
13792 |
planner.get_axis_position_mm(A_AXIS),
|
|
|
13793 |
planner.get_axis_position_mm(B_AXIS),
|
|
|
13794 |
planner.get_axis_position_mm(C_AXIS)
|
|
|
13795 |
);
|
|
|
13796 |
#elif ENABLED(HANGPRINTER)
|
|
|
13797 |
forward_kinematics_HANGPRINTER(
|
|
|
13798 |
planner.get_axis_position_mm(A_AXIS),
|
|
|
13799 |
planner.get_axis_position_mm(B_AXIS),
|
|
|
13800 |
planner.get_axis_position_mm(C_AXIS),
|
|
|
13801 |
planner.get_axis_position_mm(D_AXIS)
|
|
|
13802 |
);
|
|
|
13803 |
#else
|
|
|
13804 |
#if IS_SCARA
|
|
|
13805 |
forward_kinematics_SCARA(
|
|
|
13806 |
planner.get_axis_position_degrees(A_AXIS),
|
|
|
13807 |
planner.get_axis_position_degrees(B_AXIS)
|
|
|
13808 |
);
|
|
|
13809 |
#else
|
|
|
13810 |
cartes[X_AXIS] = planner.get_axis_position_mm(X_AXIS);
|
|
|
13811 |
cartes[Y_AXIS] = planner.get_axis_position_mm(Y_AXIS);
|
|
|
13812 |
#endif
|
|
|
13813 |
cartes[Z_AXIS] = planner.get_axis_position_mm(Z_AXIS);
|
|
|
13814 |
#endif
|
|
|
13815 |
}
|
|
|
13816 |
|
|
|
13817 |
/**
|
|
|
13818 |
* Set the current_position for an axis based on
|
|
|
13819 |
* the stepper positions, removing any leveling that
|
|
|
13820 |
* may have been applied.
|
|
|
13821 |
*
|
|
|
13822 |
* To prevent small shifts in axis position always call
|
|
|
13823 |
* SYNC_PLAN_POSITION_KINEMATIC after updating axes with this.
|
|
|
13824 |
*
|
|
|
13825 |
* To keep hosts in sync, always call report_current_position
|
|
|
13826 |
* after updating the current_position.
|
|
|
13827 |
*/
|
|
|
13828 |
void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
13829 |
get_cartesian_from_steppers();
|
|
|
13830 |
#if PLANNER_LEVELING
|
|
|
13831 |
planner.unapply_leveling(cartes);
|
|
|
13832 |
#endif
|
|
|
13833 |
if (axis == ALL_AXES)
|
|
|
13834 |
COPY(current_position, cartes);
|
|
|
13835 |
else
|
|
|
13836 |
current_position[axis] = cartes[axis];
|
|
|
13837 |
}
|
|
|
13838 |
|
|
|
13839 |
#if IS_CARTESIAN
|
|
|
13840 |
#if ENABLED(SEGMENT_LEVELED_MOVES)
|
|
|
13841 |
|
|
|
13842 |
/**
|
|
|
13843 |
* Prepare a segmented move on a CARTESIAN setup.
|
|
|
13844 |
*
|
|
|
13845 |
* This calls planner.buffer_line several times, adding
|
|
|
13846 |
* small incremental moves. This allows the planner to
|
|
|
13847 |
* apply more detailed bed leveling to the full move.
|
|
|
13848 |
*/
|
|
|
13849 |
inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
|
|
|
13850 |
|
|
|
13851 |
const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
|
|
|
13852 |
ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
|
|
|
13853 |
|
|
|
13854 |
// If the move is only in Z/E don't split up the move
|
|
|
13855 |
if (!xdiff && !ydiff) {
|
|
|
13856 |
planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
|
|
|
13857 |
return;
|
|
|
13858 |
}
|
|
|
13859 |
|
|
|
13860 |
// Remaining cartesian distances
|
|
|
13861 |
const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
|
|
|
13862 |
ediff = destination[E_CART] - current_position[E_CART];
|
|
|
13863 |
|
|
|
13864 |
// Get the linear distance in XYZ
|
|
|
13865 |
// If the move is very short, check the E move distance
|
|
|
13866 |
// No E move either? Game over.
|
|
|
13867 |
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
|
|
|
13868 |
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
|
|
|
13869 |
if (UNEAR_ZERO(cartesian_mm)) return;
|
|
|
13870 |
|
|
|
13871 |
// The length divided by the segment size
|
|
|
13872 |
// At least one segment is required
|
|
|
13873 |
uint16_t segments = cartesian_mm / segment_size;
|
|
|
13874 |
NOLESS(segments, 1);
|
|
|
13875 |
|
|
|
13876 |
// The approximate length of each segment
|
|
|
13877 |
const float inv_segments = 1.0f / float(segments),
|
|
|
13878 |
cartesian_segment_mm = cartesian_mm * inv_segments,
|
|
|
13879 |
segment_distance[XYZE] = {
|
|
|
13880 |
xdiff * inv_segments,
|
|
|
13881 |
ydiff * inv_segments,
|
|
|
13882 |
zdiff * inv_segments,
|
|
|
13883 |
ediff * inv_segments
|
|
|
13884 |
};
|
|
|
13885 |
|
|
|
13886 |
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
13887 |
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
13888 |
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
|
|
|
13889 |
|
|
|
13890 |
// Get the raw current position as starting point
|
|
|
13891 |
float raw[XYZE];
|
|
|
13892 |
COPY(raw, current_position);
|
|
|
13893 |
|
|
|
13894 |
// Calculate and execute the segments
|
|
|
13895 |
while (--segments) {
|
|
|
13896 |
static millis_t next_idle_ms = millis() + 200UL;
|
|
|
13897 |
thermalManager.manage_heater(); // This returns immediately if not really needed.
|
|
|
13898 |
if (ELAPSED(millis(), next_idle_ms)) {
|
|
|
13899 |
next_idle_ms = millis() + 200UL;
|
|
|
13900 |
idle();
|
|
|
13901 |
}
|
|
|
13902 |
LOOP_XYZE(i) raw[i] += segment_distance[i];
|
|
|
13903 |
if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm))
|
|
|
13904 |
break;
|
|
|
13905 |
}
|
|
|
13906 |
|
|
|
13907 |
// Since segment_distance is only approximate,
|
|
|
13908 |
// the final move must be to the exact destination.
|
|
|
13909 |
planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder, cartesian_segment_mm);
|
|
|
13910 |
}
|
|
|
13911 |
|
|
|
13912 |
#elif ENABLED(MESH_BED_LEVELING)
|
|
|
13913 |
|
|
|
13914 |
/**
|
|
|
13915 |
* Prepare a mesh-leveled linear move in a Cartesian setup,
|
|
|
13916 |
* splitting the move where it crosses mesh borders.
|
|
|
13917 |
*/
|
|
|
13918 |
void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF) {
|
|
|
13919 |
// Get current and destination cells for this line
|
|
|
13920 |
int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
|
|
|
13921 |
cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
|
|
|
13922 |
cx2 = mbl.cell_index_x(destination[X_AXIS]),
|
|
|
13923 |
cy2 = mbl.cell_index_y(destination[Y_AXIS]);
|
|
|
13924 |
NOMORE(cx1, GRID_MAX_POINTS_X - 2);
|
|
|
13925 |
NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
|
|
|
13926 |
NOMORE(cx2, GRID_MAX_POINTS_X - 2);
|
|
|
13927 |
NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
|
|
|
13928 |
|
|
|
13929 |
// Start and end in the same cell? No split needed.
|
|
|
13930 |
if (cx1 == cx2 && cy1 == cy2) {
|
|
|
13931 |
buffer_line_to_destination(fr_mm_s);
|
|
|
13932 |
set_current_from_destination();
|
|
|
13933 |
return;
|
|
|
13934 |
}
|
|
|
13935 |
|
|
|
13936 |
#define MBL_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)
|
|
|
13937 |
#define MBL_SEGMENT_END_E (current_position[E_CART] + (destination[E_CART] - current_position[E_CART]) * normalized_dist)
|
|
|
13938 |
|
|
|
13939 |
float normalized_dist, end[XYZE];
|
|
|
13940 |
const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);
|
|
|
13941 |
|
|
|
13942 |
// Crosses on the X and not already split on this X?
|
|
|
13943 |
// The x_splits flags are insurance against rounding errors.
|
|
|
13944 |
if (cx2 != cx1 && TEST(x_splits, gcx)) {
|
|
|
13945 |
// Split on the X grid line
|
|
|
13946 |
CBI(x_splits, gcx);
|
|
|
13947 |
COPY(end, destination);
|
|
|
13948 |
destination[X_AXIS] = mbl.index_to_xpos[gcx];
|
|
|
13949 |
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
|
|
|
13950 |
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
|
|
|
13951 |
}
|
|
|
13952 |
// Crosses on the Y and not already split on this Y?
|
|
|
13953 |
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
|
|
|
13954 |
// Split on the Y grid line
|
|
|
13955 |
CBI(y_splits, gcy);
|
|
|
13956 |
COPY(end, destination);
|
|
|
13957 |
destination[Y_AXIS] = mbl.index_to_ypos[gcy];
|
|
|
13958 |
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
|
|
|
13959 |
destination[X_AXIS] = MBL_SEGMENT_END(X);
|
|
|
13960 |
}
|
|
|
13961 |
else {
|
|
|
13962 |
// Must already have been split on these border(s)
|
|
|
13963 |
buffer_line_to_destination(fr_mm_s);
|
|
|
13964 |
set_current_from_destination();
|
|
|
13965 |
return;
|
|
|
13966 |
}
|
|
|
13967 |
|
|
|
13968 |
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
|
|
|
13969 |
destination[E_CART] = MBL_SEGMENT_END_E;
|
|
|
13970 |
|
|
|
13971 |
// Do the split and look for more borders
|
|
|
13972 |
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
|
13973 |
|
|
|
13974 |
// Restore destination from stack
|
|
|
13975 |
COPY(destination, end);
|
|
|
13976 |
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
|
13977 |
}
|
|
|
13978 |
|
|
|
13979 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
13980 |
|
|
|
13981 |
#define CELL_INDEX(A,V) ((V - bilinear_start[_AXIS(A)]) * ABL_BG_FACTOR(_AXIS(A)))
|
|
|
13982 |
|
|
|
13983 |
/**
|
|
|
13984 |
* Prepare a bilinear-leveled linear move on Cartesian,
|
|
|
13985 |
* splitting the move where it crosses grid borders.
|
|
|
13986 |
*/
|
|
|
13987 |
void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF) {
|
|
|
13988 |
// Get current and destination cells for this line
|
|
|
13989 |
int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
|
|
|
13990 |
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
|
|
|
13991 |
cx2 = CELL_INDEX(X, destination[X_AXIS]),
|
|
|
13992 |
cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
|
|
|
13993 |
cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
|
|
|
13994 |
cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
|
|
|
13995 |
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
|
|
|
13996 |
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
|
|
|
13997 |
|
|
|
13998 |
// Start and end in the same cell? No split needed.
|
|
|
13999 |
if (cx1 == cx2 && cy1 == cy2) {
|
|
|
14000 |
buffer_line_to_destination(fr_mm_s);
|
|
|
14001 |
set_current_from_destination();
|
|
|
14002 |
return;
|
|
|
14003 |
}
|
|
|
14004 |
|
|
|
14005 |
#define LINE_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)
|
|
|
14006 |
#define LINE_SEGMENT_END_E (current_position[E_CART] + (destination[E_CART] - current_position[E_CART]) * normalized_dist)
|
|
|
14007 |
|
|
|
14008 |
float normalized_dist, end[XYZE];
|
|
|
14009 |
const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);
|
|
|
14010 |
|
|
|
14011 |
// Crosses on the X and not already split on this X?
|
|
|
14012 |
// The x_splits flags are insurance against rounding errors.
|
|
|
14013 |
if (cx2 != cx1 && TEST(x_splits, gcx)) {
|
|
|
14014 |
// Split on the X grid line
|
|
|
14015 |
CBI(x_splits, gcx);
|
|
|
14016 |
COPY(end, destination);
|
|
|
14017 |
destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
|
|
|
14018 |
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
|
|
|
14019 |
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
|
|
|
14020 |
}
|
|
|
14021 |
// Crosses on the Y and not already split on this Y?
|
|
|
14022 |
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
|
|
|
14023 |
// Split on the Y grid line
|
|
|
14024 |
CBI(y_splits, gcy);
|
|
|
14025 |
COPY(end, destination);
|
|
|
14026 |
destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
|
|
|
14027 |
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
|
|
|
14028 |
destination[X_AXIS] = LINE_SEGMENT_END(X);
|
|
|
14029 |
}
|
|
|
14030 |
else {
|
|
|
14031 |
// Must already have been split on these border(s)
|
|
|
14032 |
buffer_line_to_destination(fr_mm_s);
|
|
|
14033 |
set_current_from_destination();
|
|
|
14034 |
return;
|
|
|
14035 |
}
|
|
|
14036 |
|
|
|
14037 |
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
|
|
|
14038 |
destination[E_CART] = LINE_SEGMENT_END_E;
|
|
|
14039 |
|
|
|
14040 |
// Do the split and look for more borders
|
|
|
14041 |
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
|
14042 |
|
|
|
14043 |
// Restore destination from stack
|
|
|
14044 |
COPY(destination, end);
|
|
|
14045 |
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
|
14046 |
}
|
|
|
14047 |
|
|
|
14048 |
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
14049 |
#endif // IS_CARTESIAN
|
|
|
14050 |
|
|
|
14051 |
#if !UBL_SEGMENTED
|
|
|
14052 |
#if IS_KINEMATIC
|
|
|
14053 |
|
|
|
14054 |
#if IS_SCARA
|
|
|
14055 |
/**
|
|
|
14056 |
* Before raising this value, use M665 S[seg_per_sec] to decrease
|
|
|
14057 |
* the number of segments-per-second. Default is 200. Some deltas
|
|
|
14058 |
* do better with 160 or lower. It would be good to know how many
|
|
|
14059 |
* segments-per-second are actually possible for SCARA on AVR.
|
|
|
14060 |
*
|
|
|
14061 |
* Longer segments result in less kinematic overhead
|
|
|
14062 |
* but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
|
|
|
14063 |
* and compare the difference.
|
|
|
14064 |
*/
|
|
|
14065 |
#define SCARA_MIN_SEGMENT_LENGTH 0.5f
|
|
|
14066 |
#endif
|
|
|
14067 |
|
|
|
14068 |
/**
|
|
|
14069 |
* Prepare a linear move in a DELTA, SCARA or HANGPRINTER setup.
|
|
|
14070 |
*
|
|
|
14071 |
* This calls planner.buffer_line several times, adding
|
|
|
14072 |
* small incremental moves for DELTA, SCARA or HANGPRINTER.
|
|
|
14073 |
*
|
|
|
14074 |
* For Unified Bed Leveling (Delta or Segmented Cartesian)
|
|
|
14075 |
* the ubl.prepare_segmented_line_to method replaces this.
|
|
|
14076 |
*/
|
|
|
14077 |
inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {
|
|
|
14078 |
|
|
|
14079 |
// Get the top feedrate of the move in the XY plane
|
|
|
14080 |
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
14081 |
|
|
|
14082 |
const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],
|
|
|
14083 |
ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS]
|
|
|
14084 |
#if ENABLED(HANGPRINTER)
|
|
|
14085 |
, zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS]
|
|
|
14086 |
#endif
|
|
|
14087 |
;
|
|
|
14088 |
|
|
|
14089 |
// If the move is only in Z/E (for Hangprinter only in E) don't split up the move
|
|
|
14090 |
if (!xdiff && !ydiff
|
|
|
14091 |
#if ENABLED(HANGPRINTER)
|
|
|
14092 |
&& !zdiff
|
|
|
14093 |
#endif
|
|
|
14094 |
) {
|
|
|
14095 |
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
|
|
|
14096 |
return false; // caller will update current_position
|
|
|
14097 |
}
|
|
|
14098 |
|
|
|
14099 |
// Fail if attempting move outside printable radius
|
|
|
14100 |
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
|
|
|
14101 |
|
|
|
14102 |
// Remaining cartesian distances
|
|
|
14103 |
const float
|
|
|
14104 |
#if DISABLED(HANGPRINTER)
|
|
|
14105 |
zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
|
14106 |
#endif
|
|
|
14107 |
ediff = rtarget[E_CART] - current_position[E_CART];
|
|
|
14108 |
|
|
|
14109 |
// Get the linear distance in XYZ
|
|
|
14110 |
// If the move is very short, check the E move distance
|
|
|
14111 |
// No E move either? Game over.
|
|
|
14112 |
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
|
|
|
14113 |
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
|
|
|
14114 |
if (UNEAR_ZERO(cartesian_mm)) return true;
|
|
|
14115 |
|
|
|
14116 |
// Minimum number of seconds to move the given distance
|
|
|
14117 |
const float seconds = cartesian_mm / _feedrate_mm_s;
|
|
|
14118 |
|
|
|
14119 |
// The number of segments-per-second times the duration
|
|
|
14120 |
// gives the number of segments
|
|
|
14121 |
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
14122 |
|
|
|
14123 |
// For SCARA enforce a minimum segment size
|
|
|
14124 |
#if IS_SCARA
|
|
|
14125 |
NOMORE(segments, cartesian_mm * (1.0f / float(SCARA_MIN_SEGMENT_LENGTH)));
|
|
|
14126 |
#endif
|
|
|
14127 |
|
|
|
14128 |
// At least one segment is required
|
|
|
14129 |
NOLESS(segments, 1);
|
|
|
14130 |
|
|
|
14131 |
// The approximate length of each segment
|
|
|
14132 |
const float inv_segments = 1.0f / float(segments),
|
|
|
14133 |
segment_distance[XYZE] = {
|
|
|
14134 |
xdiff * inv_segments,
|
|
|
14135 |
ydiff * inv_segments,
|
|
|
14136 |
zdiff * inv_segments,
|
|
|
14137 |
ediff * inv_segments
|
|
|
14138 |
};
|
|
|
14139 |
|
|
|
14140 |
#if !HAS_FEEDRATE_SCALING
|
|
|
14141 |
const float cartesian_segment_mm = cartesian_mm * inv_segments;
|
|
|
14142 |
#endif
|
|
|
14143 |
|
|
|
14144 |
/*
|
|
|
14145 |
SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
14146 |
SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
|
14147 |
SERIAL_ECHOPAIR(" segments=", segments);
|
|
|
14148 |
#if !HAS_FEEDRATE_SCALING
|
|
|
14149 |
SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);
|
|
|
14150 |
#endif
|
|
|
14151 |
SERIAL_EOL();
|
|
|
14152 |
//*/
|
|
|
14153 |
|
|
|
14154 |
#if HAS_FEEDRATE_SCALING
|
|
|
14155 |
// SCARA needs to scale the feed rate from mm/s to degrees/s
|
|
|
14156 |
// i.e., Complete the angular vector in the given time.
|
|
|
14157 |
const float segment_length = cartesian_mm * inv_segments,
|
|
|
14158 |
inv_segment_length = 1.0f / segment_length, // 1/mm/segs
|
|
|
14159 |
inverse_secs = inv_segment_length * _feedrate_mm_s;
|
|
|
14160 |
|
|
|
14161 |
float oldA = planner.position_float[A_AXIS],
|
|
|
14162 |
oldB = planner.position_float[B_AXIS]
|
|
|
14163 |
#if ENABLED(DELTA_FEEDRATE_SCALING)
|
|
|
14164 |
, oldC = planner.position_float[C_AXIS]
|
|
|
14165 |
#endif
|
|
|
14166 |
;
|
|
|
14167 |
|
|
|
14168 |
/*
|
|
|
14169 |
SERIAL_ECHOPGM("Scaled kinematic move: ");
|
|
|
14170 |
SERIAL_ECHOPAIR(" segment_length (inv)=", segment_length);
|
|
|
14171 |
SERIAL_ECHOPAIR(" (", inv_segment_length);
|
|
|
14172 |
SERIAL_ECHOPAIR(") _feedrate_mm_s=", _feedrate_mm_s);
|
|
|
14173 |
SERIAL_ECHOPAIR(" inverse_secs=", inverse_secs);
|
|
|
14174 |
SERIAL_ECHOPAIR(" oldA=", oldA);
|
|
|
14175 |
SERIAL_ECHOPAIR(" oldB=", oldB);
|
|
|
14176 |
#if ENABLED(DELTA_FEEDRATE_SCALING)
|
|
|
14177 |
SERIAL_ECHOPAIR(" oldC=", oldC);
|
|
|
14178 |
#endif
|
|
|
14179 |
SERIAL_EOL();
|
|
|
14180 |
safe_delay(5);
|
|
|
14181 |
//*/
|
|
|
14182 |
#endif
|
|
|
14183 |
|
|
|
14184 |
// Get the current position as starting point
|
|
|
14185 |
float raw[XYZE];
|
|
|
14186 |
COPY(raw, current_position);
|
|
|
14187 |
|
|
|
14188 |
// Calculate and execute the segments
|
|
|
14189 |
while (--segments) {
|
|
|
14190 |
|
|
|
14191 |
static millis_t next_idle_ms = millis() + 200UL;
|
|
|
14192 |
thermalManager.manage_heater(); // This returns immediately if not really needed.
|
|
|
14193 |
if (ELAPSED(millis(), next_idle_ms)) {
|
|
|
14194 |
next_idle_ms = millis() + 200UL;
|
|
|
14195 |
idle();
|
|
|
14196 |
}
|
|
|
14197 |
|
|
|
14198 |
LOOP_XYZE(i) raw[i] += segment_distance[i];
|
|
|
14199 |
#if ENABLED(DELTA) && HOTENDS < 2
|
|
|
14200 |
DELTA_IK(raw); // Delta can inline its kinematics
|
|
|
14201 |
#elif ENABLED(HANGPRINTER)
|
|
|
14202 |
HANGPRINTER_IK(raw); // Modifies line_lengths[ABCD]
|
|
|
14203 |
#else
|
|
|
14204 |
inverse_kinematics(raw);
|
|
|
14205 |
#endif
|
|
|
14206 |
|
|
|
14207 |
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
|
|
|
14208 |
|
|
|
14209 |
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
|
14210 |
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
|
14211 |
// i.e., Complete the angular vector in the given time.
|
|
|
14212 |
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_CART], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, segment_length))
|
|
|
14213 |
break;
|
|
|
14214 |
/*
|
|
|
14215 |
SERIAL_ECHO(segments);
|
|
|
14216 |
SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);
|
|
|
14217 |
SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
|
|
|
14218 |
SERIAL_ECHOLNPAIR(" F", HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs * 60);
|
|
|
14219 |
safe_delay(5);
|
|
|
14220 |
//*/
|
|
|
14221 |
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
|
|
|
14222 |
#elif ENABLED(DELTA_FEEDRATE_SCALING)
|
|
|
14223 |
// For DELTA scale the feed rate from Effector mm/s to Carriage mm/s
|
|
|
14224 |
// i.e., Complete the linear vector in the given time.
|
|
|
14225 |
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, segment_length))
|
|
|
14226 |
break;
|
|
|
14227 |
/*
|
|
|
14228 |
SERIAL_ECHO(segments);
|
|
|
14229 |
SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);
|
|
|
14230 |
SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]);
|
|
|
14231 |
SERIAL_ECHOLNPAIR(" F", SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs * 60);
|
|
|
14232 |
safe_delay(5);
|
|
|
14233 |
//*/
|
|
|
14234 |
oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; oldC = delta[C_AXIS];
|
|
|
14235 |
#elif ENABLED(HANGPRINTER)
|
|
|
14236 |
if (!planner.buffer_line(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], raw[E_CART], _feedrate_mm_s, active_extruder, cartesian_segment_mm))
|
|
|
14237 |
break;
|
|
|
14238 |
#else
|
|
|
14239 |
if (!planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_CART], _feedrate_mm_s, active_extruder, cartesian_segment_mm))
|
|
|
14240 |
break;
|
|
|
14241 |
#endif
|
|
|
14242 |
}
|
|
|
14243 |
|
|
|
14244 |
// Ensure last segment arrives at target location.
|
|
|
14245 |
#if HAS_FEEDRATE_SCALING
|
|
|
14246 |
inverse_kinematics(rtarget);
|
|
|
14247 |
ADJUST_DELTA(rtarget);
|
|
|
14248 |
#endif
|
|
|
14249 |
|
|
|
14250 |
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
|
14251 |
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
|
|
|
14252 |
if (diff2) {
|
|
|
14253 |
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_CART], SQRT(diff2) * inverse_secs, active_extruder, segment_length);
|
|
|
14254 |
/*
|
|
|
14255 |
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
|
|
|
14256 |
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB);
|
|
|
14257 |
SERIAL_ECHOLNPAIR(" F", SQRT(diff2) * inverse_secs * 60);
|
|
|
14258 |
SERIAL_EOL();
|
|
|
14259 |
safe_delay(5);
|
|
|
14260 |
//*/
|
|
|
14261 |
}
|
|
|
14262 |
#elif ENABLED(DELTA_FEEDRATE_SCALING)
|
|
|
14263 |
const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC);
|
|
|
14264 |
if (diff2) {
|
|
|
14265 |
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder, segment_length);
|
|
|
14266 |
/*
|
|
|
14267 |
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]);
|
|
|
14268 |
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB); SERIAL_ECHOPAIR(" cdiff=", delta[C_AXIS] - oldC);
|
|
|
14269 |
SERIAL_ECHOLNPAIR(" F", SQRT(diff2) * inverse_secs * 60);
|
|
|
14270 |
SERIAL_EOL();
|
|
|
14271 |
safe_delay(5);
|
|
|
14272 |
//*/
|
|
|
14273 |
}
|
|
|
14274 |
#else
|
|
|
14275 |
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);
|
|
|
14276 |
#endif
|
|
|
14277 |
|
|
|
14278 |
return false; // caller will update current_position
|
|
|
14279 |
}
|
|
|
14280 |
|
|
|
14281 |
#else // !IS_KINEMATIC
|
|
|
14282 |
|
|
|
14283 |
/**
|
|
|
14284 |
* Prepare a linear move in a Cartesian setup.
|
|
|
14285 |
*
|
|
|
14286 |
* When a mesh-based leveling system is active, moves are segmented
|
|
|
14287 |
* according to the configuration of the leveling system.
|
|
|
14288 |
*
|
|
|
14289 |
* Returns true if current_position[] was set to destination[]
|
|
|
14290 |
*/
|
|
|
14291 |
inline bool prepare_move_to_destination_cartesian() {
|
|
|
14292 |
#if HAS_MESH
|
|
|
14293 |
if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
|
|
|
14294 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
14295 |
ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
|
|
|
14296 |
return true; // all moves, including Z-only moves.
|
|
|
14297 |
#elif ENABLED(SEGMENT_LEVELED_MOVES)
|
|
|
14298 |
segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
|
|
14299 |
return false; // caller will update current_position
|
|
|
14300 |
#else
|
|
|
14301 |
/**
|
|
|
14302 |
* For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
|
|
|
14303 |
* Otherwise fall through to do a direct single move.
|
|
|
14304 |
*/
|
|
|
14305 |
if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
|
|
|
14306 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
14307 |
mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
|
|
14308 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
14309 |
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
|
|
14310 |
#endif
|
|
|
14311 |
return true;
|
|
|
14312 |
}
|
|
|
14313 |
#endif
|
|
|
14314 |
}
|
|
|
14315 |
#endif // HAS_MESH
|
|
|
14316 |
|
|
|
14317 |
buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
|
|
14318 |
return false; // caller will update current_position
|
|
|
14319 |
}
|
|
|
14320 |
|
|
|
14321 |
#endif // !IS_KINEMATIC
|
|
|
14322 |
#endif // !UBL_SEGMENTED
|
|
|
14323 |
|
|
|
14324 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
14325 |
|
|
|
14326 |
/**
|
|
|
14327 |
* Unpark the carriage, if needed
|
|
|
14328 |
*/
|
|
|
14329 |
inline bool dual_x_carriage_unpark() {
|
|
|
14330 |
if (active_extruder_parked)
|
|
|
14331 |
switch (dual_x_carriage_mode) {
|
|
|
14332 |
|
|
|
14333 |
case DXC_FULL_CONTROL_MODE: break;
|
|
|
14334 |
|
|
|
14335 |
case DXC_AUTO_PARK_MODE:
|
|
|
14336 |
if (current_position[E_CART] == destination[E_CART]) {
|
|
|
14337 |
// This is a travel move (with no extrusion)
|
|
|
14338 |
// Skip it, but keep track of the current position
|
|
|
14339 |
// (so it can be used as the start of the next non-travel move)
|
|
|
14340 |
if (delayed_move_time != 0xFFFFFFFFUL) {
|
|
|
14341 |
set_current_from_destination();
|
|
|
14342 |
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
|
|
|
14343 |
delayed_move_time = millis();
|
|
|
14344 |
return true;
|
|
|
14345 |
}
|
|
|
14346 |
}
|
|
|
14347 |
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
|
|
|
14348 |
for (uint8_t i = 0; i < 3; i++)
|
|
|
14349 |
if (!planner.buffer_line(
|
|
|
14350 |
i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
|
|
|
14351 |
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
|
|
|
14352 |
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
|
|
|
14353 |
current_position[E_CART],
|
|
|
14354 |
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
|
|
|
14355 |
active_extruder)
|
|
|
14356 |
) break;
|
|
|
14357 |
delayed_move_time = 0;
|
|
|
14358 |
active_extruder_parked = false;
|
|
|
14359 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
14360 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
|
|
|
14361 |
#endif
|
|
|
14362 |
break;
|
|
|
14363 |
|
|
|
14364 |
case DXC_DUPLICATION_MODE:
|
|
|
14365 |
if (active_extruder == 0) {
|
|
|
14366 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
14367 |
if (DEBUGGING(LEVELING)) {
|
|
|
14368 |
SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
|
|
|
14369 |
SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
|
|
|
14370 |
}
|
|
|
14371 |
#endif
|
|
|
14372 |
// move duplicate extruder into correct duplication position.
|
|
|
14373 |
planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART]);
|
|
|
14374 |
if (!planner.buffer_line(
|
|
|
14375 |
current_position[X_AXIS] + duplicate_extruder_x_offset,
|
|
|
14376 |
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART],
|
|
|
14377 |
planner.max_feedrate_mm_s[X_AXIS], 1)
|
|
|
14378 |
) break;
|
|
|
14379 |
planner.synchronize();
|
|
|
14380 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
14381 |
extruder_duplication_enabled = true;
|
|
|
14382 |
active_extruder_parked = false;
|
|
|
14383 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
14384 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
|
|
|
14385 |
#endif
|
|
|
14386 |
}
|
|
|
14387 |
else {
|
|
|
14388 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
14389 |
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
|
|
|
14390 |
#endif
|
|
|
14391 |
}
|
|
|
14392 |
break;
|
|
|
14393 |
}
|
|
|
14394 |
return false;
|
|
|
14395 |
}
|
|
|
14396 |
|
|
|
14397 |
#endif // DUAL_X_CARRIAGE
|
|
|
14398 |
|
|
|
14399 |
/**
|
|
|
14400 |
* Prepare a single move and get ready for the next one
|
|
|
14401 |
*
|
|
|
14402 |
* This may result in several calls to planner.buffer_line to
|
|
|
14403 |
* do smaller moves for DELTA, SCARA, HANGPRINTER, mesh moves, etc.
|
|
|
14404 |
*
|
|
|
14405 |
* Make sure current_position[E] and destination[E] are good
|
|
|
14406 |
* before calling or cold/lengthy extrusion may get missed.
|
|
|
14407 |
*/
|
|
|
14408 |
void prepare_move_to_destination() {
|
|
|
14409 |
clamp_to_software_endstops(destination);
|
|
|
14410 |
|
|
|
14411 |
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
|
14412 |
|
|
|
14413 |
if (!DEBUGGING(DRYRUN)) {
|
|
|
14414 |
if (destination[E_CART] != current_position[E_CART]) {
|
|
|
14415 |
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
14416 |
if (thermalManager.tooColdToExtrude(active_extruder)) {
|
|
|
14417 |
current_position[E_CART] = destination[E_CART]; // Behave as if the move really took place, but ignore E part
|
|
|
14418 |
SERIAL_ECHO_START();
|
|
|
14419 |
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
|
14420 |
}
|
|
|
14421 |
#endif // PREVENT_COLD_EXTRUSION
|
|
|
14422 |
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
|
14423 |
if (ABS(destination[E_CART] - current_position[E_CART]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
|
|
|
14424 |
current_position[E_CART] = destination[E_CART]; // Behave as if the move really took place, but ignore E part
|
|
|
14425 |
SERIAL_ECHO_START();
|
|
|
14426 |
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
|
14427 |
}
|
|
|
14428 |
#endif // PREVENT_LENGTHY_EXTRUDE
|
|
|
14429 |
}
|
|
|
14430 |
}
|
|
|
14431 |
|
|
|
14432 |
#endif
|
|
|
14433 |
|
|
|
14434 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
14435 |
if (dual_x_carriage_unpark()) return;
|
|
|
14436 |
#endif
|
|
|
14437 |
|
|
|
14438 |
if (
|
|
|
14439 |
#if UBL_SEGMENTED
|
|
|
14440 |
ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
|
|
|
14441 |
#elif IS_KINEMATIC
|
|
|
14442 |
prepare_kinematic_move_to(destination)
|
|
|
14443 |
#else
|
|
|
14444 |
prepare_move_to_destination_cartesian()
|
|
|
14445 |
#endif
|
|
|
14446 |
) return;
|
|
|
14447 |
|
|
|
14448 |
set_current_from_destination();
|
|
|
14449 |
}
|
|
|
14450 |
|
|
|
14451 |
#if ENABLED(ARC_SUPPORT)
|
|
|
14452 |
|
|
|
14453 |
#if N_ARC_CORRECTION < 1
|
|
|
14454 |
#undef N_ARC_CORRECTION
|
|
|
14455 |
#define N_ARC_CORRECTION 1
|
|
|
14456 |
#endif
|
|
|
14457 |
|
|
|
14458 |
/**
|
|
|
14459 |
* Plan an arc in 2 dimensions
|
|
|
14460 |
*
|
|
|
14461 |
* The arc is approximated by generating many small linear segments.
|
|
|
14462 |
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
|
14463 |
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
|
14464 |
* larger segments will tend to be more efficient. Your slicer should have
|
|
|
14465 |
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
14466 |
*/
|
|
|
14467 |
void plan_arc(
|
|
|
14468 |
const float (&cart)[XYZE], // Destination position
|
|
|
14469 |
const float (&offset)[2], // Center of rotation relative to current_position
|
|
|
14470 |
const bool clockwise // Clockwise?
|
|
|
14471 |
) {
|
|
|
14472 |
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
14473 |
AxisEnum p_axis, q_axis, l_axis;
|
|
|
14474 |
switch (workspace_plane) {
|
|
|
14475 |
default:
|
|
|
14476 |
case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
|
|
|
14477 |
case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
|
|
|
14478 |
case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
|
|
|
14479 |
}
|
|
|
14480 |
#else
|
|
|
14481 |
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
|
|
|
14482 |
#endif
|
|
|
14483 |
|
|
|
14484 |
// Radius vector from center to current location
|
|
|
14485 |
float r_P = -offset[0], r_Q = -offset[1];
|
|
|
14486 |
|
|
|
14487 |
const float radius = HYPOT(r_P, r_Q),
|
|
|
14488 |
center_P = current_position[p_axis] - r_P,
|
|
|
14489 |
center_Q = current_position[q_axis] - r_Q,
|
|
|
14490 |
rt_X = cart[p_axis] - center_P,
|
|
|
14491 |
rt_Y = cart[q_axis] - center_Q,
|
|
|
14492 |
linear_travel = cart[l_axis] - current_position[l_axis],
|
|
|
14493 |
extruder_travel = cart[E_CART] - current_position[E_CART];
|
|
|
14494 |
|
|
|
14495 |
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
14496 |
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
|
|
|
14497 |
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
|
14498 |
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
14499 |
|
|
|
14500 |
// Make a circle if the angular rotation is 0 and the target is current position
|
|
|
14501 |
if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis])
|
|
|
14502 |
angular_travel = RADIANS(360);
|
|
|
14503 |
|
|
|
14504 |
const float flat_mm = radius * angular_travel,
|
|
|
14505 |
mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);
|
|
|
14506 |
if (mm_of_travel < 0.001f) return;
|
|
|
14507 |
|
|
|
14508 |
uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
|
|
14509 |
NOLESS(segments, 1);
|
|
|
14510 |
|
|
|
14511 |
/**
|
|
|
14512 |
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
14513 |
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
|
14514 |
* r_T = [cos(phi) -sin(phi);
|
|
|
14515 |
* sin(phi) cos(phi)] * r ;
|
|
|
14516 |
*
|
|
|
14517 |
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
|
14518 |
* defined from the circle center to the initial position. Each line segment is formed by successive
|
|
|
14519 |
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
|
14520 |
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
|
14521 |
* all double numbers are single precision on the Arduino. (True double precision will not have
|
|
|
14522 |
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
|
14523 |
* tool precision in some cases. Therefore, arc path correction is implemented.
|
|
|
14524 |
*
|
|
|
14525 |
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
|
14526 |
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
|
14527 |
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
|
14528 |
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
|
14529 |
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
|
14530 |
* issue for CNC machines with the single precision Arduino calculations.
|
|
|
14531 |
*
|
|
|
14532 |
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
|
14533 |
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
|
14534 |
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
|
14535 |
* This is important when there are successive arc motions.
|
|
|
14536 |
*/
|
|
|
14537 |
// Vector rotation matrix values
|
|
|
14538 |
float raw[XYZE];
|
|
|
14539 |
const float theta_per_segment = angular_travel / segments,
|
|
|
14540 |
linear_per_segment = linear_travel / segments,
|
|
|
14541 |
extruder_per_segment = extruder_travel / segments,
|
|
|
14542 |
sin_T = theta_per_segment,
|
|
|
14543 |
cos_T = 1 - 0.5f * sq(theta_per_segment); // Small angle approximation
|
|
|
14544 |
|
|
|
14545 |
// Initialize the linear axis
|
|
|
14546 |
raw[l_axis] = current_position[l_axis];
|
|
|
14547 |
|
|
|
14548 |
// Initialize the extruder axis
|
|
|
14549 |
raw[E_CART] = current_position[E_CART];
|
|
|
14550 |
|
|
|
14551 |
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
14552 |
|
|
|
14553 |
millis_t next_idle_ms = millis() + 200UL;
|
|
|
14554 |
|
|
|
14555 |
#if HAS_FEEDRATE_SCALING
|
|
|
14556 |
// SCARA needs to scale the feed rate from mm/s to degrees/s
|
|
|
14557 |
const float inv_segment_length = 1.0f / (MM_PER_ARC_SEGMENT),
|
|
|
14558 |
inverse_secs = inv_segment_length * fr_mm_s;
|
|
|
14559 |
float oldA = planner.position_float[A_AXIS],
|
|
|
14560 |
oldB = planner.position_float[B_AXIS]
|
|
|
14561 |
#if ENABLED(DELTA_FEEDRATE_SCALING)
|
|
|
14562 |
, oldC = planner.position_float[C_AXIS]
|
|
|
14563 |
#endif
|
|
|
14564 |
;
|
|
|
14565 |
#endif
|
|
|
14566 |
|
|
|
14567 |
#if N_ARC_CORRECTION > 1
|
|
|
14568 |
int8_t arc_recalc_count = N_ARC_CORRECTION;
|
|
|
14569 |
#endif
|
|
|
14570 |
|
|
|
14571 |
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
14572 |
|
|
|
14573 |
thermalManager.manage_heater();
|
|
|
14574 |
if (ELAPSED(millis(), next_idle_ms)) {
|
|
|
14575 |
next_idle_ms = millis() + 200UL;
|
|
|
14576 |
idle();
|
|
|
14577 |
}
|
|
|
14578 |
|
|
|
14579 |
#if N_ARC_CORRECTION > 1
|
|
|
14580 |
if (--arc_recalc_count) {
|
|
|
14581 |
// Apply vector rotation matrix to previous r_P / 1
|
|
|
14582 |
const float r_new_Y = r_P * sin_T + r_Q * cos_T;
|
|
|
14583 |
r_P = r_P * cos_T - r_Q * sin_T;
|
|
|
14584 |
r_Q = r_new_Y;
|
|
|
14585 |
}
|
|
|
14586 |
else
|
|
|
14587 |
#endif
|
|
|
14588 |
{
|
|
|
14589 |
#if N_ARC_CORRECTION > 1
|
|
|
14590 |
arc_recalc_count = N_ARC_CORRECTION;
|
|
|
14591 |
#endif
|
|
|
14592 |
|
|
|
14593 |
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
14594 |
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
14595 |
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
|
14596 |
// For now, compute both at the same time.
|
|
|
14597 |
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
|
|
|
14598 |
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
|
|
|
14599 |
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
|
|
|
14600 |
}
|
|
|
14601 |
|
|
|
14602 |
// Update raw location
|
|
|
14603 |
raw[p_axis] = center_P + r_P;
|
|
|
14604 |
raw[q_axis] = center_Q + r_Q;
|
|
|
14605 |
raw[l_axis] += linear_per_segment;
|
|
|
14606 |
raw[E_CART] += extruder_per_segment;
|
|
|
14607 |
|
|
|
14608 |
clamp_to_software_endstops(raw);
|
|
|
14609 |
|
|
|
14610 |
#if HAS_FEEDRATE_SCALING
|
|
|
14611 |
inverse_kinematics(raw);
|
|
|
14612 |
ADJUST_DELTA(raw);
|
|
|
14613 |
#endif
|
|
|
14614 |
|
|
|
14615 |
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
|
14616 |
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
|
14617 |
// i.e., Complete the angular vector in the given time.
|
|
|
14618 |
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_CART], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT))
|
|
|
14619 |
break;
|
|
|
14620 |
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
|
|
|
14621 |
#elif ENABLED(DELTA_FEEDRATE_SCALING)
|
|
|
14622 |
// For DELTA scale the feed rate from Effector mm/s to Carriage mm/s
|
|
|
14623 |
// i.e., Complete the linear vector in the given time.
|
|
|
14624 |
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT))
|
|
|
14625 |
break;
|
|
|
14626 |
oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; oldC = delta[C_AXIS];
|
|
|
14627 |
#elif HAS_UBL_AND_CURVES
|
|
|
14628 |
float pos[XYZ] = { raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] };
|
|
|
14629 |
planner.apply_leveling(pos);
|
|
|
14630 |
if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_CART], fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT))
|
|
|
14631 |
break;
|
|
|
14632 |
#else
|
|
|
14633 |
if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder))
|
|
|
14634 |
break;
|
|
|
14635 |
#endif
|
|
|
14636 |
}
|
|
|
14637 |
|
|
|
14638 |
// Ensure last segment arrives at target location.
|
|
|
14639 |
#if HAS_FEEDRATE_SCALING
|
|
|
14640 |
inverse_kinematics(cart);
|
|
|
14641 |
ADJUST_DELTA(cart);
|
|
|
14642 |
#endif
|
|
|
14643 |
|
|
|
14644 |
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
|
14645 |
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
|
|
|
14646 |
if (diff2)
|
|
|
14647 |
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_CART], SQRT(diff2) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT);
|
|
|
14648 |
#elif ENABLED(DELTA_FEEDRATE_SCALING)
|
|
|
14649 |
const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC);
|
|
|
14650 |
if (diff2)
|
|
|
14651 |
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_CART], SQRT(diff2) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT);
|
|
|
14652 |
#elif HAS_UBL_AND_CURVES
|
|
|
14653 |
float pos[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
|
|
14654 |
planner.apply_leveling(pos);
|
|
|
14655 |
planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], cart[E_CART], fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT);
|
|
|
14656 |
#else
|
|
|
14657 |
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
|
|
|
14658 |
#endif
|
|
|
14659 |
|
|
|
14660 |
COPY(current_position, cart);
|
|
|
14661 |
} // plan_arc
|
|
|
14662 |
|
|
|
14663 |
#endif // ARC_SUPPORT
|
|
|
14664 |
|
|
|
14665 |
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
14666 |
|
|
|
14667 |
void plan_cubic_move(const float (&cart)[XYZE], const float (&offset)[4]) {
|
|
|
14668 |
cubic_b_spline(current_position, cart, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
|
|
|
14669 |
COPY(current_position, cart);
|
|
|
14670 |
}
|
|
|
14671 |
|
|
|
14672 |
#endif // BEZIER_CURVE_SUPPORT
|
|
|
14673 |
|
|
|
14674 |
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
14675 |
|
|
|
14676 |
void controllerFan() {
|
|
|
14677 |
static millis_t lastMotorOn = 0, // Last time a motor was turned on
|
|
|
14678 |
nextMotorCheck = 0; // Last time the state was checked
|
|
|
14679 |
const millis_t ms = millis();
|
|
|
14680 |
if (ELAPSED(ms, nextMotorCheck)) {
|
|
|
14681 |
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
|
|
|
14682 |
|
|
|
14683 |
// If any of the drivers or the bed are enabled...
|
|
|
14684 |
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON
|
|
|
14685 |
#if HAS_HEATED_BED
|
|
|
14686 |
|| thermalManager.soft_pwm_amount_bed > 0
|
|
|
14687 |
#endif
|
|
|
14688 |
#if HAS_X2_ENABLE
|
|
|
14689 |
|| X2_ENABLE_READ == X_ENABLE_ON
|
|
|
14690 |
#endif
|
|
|
14691 |
#if HAS_Y2_ENABLE
|
|
|
14692 |
|| Y2_ENABLE_READ == Y_ENABLE_ON
|
|
|
14693 |
#endif
|
|
|
14694 |
#if HAS_Z2_ENABLE
|
|
|
14695 |
|| Z2_ENABLE_READ == Z_ENABLE_ON
|
|
|
14696 |
#endif
|
|
|
14697 |
|| E0_ENABLE_READ == E_ENABLE_ON
|
|
|
14698 |
#if E_STEPPERS > 1
|
|
|
14699 |
|| E1_ENABLE_READ == E_ENABLE_ON
|
|
|
14700 |
#if E_STEPPERS > 2
|
|
|
14701 |
|| E2_ENABLE_READ == E_ENABLE_ON
|
|
|
14702 |
#if E_STEPPERS > 3
|
|
|
14703 |
|| E3_ENABLE_READ == E_ENABLE_ON
|
|
|
14704 |
#if E_STEPPERS > 4
|
|
|
14705 |
|| E4_ENABLE_READ == E_ENABLE_ON
|
|
|
14706 |
#endif
|
|
|
14707 |
#endif
|
|
|
14708 |
#endif
|
|
|
14709 |
#endif
|
|
|
14710 |
) {
|
|
|
14711 |
lastMotorOn = ms; //... set time to NOW so the fan will turn on
|
|
|
14712 |
}
|
|
|
14713 |
|
|
|
14714 |
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
|
|
|
14715 |
const uint8_t speed = (lastMotorOn && PENDING(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? CONTROLLERFAN_SPEED : 0;
|
|
|
14716 |
controllerFanSpeed = speed;
|
|
|
14717 |
|
|
|
14718 |
// allows digital or PWM fan output to be used (see M42 handling)
|
|
|
14719 |
WRITE(CONTROLLER_FAN_PIN, speed);
|
|
|
14720 |
analogWrite(CONTROLLER_FAN_PIN, speed);
|
|
|
14721 |
}
|
|
|
14722 |
}
|
|
|
14723 |
|
|
|
14724 |
#endif // USE_CONTROLLER_FAN
|
|
|
14725 |
|
|
|
14726 |
#if ENABLED(MORGAN_SCARA)
|
|
|
14727 |
|
|
|
14728 |
/**
|
|
|
14729 |
* Morgan SCARA Forward Kinematics. Results in cartes[].
|
|
|
14730 |
* Maths and first version by QHARLEY.
|
|
|
14731 |
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
|
14732 |
*/
|
|
|
14733 |
void forward_kinematics_SCARA(const float &a, const float &b) {
|
|
|
14734 |
|
|
|
14735 |
float a_sin = sin(RADIANS(a)) * L1,
|
|
|
14736 |
a_cos = cos(RADIANS(a)) * L1,
|
|
|
14737 |
b_sin = sin(RADIANS(b)) * L2,
|
|
|
14738 |
b_cos = cos(RADIANS(b)) * L2;
|
|
|
14739 |
|
|
|
14740 |
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
|
|
|
14741 |
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
|
|
|
14742 |
|
|
|
14743 |
/*
|
|
|
14744 |
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
|
|
|
14745 |
SERIAL_ECHOPAIR(" b=", b);
|
|
|
14746 |
SERIAL_ECHOPAIR(" a_sin=", a_sin);
|
|
|
14747 |
SERIAL_ECHOPAIR(" a_cos=", a_cos);
|
|
|
14748 |
SERIAL_ECHOPAIR(" b_sin=", b_sin);
|
|
|
14749 |
SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
|
|
|
14750 |
SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
|
|
|
14751 |
SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
|
|
|
14752 |
//*/
|
|
|
14753 |
}
|
|
|
14754 |
|
|
|
14755 |
/**
|
|
|
14756 |
* Morgan SCARA Inverse Kinematics. Results in delta[].
|
|
|
14757 |
*
|
|
|
14758 |
* See http://forums.reprap.org/read.php?185,283327
|
|
|
14759 |
*
|
|
|
14760 |
* Maths and first version by QHARLEY.
|
|
|
14761 |
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
|
14762 |
*/
|
|
|
14763 |
void inverse_kinematics(const float raw[XYZ]) {
|
|
|
14764 |
|
|
|
14765 |
static float C2, S2, SK1, SK2, THETA, PSI;
|
|
|
14766 |
|
|
|
14767 |
float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
|
|
|
14768 |
sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
|
|
|
14769 |
|
|
|
14770 |
if (L1 == L2)
|
|
|
14771 |
C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
|
|
|
14772 |
else
|
|
|
14773 |
C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
|
|
|
14774 |
|
|
|
14775 |
S2 = SQRT(1 - sq(C2));
|
|
|
14776 |
|
|
|
14777 |
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
|
|
|
14778 |
SK1 = L1 + L2 * C2;
|
|
|
14779 |
|
|
|
14780 |
// Rotated Arm2 gives the distance from Arm1 to Arm2
|
|
|
14781 |
SK2 = L2 * S2;
|
|
|
14782 |
|
|
|
14783 |
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
|
|
|
14784 |
THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
|
|
|
14785 |
|
|
|
14786 |
// Angle of Arm2
|
|
|
14787 |
PSI = ATAN2(S2, C2);
|
|
|
14788 |
|
|
|
14789 |
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
|
|
|
14790 |
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
|
|
|
14791 |
delta[C_AXIS] = raw[Z_AXIS];
|
|
|
14792 |
|
|
|
14793 |
/*
|
|
|
14794 |
DEBUG_POS("SCARA IK", raw);
|
|
|
14795 |
DEBUG_POS("SCARA IK", delta);
|
|
|
14796 |
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
|
|
|
14797 |
SERIAL_ECHOPAIR(",", sy);
|
|
|
14798 |
SERIAL_ECHOPAIR(" C2=", C2);
|
|
|
14799 |
SERIAL_ECHOPAIR(" S2=", S2);
|
|
|
14800 |
SERIAL_ECHOPAIR(" Theta=", THETA);
|
|
|
14801 |
SERIAL_ECHOLNPAIR(" Phi=", PHI);
|
|
|
14802 |
//*/
|
|
|
14803 |
}
|
|
|
14804 |
|
|
|
14805 |
#endif // MORGAN_SCARA
|
|
|
14806 |
|
|
|
14807 |
#if ENABLED(TEMP_STAT_LEDS)
|
|
|
14808 |
|
|
|
14809 |
static uint8_t red_led = -1; // Invalid value to force leds initializzation on startup
|
|
|
14810 |
static millis_t next_status_led_update_ms = 0;
|
|
|
14811 |
|
|
|
14812 |
void handle_status_leds(void) {
|
|
|
14813 |
if (ELAPSED(millis(), next_status_led_update_ms)) {
|
|
|
14814 |
next_status_led_update_ms += 500; // Update every 0.5s
|
|
|
14815 |
float max_temp = 0.0;
|
|
|
14816 |
#if HAS_HEATED_BED
|
|
|
14817 |
max_temp = MAX(thermalManager.degTargetBed(), thermalManager.degBed());
|
|
|
14818 |
#endif
|
|
|
14819 |
HOTEND_LOOP()
|
|
|
14820 |
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
|
|
|
14821 |
const uint8_t new_led = (max_temp > 55.0) ? HIGH : (max_temp < 54.0 || red_led == -1) ? LOW : red_led;
|
|
|
14822 |
if (new_led != red_led) {
|
|
|
14823 |
red_led = new_led;
|
|
|
14824 |
#if PIN_EXISTS(STAT_LED_RED)
|
|
|
14825 |
WRITE(STAT_LED_RED_PIN, new_led);
|
|
|
14826 |
#endif
|
|
|
14827 |
#if PIN_EXISTS(STAT_LED_BLUE)
|
|
|
14828 |
WRITE(STAT_LED_BLUE_PIN, !new_led);
|
|
|
14829 |
#endif
|
|
|
14830 |
}
|
|
|
14831 |
}
|
|
|
14832 |
}
|
|
|
14833 |
|
|
|
14834 |
#endif
|
|
|
14835 |
|
|
|
14836 |
void enable_all_steppers() {
|
|
|
14837 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
14838 |
powerManager.power_on();
|
|
|
14839 |
#endif
|
|
|
14840 |
#if ENABLED(HANGPRINTER)
|
|
|
14841 |
enable_A();
|
|
|
14842 |
enable_B();
|
|
|
14843 |
enable_C();
|
|
|
14844 |
enable_D();
|
|
|
14845 |
#else
|
|
|
14846 |
enable_X();
|
|
|
14847 |
enable_Y();
|
|
|
14848 |
enable_Z();
|
|
|
14849 |
enable_E4();
|
|
|
14850 |
#endif
|
|
|
14851 |
enable_E0();
|
|
|
14852 |
enable_E1();
|
|
|
14853 |
enable_E2();
|
|
|
14854 |
enable_E3();
|
|
|
14855 |
}
|
|
|
14856 |
|
|
|
14857 |
void disable_e_stepper(const uint8_t e) {
|
|
|
14858 |
switch (e) {
|
|
|
14859 |
case 0: disable_E0(); break;
|
|
|
14860 |
case 1: disable_E1(); break;
|
|
|
14861 |
case 2: disable_E2(); break;
|
|
|
14862 |
case 3: disable_E3(); break;
|
|
|
14863 |
case 4: disable_E4(); break;
|
|
|
14864 |
}
|
|
|
14865 |
}
|
|
|
14866 |
|
|
|
14867 |
void disable_e_steppers() {
|
|
|
14868 |
disable_E0();
|
|
|
14869 |
disable_E1();
|
|
|
14870 |
disable_E2();
|
|
|
14871 |
disable_E3();
|
|
|
14872 |
disable_E4();
|
|
|
14873 |
}
|
|
|
14874 |
|
|
|
14875 |
void disable_all_steppers() {
|
|
|
14876 |
disable_X();
|
|
|
14877 |
disable_Y();
|
|
|
14878 |
disable_Z();
|
|
|
14879 |
disable_e_steppers();
|
|
|
14880 |
}
|
|
|
14881 |
|
|
|
14882 |
/**
|
|
|
14883 |
* Manage several activities:
|
|
|
14884 |
* - Check for Filament Runout
|
|
|
14885 |
* - Keep the command buffer full
|
|
|
14886 |
* - Check for maximum inactive time between commands
|
|
|
14887 |
* - Check for maximum inactive time between stepper commands
|
|
|
14888 |
* - Check if pin CHDK needs to go LOW
|
|
|
14889 |
* - Check for KILL button held down
|
|
|
14890 |
* - Check for HOME button held down
|
|
|
14891 |
* - Check if cooling fan needs to be switched on
|
|
|
14892 |
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
|
|
14893 |
*/
|
|
|
14894 |
void manage_inactivity(const bool ignore_stepper_queue/*=false*/) {
|
|
|
14895 |
|
|
|
14896 |
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
14897 |
runout.run();
|
|
|
14898 |
#endif
|
|
|
14899 |
|
|
|
14900 |
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
14901 |
|
|
|
14902 |
const millis_t ms = millis();
|
|
|
14903 |
|
|
|
14904 |
if (max_inactive_time && ELAPSED(ms, previous_move_ms + max_inactive_time)) {
|
|
|
14905 |
SERIAL_ERROR_START();
|
|
|
14906 |
SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
|
|
|
14907 |
kill(PSTR(MSG_KILLED));
|
|
|
14908 |
}
|
|
|
14909 |
|
|
|
14910 |
// Prevent steppers timing-out in the middle of M600
|
|
|
14911 |
#if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
|
|
|
14912 |
#define MOVE_AWAY_TEST !did_pause_print
|
|
|
14913 |
#else
|
|
|
14914 |
#define MOVE_AWAY_TEST true
|
|
|
14915 |
#endif
|
|
|
14916 |
|
|
|
14917 |
if (stepper_inactive_time) {
|
|
|
14918 |
if (planner.has_blocks_queued())
|
|
|
14919 |
previous_move_ms = ms; // reset_stepper_timeout to keep steppers powered
|
|
|
14920 |
else if (MOVE_AWAY_TEST && !ignore_stepper_queue && ELAPSED(ms, previous_move_ms + stepper_inactive_time)) {
|
|
|
14921 |
#if ENABLED(DISABLE_INACTIVE_X)
|
|
|
14922 |
disable_X();
|
|
|
14923 |
#endif
|
|
|
14924 |
#if ENABLED(DISABLE_INACTIVE_Y)
|
|
|
14925 |
disable_Y();
|
|
|
14926 |
#endif
|
|
|
14927 |
#if ENABLED(DISABLE_INACTIVE_Z)
|
|
|
14928 |
disable_Z();
|
|
|
14929 |
#endif
|
|
|
14930 |
#if ENABLED(DISABLE_INACTIVE_E)
|
|
|
14931 |
disable_e_steppers();
|
|
|
14932 |
#endif
|
|
|
14933 |
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) // Only needed with an LCD
|
|
|
14934 |
if (ubl.lcd_map_control) ubl.lcd_map_control = defer_return_to_status = false;
|
|
|
14935 |
#endif
|
|
|
14936 |
}
|
|
|
14937 |
}
|
|
|
14938 |
|
|
|
14939 |
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
|
|
|
14940 |
if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
|
|
|
14941 |
chdkActive = false;
|
|
|
14942 |
WRITE(CHDK, LOW);
|
|
|
14943 |
}
|
|
|
14944 |
#endif
|
|
|
14945 |
|
|
|
14946 |
#if HAS_KILL
|
|
|
14947 |
|
|
|
14948 |
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
|
14949 |
// key kill key press
|
|
|
14950 |
// -------------------------------------------------------------------------------
|
|
|
14951 |
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
|
14952 |
const int KILL_DELAY = 750;
|
|
|
14953 |
if (!READ(KILL_PIN))
|
|
|
14954 |
killCount++;
|
|
|
14955 |
else if (killCount > 0)
|
|
|
14956 |
killCount--;
|
|
|
14957 |
|
|
|
14958 |
// Exceeded threshold and we can confirm that it was not accidental
|
|
|
14959 |
// KILL the machine
|
|
|
14960 |
// ----------------------------------------------------------------
|
|
|
14961 |
if (killCount >= KILL_DELAY) {
|
|
|
14962 |
SERIAL_ERROR_START();
|
|
|
14963 |
SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
|
|
|
14964 |
kill(PSTR(MSG_KILLED));
|
|
|
14965 |
}
|
|
|
14966 |
#endif
|
|
|
14967 |
|
|
|
14968 |
#if HAS_HOME
|
|
|
14969 |
// Check to see if we have to home, use poor man's debouncer
|
|
|
14970 |
// ---------------------------------------------------------
|
|
|
14971 |
static int homeDebounceCount = 0; // poor man's debouncing count
|
|
|
14972 |
const int HOME_DEBOUNCE_DELAY = 2500;
|
|
|
14973 |
if (!IS_SD_PRINTING() && !READ(HOME_PIN)) {
|
|
|
14974 |
if (!homeDebounceCount) {
|
|
|
14975 |
enqueue_and_echo_commands_P(PSTR("G28"));
|
|
|
14976 |
LCD_MESSAGEPGM(MSG_AUTO_HOME);
|
|
|
14977 |
}
|
|
|
14978 |
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
|
|
14979 |
homeDebounceCount++;
|
|
|
14980 |
else
|
|
|
14981 |
homeDebounceCount = 0;
|
|
|
14982 |
}
|
|
|
14983 |
#endif
|
|
|
14984 |
|
|
|
14985 |
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
14986 |
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
|
|
|
14987 |
#endif
|
|
|
14988 |
|
|
|
14989 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
14990 |
powerManager.check();
|
|
|
14991 |
#endif
|
|
|
14992 |
|
|
|
14993 |
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
|
|
|
14994 |
if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP
|
|
|
14995 |
&& ELAPSED(ms, previous_move_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
|
|
|
14996 |
&& !planner.has_blocks_queued()
|
|
|
14997 |
) {
|
|
|
14998 |
#if ENABLED(SWITCHING_EXTRUDER)
|
|
|
14999 |
bool oldstatus;
|
|
|
15000 |
switch (active_extruder) {
|
|
|
15001 |
default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
|
|
|
15002 |
#if E_STEPPERS > 1
|
|
|
15003 |
case 2: case 3: oldstatus = E1_ENABLE_READ; enable_E1(); break;
|
|
|
15004 |
#if E_STEPPERS > 2
|
|
|
15005 |
case 4: oldstatus = E2_ENABLE_READ; enable_E2(); break;
|
|
|
15006 |
#endif // E_STEPPERS > 2
|
|
|
15007 |
#endif // E_STEPPERS > 1
|
|
|
15008 |
}
|
|
|
15009 |
#else // !SWITCHING_EXTRUDER
|
|
|
15010 |
bool oldstatus;
|
|
|
15011 |
switch (active_extruder) {
|
|
|
15012 |
default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
|
|
|
15013 |
#if E_STEPPERS > 1
|
|
|
15014 |
case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
|
|
|
15015 |
#if E_STEPPERS > 2
|
|
|
15016 |
case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
|
|
|
15017 |
#if E_STEPPERS > 3
|
|
|
15018 |
case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
|
|
|
15019 |
#if E_STEPPERS > 4
|
|
|
15020 |
case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
|
|
|
15021 |
#endif // E_STEPPERS > 4
|
|
|
15022 |
#endif // E_STEPPERS > 3
|
|
|
15023 |
#endif // E_STEPPERS > 2
|
|
|
15024 |
#endif // E_STEPPERS > 1
|
|
|
15025 |
}
|
|
|
15026 |
#endif // !SWITCHING_EXTRUDER
|
|
|
15027 |
|
|
|
15028 |
const float olde = current_position[E_CART];
|
|
|
15029 |
current_position[E_CART] += EXTRUDER_RUNOUT_EXTRUDE;
|
|
|
15030 |
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
|
|
|
15031 |
current_position[E_CART] = olde;
|
|
|
15032 |
planner.set_e_position_mm(olde);
|
|
|
15033 |
planner.synchronize();
|
|
|
15034 |
|
|
|
15035 |
#if ENABLED(SWITCHING_EXTRUDER)
|
|
|
15036 |
switch (active_extruder) {
|
|
|
15037 |
default: oldstatus = E0_ENABLE_WRITE(oldstatus); break;
|
|
|
15038 |
#if E_STEPPERS > 1
|
|
|
15039 |
case 2: case 3: oldstatus = E1_ENABLE_WRITE(oldstatus); break;
|
|
|
15040 |
#if E_STEPPERS > 2
|
|
|
15041 |
case 4: oldstatus = E2_ENABLE_WRITE(oldstatus); break;
|
|
|
15042 |
#endif // E_STEPPERS > 2
|
|
|
15043 |
#endif // E_STEPPERS > 1
|
|
|
15044 |
}
|
|
|
15045 |
#else // !SWITCHING_EXTRUDER
|
|
|
15046 |
switch (active_extruder) {
|
|
|
15047 |
case 0: E0_ENABLE_WRITE(oldstatus); break;
|
|
|
15048 |
#if E_STEPPERS > 1
|
|
|
15049 |
case 1: E1_ENABLE_WRITE(oldstatus); break;
|
|
|
15050 |
#if E_STEPPERS > 2
|
|
|
15051 |
case 2: E2_ENABLE_WRITE(oldstatus); break;
|
|
|
15052 |
#if E_STEPPERS > 3
|
|
|
15053 |
case 3: E3_ENABLE_WRITE(oldstatus); break;
|
|
|
15054 |
#if E_STEPPERS > 4
|
|
|
15055 |
case 4: E4_ENABLE_WRITE(oldstatus); break;
|
|
|
15056 |
#endif // E_STEPPERS > 4
|
|
|
15057 |
#endif // E_STEPPERS > 3
|
|
|
15058 |
#endif // E_STEPPERS > 2
|
|
|
15059 |
#endif // E_STEPPERS > 1
|
|
|
15060 |
}
|
|
|
15061 |
#endif // !SWITCHING_EXTRUDER
|
|
|
15062 |
|
|
|
15063 |
previous_move_ms = ms; // reset_stepper_timeout to keep steppers powered
|
|
|
15064 |
}
|
|
|
15065 |
#endif // EXTRUDER_RUNOUT_PREVENT
|
|
|
15066 |
|
|
|
15067 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
15068 |
// handle delayed move timeout
|
|
|
15069 |
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
|
|
|
15070 |
// travel moves have been received so enact them
|
|
|
15071 |
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
|
|
15072 |
set_destination_from_current();
|
|
|
15073 |
prepare_move_to_destination();
|
|
|
15074 |
}
|
|
|
15075 |
#endif
|
|
|
15076 |
|
|
|
15077 |
#if ENABLED(TEMP_STAT_LEDS)
|
|
|
15078 |
handle_status_leds();
|
|
|
15079 |
#endif
|
|
|
15080 |
|
|
|
15081 |
#if ENABLED(MONITOR_DRIVER_STATUS)
|
|
|
15082 |
monitor_tmc_driver();
|
|
|
15083 |
#endif
|
|
|
15084 |
|
|
|
15085 |
planner.check_axes_activity();
|
|
|
15086 |
}
|
|
|
15087 |
|
|
|
15088 |
/**
|
|
|
15089 |
* Standard idle routine keeps the machine alive
|
|
|
15090 |
*/
|
|
|
15091 |
void idle(
|
|
|
15092 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
15093 |
bool no_stepper_sleep/*=false*/
|
|
|
15094 |
#endif
|
|
|
15095 |
) {
|
|
|
15096 |
#if ENABLED(MAX7219_DEBUG)
|
|
|
15097 |
max7219.idle_tasks();
|
|
|
15098 |
#endif
|
|
|
15099 |
|
|
|
15100 |
lcd_update();
|
|
|
15101 |
|
|
|
15102 |
host_keepalive();
|
|
|
15103 |
|
|
|
15104 |
manage_inactivity(
|
|
|
15105 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
15106 |
no_stepper_sleep
|
|
|
15107 |
#endif
|
|
|
15108 |
);
|
|
|
15109 |
|
|
|
15110 |
thermalManager.manage_heater();
|
|
|
15111 |
|
|
|
15112 |
#if ENABLED(PRINTCOUNTER)
|
|
|
15113 |
print_job_timer.tick();
|
|
|
15114 |
#endif
|
|
|
15115 |
|
|
|
15116 |
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
|
|
15117 |
buzzer.tick();
|
|
|
15118 |
#endif
|
|
|
15119 |
|
|
|
15120 |
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
15121 |
static millis_t i2cpem_next_update_ms;
|
|
|
15122 |
if (planner.has_blocks_queued() && ELAPSED(millis(), i2cpem_next_update_ms)) {
|
|
|
15123 |
I2CPEM.update();
|
|
|
15124 |
i2cpem_next_update_ms = millis() + I2CPE_MIN_UPD_TIME_MS;
|
|
|
15125 |
}
|
|
|
15126 |
#endif
|
|
|
15127 |
|
|
|
15128 |
#if HAS_AUTO_REPORTING
|
|
|
15129 |
if (!suspend_auto_report) {
|
|
|
15130 |
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
15131 |
thermalManager.auto_report_temperatures();
|
|
|
15132 |
#endif
|
|
|
15133 |
#if ENABLED(AUTO_REPORT_SD_STATUS)
|
|
|
15134 |
card.auto_report_sd_status();
|
|
|
15135 |
#endif
|
|
|
15136 |
}
|
|
|
15137 |
#endif
|
|
|
15138 |
}
|
|
|
15139 |
|
|
|
15140 |
/**
|
|
|
15141 |
* Kill all activity and lock the machine.
|
|
|
15142 |
* After this the machine will need to be reset.
|
|
|
15143 |
*/
|
|
|
15144 |
void kill(const char* lcd_msg) {
|
|
|
15145 |
SERIAL_ERROR_START();
|
|
|
15146 |
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
|
|
|
15147 |
|
|
|
15148 |
thermalManager.disable_all_heaters();
|
|
|
15149 |
disable_all_steppers();
|
|
|
15150 |
|
|
|
15151 |
#if ENABLED(ULTRA_LCD)
|
|
|
15152 |
kill_screen(lcd_msg);
|
|
|
15153 |
#else
|
|
|
15154 |
UNUSED(lcd_msg);
|
|
|
15155 |
#endif
|
|
|
15156 |
|
|
|
15157 |
_delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
|
|
|
15158 |
cli(); // Stop interrupts
|
|
|
15159 |
|
|
|
15160 |
_delay_ms(250); //Wait to ensure all interrupts routines stopped
|
|
|
15161 |
thermalManager.disable_all_heaters(); //turn off heaters again
|
|
|
15162 |
|
|
|
15163 |
#ifdef ACTION_ON_KILL
|
|
|
15164 |
SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
|
|
|
15165 |
#endif
|
|
|
15166 |
|
|
|
15167 |
#if HAS_POWER_SWITCH
|
|
|
15168 |
PSU_OFF();
|
|
|
15169 |
#endif
|
|
|
15170 |
|
|
|
15171 |
suicide();
|
|
|
15172 |
while (1) {
|
|
|
15173 |
#if ENABLED(USE_WATCHDOG)
|
|
|
15174 |
watchdog_reset();
|
|
|
15175 |
#endif
|
|
|
15176 |
} // Wait for reset
|
|
|
15177 |
}
|
|
|
15178 |
|
|
|
15179 |
/**
|
|
|
15180 |
* Turn off heaters and stop the print in progress
|
|
|
15181 |
* After a stop the machine may be resumed with M999
|
|
|
15182 |
*/
|
|
|
15183 |
void stop() {
|
|
|
15184 |
thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
|
|
|
15185 |
|
|
|
15186 |
#if ENABLED(PROBING_FANS_OFF)
|
|
|
15187 |
if (fans_paused) fans_pause(false); // put things back the way they were
|
|
|
15188 |
#endif
|
|
|
15189 |
|
|
|
15190 |
if (IsRunning()) {
|
|
|
15191 |
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
|
15192 |
SERIAL_ERROR_START();
|
|
|
15193 |
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
|
15194 |
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
|
15195 |
safe_delay(350); // allow enough time for messages to get out before stopping
|
|
|
15196 |
Running = false;
|
|
|
15197 |
}
|
|
|
15198 |
}
|
|
|
15199 |
|
|
|
15200 |
/**
|
|
|
15201 |
* Marlin entry-point: Set up before the program loop
|
|
|
15202 |
* - Set up the kill pin, filament runout, power hold
|
|
|
15203 |
* - Start the serial port
|
|
|
15204 |
* - Print startup messages and diagnostics
|
|
|
15205 |
* - Get EEPROM or default settings
|
|
|
15206 |
* - Initialize managers for:
|
|
|
15207 |
* • temperature
|
|
|
15208 |
* • planner
|
|
|
15209 |
* • watchdog
|
|
|
15210 |
* • stepper
|
|
|
15211 |
* • photo pin
|
|
|
15212 |
* • servos
|
|
|
15213 |
* • LCD controller
|
|
|
15214 |
* • Digipot I2C
|
|
|
15215 |
* • Z probe sled
|
|
|
15216 |
* • status LEDs
|
|
|
15217 |
*/
|
|
|
15218 |
void setup() {
|
|
|
15219 |
|
|
|
15220 |
#if ENABLED(MAX7219_DEBUG)
|
|
|
15221 |
max7219.init();
|
|
|
15222 |
#endif
|
|
|
15223 |
|
|
|
15224 |
#if ENABLED(DISABLE_JTAG)
|
|
|
15225 |
// Disable JTAG on AT90USB chips to free up pins for IO
|
|
|
15226 |
MCUCR = 0x80;
|
|
|
15227 |
MCUCR = 0x80;
|
|
|
15228 |
#endif
|
|
|
15229 |
|
|
|
15230 |
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
15231 |
runout.setup();
|
|
|
15232 |
#endif
|
|
|
15233 |
|
|
|
15234 |
setup_killpin();
|
|
|
15235 |
|
|
|
15236 |
setup_powerhold();
|
|
|
15237 |
|
|
|
15238 |
#if HAS_STEPPER_RESET
|
|
|
15239 |
disableStepperDrivers();
|
|
|
15240 |
#endif
|
|
|
15241 |
|
|
|
15242 |
MYSERIAL0.begin(BAUDRATE);
|
|
|
15243 |
SERIAL_PROTOCOLLNPGM("start");
|
|
|
15244 |
SERIAL_ECHO_START();
|
|
|
15245 |
|
|
|
15246 |
// Prepare communication for TMC drivers
|
|
|
15247 |
#if HAS_DRIVER(TMC2130)
|
|
|
15248 |
tmc_init_cs_pins();
|
|
|
15249 |
#endif
|
|
|
15250 |
#if HAS_DRIVER(TMC2208)
|
|
|
15251 |
tmc2208_serial_begin();
|
|
|
15252 |
#endif
|
|
|
15253 |
|
|
|
15254 |
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
|
15255 |
byte mcu = MCUSR;
|
|
|
15256 |
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
|
|
|
15257 |
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
|
|
|
15258 |
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
|
|
|
15259 |
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
|
|
|
15260 |
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
|
|
|
15261 |
MCUSR = 0;
|
|
|
15262 |
|
|
|
15263 |
SERIAL_ECHOPGM(MSG_MARLIN);
|
|
|
15264 |
SERIAL_CHAR(' ');
|
|
|
15265 |
SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
|
|
|
15266 |
SERIAL_EOL();
|
|
|
15267 |
|
|
|
15268 |
#if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
|
|
|
15269 |
SERIAL_ECHO_START();
|
|
|
15270 |
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
|
|
|
15271 |
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
|
|
|
15272 |
SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
|
|
|
15273 |
SERIAL_ECHO_START();
|
|
|
15274 |
SERIAL_ECHOLNPGM("Compiled: " __DATE__);
|
|
|
15275 |
#endif
|
|
|
15276 |
|
|
|
15277 |
SERIAL_ECHO_START();
|
|
|
15278 |
SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
|
|
|
15279 |
SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, int(sizeof(block_t))*(BLOCK_BUFFER_SIZE));
|
|
|
15280 |
|
|
|
15281 |
// Send "ok" after commands by default
|
|
|
15282 |
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
|
|
|
15283 |
|
|
|
15284 |
// Load data from EEPROM if available (or use defaults)
|
|
|
15285 |
// This also updates variables in the planner, elsewhere
|
|
|
15286 |
(void)settings.load();
|
|
|
15287 |
|
|
|
15288 |
#if HAS_M206_COMMAND
|
|
|
15289 |
// Initialize current position based on home_offset
|
|
|
15290 |
COPY(current_position, home_offset);
|
|
|
15291 |
#else
|
|
|
15292 |
ZERO(current_position);
|
|
|
15293 |
#endif
|
|
|
15294 |
|
|
|
15295 |
// Vital to init stepper/planner equivalent for current_position
|
|
|
15296 |
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
15297 |
|
|
|
15298 |
thermalManager.init(); // Initialize temperature loop
|
|
|
15299 |
|
|
|
15300 |
print_job_timer.init(); // Initial setup of print job timer
|
|
|
15301 |
|
|
|
15302 |
endstops.init(); // Init endstops and pullups
|
|
|
15303 |
|
|
|
15304 |
stepper.init(); // Init stepper. This enables interrupts!
|
|
|
15305 |
|
|
|
15306 |
servo_init(); // Initialize all servos, stow servo probe
|
|
|
15307 |
|
|
|
15308 |
#if HAS_PHOTOGRAPH
|
|
|
15309 |
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
15310 |
#endif
|
|
|
15311 |
|
|
|
15312 |
#if HAS_CASE_LIGHT
|
|
|
15313 |
case_light_on = CASE_LIGHT_DEFAULT_ON;
|
|
|
15314 |
case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
|
|
|
15315 |
update_case_light();
|
|
|
15316 |
#endif
|
|
|
15317 |
|
|
|
15318 |
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
|
15319 |
OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
|
|
|
15320 |
#if SPINDLE_DIR_CHANGE
|
|
|
15321 |
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
|
|
|
15322 |
#endif
|
|
|
15323 |
#if ENABLED(SPINDLE_LASER_PWM)
|
|
|
15324 |
SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
|
|
|
15325 |
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
|
|
|
15326 |
#endif
|
|
|
15327 |
#endif
|
|
|
15328 |
|
|
|
15329 |
#if HAS_BED_PROBE
|
|
|
15330 |
endstops.enable_z_probe(false);
|
|
|
15331 |
#endif
|
|
|
15332 |
|
|
|
15333 |
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
15334 |
SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
|
|
|
15335 |
#endif
|
|
|
15336 |
|
|
|
15337 |
#if HAS_STEPPER_RESET
|
|
|
15338 |
enableStepperDrivers();
|
|
|
15339 |
#endif
|
|
|
15340 |
|
|
|
15341 |
#if ENABLED(DIGIPOT_I2C)
|
|
|
15342 |
digipot_i2c_init();
|
|
|
15343 |
#endif
|
|
|
15344 |
|
|
|
15345 |
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
|
15346 |
dac_init();
|
|
|
15347 |
#endif
|
|
|
15348 |
|
|
|
15349 |
#if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
|
|
|
15350 |
OUT_WRITE(SOL1_PIN, LOW); // turn it off
|
|
|
15351 |
#endif
|
|
|
15352 |
|
|
|
15353 |
#if HAS_HOME
|
|
|
15354 |
SET_INPUT_PULLUP(HOME_PIN);
|
|
|
15355 |
#endif
|
|
|
15356 |
|
|
|
15357 |
#if PIN_EXISTS(STAT_LED_RED)
|
|
|
15358 |
OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
|
|
|
15359 |
#endif
|
|
|
15360 |
|
|
|
15361 |
#if PIN_EXISTS(STAT_LED_BLUE)
|
|
|
15362 |
OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
|
|
|
15363 |
#endif
|
|
|
15364 |
|
|
|
15365 |
#if HAS_COLOR_LEDS
|
|
|
15366 |
leds.setup();
|
|
|
15367 |
#endif
|
|
|
15368 |
|
|
|
15369 |
#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
|
|
|
15370 |
SET_OUTPUT(RGB_LED_R_PIN);
|
|
|
15371 |
SET_OUTPUT(RGB_LED_G_PIN);
|
|
|
15372 |
SET_OUTPUT(RGB_LED_B_PIN);
|
|
|
15373 |
#if ENABLED(RGBW_LED)
|
|
|
15374 |
SET_OUTPUT(RGB_LED_W_PIN);
|
|
|
15375 |
#endif
|
|
|
15376 |
#endif
|
|
|
15377 |
|
|
|
15378 |
#if ENABLED(MK2_MULTIPLEXER)
|
|
|
15379 |
SET_OUTPUT(E_MUX0_PIN);
|
|
|
15380 |
SET_OUTPUT(E_MUX1_PIN);
|
|
|
15381 |
SET_OUTPUT(E_MUX2_PIN);
|
|
|
15382 |
#endif
|
|
|
15383 |
|
|
|
15384 |
#if HAS_FANMUX
|
|
|
15385 |
fanmux_init();
|
|
|
15386 |
#endif
|
|
|
15387 |
|
|
|
15388 |
lcd_init();
|
|
|
15389 |
lcd_reset_status();
|
|
|
15390 |
|
|
|
15391 |
#if ENABLED(SHOW_BOOTSCREEN)
|
|
|
15392 |
lcd_bootscreen();
|
|
|
15393 |
#endif
|
|
|
15394 |
|
|
|
15395 |
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
|
15396 |
// Virtual Tools 0, 1, 2, 3 = Filament 1, 2, 3, 4, etc.
|
|
|
15397 |
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS && t < MIXING_STEPPERS; t++)
|
|
|
15398 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
15399 |
mixing_virtual_tool_mix[t][i] = (t == i) ? 1.0 : 0.0;
|
|
|
15400 |
|
|
|
15401 |
// Remaining virtual tools are 100% filament 1
|
|
|
15402 |
#if MIXING_STEPPERS < MIXING_VIRTUAL_TOOLS
|
|
|
15403 |
for (uint8_t t = MIXING_STEPPERS; t < MIXING_VIRTUAL_TOOLS; t++)
|
|
|
15404 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
15405 |
mixing_virtual_tool_mix[t][i] = (i == 0) ? 1.0 : 0.0;
|
|
|
15406 |
#endif
|
|
|
15407 |
|
|
|
15408 |
// Initialize mixing to tool 0 color
|
|
|
15409 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
15410 |
mixing_factor[i] = mixing_virtual_tool_mix[0][i];
|
|
|
15411 |
#endif
|
|
|
15412 |
|
|
|
15413 |
#if ENABLED(BLTOUCH)
|
|
|
15414 |
// Make sure any BLTouch error condition is cleared
|
|
|
15415 |
bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY);
|
|
|
15416 |
set_bltouch_deployed(false);
|
|
|
15417 |
#endif
|
|
|
15418 |
|
|
|
15419 |
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
15420 |
I2CPEM.init();
|
|
|
15421 |
#endif
|
|
|
15422 |
|
|
|
15423 |
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
|
15424 |
i2c.onReceive(i2c_on_receive);
|
|
|
15425 |
i2c.onRequest(i2c_on_request);
|
|
|
15426 |
#endif
|
|
|
15427 |
|
|
|
15428 |
#if DO_SWITCH_EXTRUDER
|
|
|
15429 |
move_extruder_servo(0); // Initialize extruder servo
|
|
|
15430 |
#endif
|
|
|
15431 |
|
|
|
15432 |
#if ENABLED(SWITCHING_NOZZLE)
|
|
|
15433 |
move_nozzle_servo(0); // Initialize nozzle servo
|
|
|
15434 |
#endif
|
|
|
15435 |
|
|
|
15436 |
#if ENABLED(PARKING_EXTRUDER)
|
|
|
15437 |
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
|
15438 |
pe_activate_magnet(0);
|
|
|
15439 |
pe_activate_magnet(1);
|
|
|
15440 |
#else
|
|
|
15441 |
pe_deactivate_magnet(0);
|
|
|
15442 |
pe_deactivate_magnet(1);
|
|
|
15443 |
#endif
|
|
|
15444 |
#endif
|
|
|
15445 |
|
|
|
15446 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
15447 |
check_print_job_recovery();
|
|
|
15448 |
#endif
|
|
|
15449 |
|
|
|
15450 |
#if ENABLED(USE_WATCHDOG)
|
|
|
15451 |
watchdog_init();
|
|
|
15452 |
#endif
|
|
|
15453 |
|
|
|
15454 |
#if ENABLED(HANGPRINTER)
|
|
|
15455 |
enable_A();
|
|
|
15456 |
enable_B();
|
|
|
15457 |
enable_C();
|
|
|
15458 |
enable_D();
|
|
|
15459 |
#endif
|
|
|
15460 |
|
|
|
15461 |
#if ENABLED(SDSUPPORT) && !(ENABLED(ULTRA_LCD) && PIN_EXISTS(SD_DETECT))
|
|
|
15462 |
card.beginautostart();
|
|
|
15463 |
#endif
|
|
|
15464 |
}
|
|
|
15465 |
|
|
|
15466 |
/**
|
|
|
15467 |
* The main Marlin program loop
|
|
|
15468 |
*
|
|
|
15469 |
* - Abort SD printing if flagged
|
|
|
15470 |
* - Save or log commands to SD
|
|
|
15471 |
* - Process available commands (if not saving)
|
|
|
15472 |
* - Call heater manager
|
|
|
15473 |
* - Call inactivity manager
|
|
|
15474 |
* - Call endstop manager
|
|
|
15475 |
* - Call LCD update
|
|
|
15476 |
*/
|
|
|
15477 |
void loop() {
|
|
|
15478 |
|
|
|
15479 |
#if ENABLED(SDSUPPORT)
|
|
|
15480 |
|
|
|
15481 |
card.checkautostart();
|
|
|
15482 |
|
|
|
15483 |
if (card.abort_sd_printing) {
|
|
|
15484 |
card.stopSDPrint(
|
|
|
15485 |
#if SD_RESORT
|
|
|
15486 |
true
|
|
|
15487 |
#endif
|
|
|
15488 |
);
|
|
|
15489 |
clear_command_queue();
|
|
|
15490 |
quickstop_stepper();
|
|
|
15491 |
print_job_timer.stop();
|
|
|
15492 |
thermalManager.disable_all_heaters();
|
|
|
15493 |
#if FAN_COUNT > 0
|
|
|
15494 |
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
|
|
15495 |
#endif
|
|
|
15496 |
wait_for_heatup = false;
|
|
|
15497 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
15498 |
card.removeJobRecoveryFile();
|
|
|
15499 |
#endif
|
|
|
15500 |
}
|
|
|
15501 |
|
|
|
15502 |
#endif // SDSUPPORT
|
|
|
15503 |
|
|
|
15504 |
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
15505 |
|
|
|
15506 |
if (commands_in_queue) {
|
|
|
15507 |
|
|
|
15508 |
#if ENABLED(SDSUPPORT)
|
|
|
15509 |
|
|
|
15510 |
if (card.saving) {
|
|
|
15511 |
char* command = command_queue[cmd_queue_index_r];
|
|
|
15512 |
if (strstr_P(command, PSTR("M29"))) {
|
|
|
15513 |
// M29 closes the file
|
|
|
15514 |
card.closefile();
|
|
|
15515 |
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
|
|
|
15516 |
|
|
|
15517 |
#if USE_MARLINSERIAL
|
|
|
15518 |
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
|
15519 |
SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
|
|
|
15520 |
#endif
|
|
|
15521 |
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
|
15522 |
SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
|
|
|
15523 |
#endif
|
|
|
15524 |
#endif
|
|
|
15525 |
|
|
|
15526 |
ok_to_send();
|
|
|
15527 |
}
|
|
|
15528 |
else {
|
|
|
15529 |
// Write the string from the read buffer to SD
|
|
|
15530 |
card.write_command(command);
|
|
|
15531 |
if (card.logging)
|
|
|
15532 |
process_next_command(); // The card is saving because it's logging
|
|
|
15533 |
else
|
|
|
15534 |
ok_to_send();
|
|
|
15535 |
}
|
|
|
15536 |
}
|
|
|
15537 |
else {
|
|
|
15538 |
process_next_command();
|
|
|
15539 |
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
15540 |
if (card.cardOK && card.sdprinting) save_job_recovery_info();
|
|
|
15541 |
#endif
|
|
|
15542 |
}
|
|
|
15543 |
|
|
|
15544 |
#else
|
|
|
15545 |
|
|
|
15546 |
process_next_command();
|
|
|
15547 |
|
|
|
15548 |
#endif // SDSUPPORT
|
|
|
15549 |
|
|
|
15550 |
// The queue may be reset by a command handler or by code invoked by idle() within a handler
|
|
|
15551 |
if (commands_in_queue) {
|
|
|
15552 |
--commands_in_queue;
|
|
|
15553 |
if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
|
|
|
15554 |
}
|
|
|
15555 |
}
|
|
|
15556 |
endstops.event_handler();
|
|
|
15557 |
idle();
|
|
|
15558 |
}
|