1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* configuration_store.cpp
|
|
|
25 |
*
|
|
|
26 |
* Settings and EEPROM storage
|
|
|
27 |
*
|
|
|
28 |
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
|
|
29 |
* in the functions below, also increment the version number. This makes sure that
|
|
|
30 |
* the default values are used whenever there is a change to the data, to prevent
|
|
|
31 |
* wrong data being written to the variables.
|
|
|
32 |
*
|
|
|
33 |
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
|
|
|
34 |
* If a feature is disabled, some data must still be written that, when read,
|
|
|
35 |
* either sets a Sane Default, or results in No Change to the existing value.
|
|
|
36 |
*
|
|
|
37 |
*/
|
|
|
38 |
|
|
|
39 |
// Change EEPROM version if the structure changes
|
|
|
40 |
#define EEPROM_VERSION "V56"
|
|
|
41 |
#define EEPROM_OFFSET 100
|
|
|
42 |
|
|
|
43 |
// Check the integrity of data offsets.
|
|
|
44 |
// Can be disabled for production build.
|
|
|
45 |
//#define DEBUG_EEPROM_READWRITE
|
|
|
46 |
|
|
|
47 |
#include "configuration_store.h"
|
|
|
48 |
#include "Marlin.h"
|
|
|
49 |
#include "language.h"
|
|
|
50 |
#include "endstops.h"
|
|
|
51 |
#include "planner.h"
|
|
|
52 |
#include "temperature.h"
|
|
|
53 |
#include "ultralcd.h"
|
|
|
54 |
#include "stepper.h"
|
|
|
55 |
#include "parser.h"
|
|
|
56 |
#include "vector_3.h"
|
|
|
57 |
|
|
|
58 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
59 |
#include "mesh_bed_leveling.h"
|
|
|
60 |
#endif
|
|
|
61 |
|
|
|
62 |
#if HAS_TRINAMIC
|
|
|
63 |
#include "stepper_indirection.h"
|
|
|
64 |
#include "tmc_util.h"
|
|
|
65 |
#define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.axis_steps_per_mm[_AXIS(A)])
|
|
|
66 |
#endif
|
|
|
67 |
|
|
|
68 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
69 |
#include "ubl.h"
|
|
|
70 |
#endif
|
|
|
71 |
|
|
|
72 |
#if ENABLED(FWRETRACT)
|
|
|
73 |
#include "fwretract.h"
|
|
|
74 |
#endif
|
|
|
75 |
|
|
|
76 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
77 |
#define LPQ_LEN thermalManager.lpq_len
|
|
|
78 |
#endif
|
|
|
79 |
|
|
|
80 |
#if ENABLED(BLTOUCH)
|
|
|
81 |
extern bool bltouch_last_written_mode;
|
|
|
82 |
#endif
|
|
|
83 |
|
|
|
84 |
#pragma pack(push, 1) // No padding between variables
|
|
|
85 |
|
|
|
86 |
typedef struct PID { float Kp, Ki, Kd; } PID;
|
|
|
87 |
typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC;
|
|
|
88 |
|
|
|
89 |
/**
|
|
|
90 |
* Current EEPROM Layout
|
|
|
91 |
*
|
|
|
92 |
* Keep this data structure up to date so
|
|
|
93 |
* EEPROM size is known at compile time!
|
|
|
94 |
*/
|
|
|
95 |
typedef struct SettingsDataStruct {
|
|
|
96 |
char version[4]; // Vnn\0
|
|
|
97 |
uint16_t crc; // Data Checksum
|
|
|
98 |
|
|
|
99 |
//
|
|
|
100 |
// DISTINCT_E_FACTORS
|
|
|
101 |
//
|
|
|
102 |
uint8_t esteppers; // NUM_AXIS_N - MOV_AXIS
|
|
|
103 |
|
|
|
104 |
uint32_t planner_max_acceleration_mm_per_s2[NUM_AXIS_N], // M201 XYZE/ABCDE planner.max_acceleration_mm_per_s2[NUM_AXIS_N]
|
|
|
105 |
planner_min_segment_time_us; // M205 Q planner.min_segment_time_us
|
|
|
106 |
float planner_axis_steps_per_mm[NUM_AXIS_N], // M92 XYZE/ABCDE planner.axis_steps_per_mm[NUM_AXIS_N]
|
|
|
107 |
planner_max_feedrate_mm_s[NUM_AXIS_N], // M203 XYZE/ABCDE planner.max_feedrate_mm_s[NUM_AXIS_N]
|
|
|
108 |
planner_acceleration, // M204 P planner.acceleration
|
|
|
109 |
planner_retract_acceleration, // M204 R planner.retract_acceleration
|
|
|
110 |
planner_travel_acceleration, // M204 T planner.travel_acceleration
|
|
|
111 |
planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s
|
|
|
112 |
planner_min_travel_feedrate_mm_s, // M205 T planner.min_travel_feedrate_mm_s
|
|
|
113 |
planner_max_jerk[NUM_AXIS], // M205 XYZE/ABCDE planner.max_jerk[NUM_AXIS]
|
|
|
114 |
planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
|
|
|
115 |
|
|
|
116 |
float home_offset[XYZ]; // M206 XYZ
|
|
|
117 |
|
|
|
118 |
#if HOTENDS > 1
|
|
|
119 |
float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
|
|
|
120 |
#endif
|
|
|
121 |
|
|
|
122 |
//
|
|
|
123 |
// ENABLE_LEVELING_FADE_HEIGHT
|
|
|
124 |
//
|
|
|
125 |
float planner_z_fade_height; // M420 Zn planner.z_fade_height
|
|
|
126 |
|
|
|
127 |
//
|
|
|
128 |
// MESH_BED_LEVELING
|
|
|
129 |
//
|
|
|
130 |
float mbl_z_offset; // mbl.z_offset
|
|
|
131 |
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
|
|
|
132 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
133 |
float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
|
|
|
134 |
#else
|
|
|
135 |
float mbl_z_values[3][3];
|
|
|
136 |
#endif
|
|
|
137 |
|
|
|
138 |
//
|
|
|
139 |
// HAS_BED_PROBE
|
|
|
140 |
//
|
|
|
141 |
float zprobe_zoffset; // M851 Z
|
|
|
142 |
|
|
|
143 |
//
|
|
|
144 |
// ABL_PLANAR
|
|
|
145 |
//
|
|
|
146 |
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
|
|
|
147 |
|
|
|
148 |
//
|
|
|
149 |
// AUTO_BED_LEVELING_BILINEAR
|
|
|
150 |
//
|
|
|
151 |
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
|
|
|
152 |
int bilinear_grid_spacing[2],
|
|
|
153 |
bilinear_start[2]; // G29 L F
|
|
|
154 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
155 |
float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
|
|
|
156 |
#else
|
|
|
157 |
float z_values[3][3];
|
|
|
158 |
#endif
|
|
|
159 |
|
|
|
160 |
//
|
|
|
161 |
// AUTO_BED_LEVELING_UBL
|
|
|
162 |
//
|
|
|
163 |
bool planner_leveling_active; // M420 S planner.leveling_active
|
|
|
164 |
int8_t ubl_storage_slot; // ubl.storage_slot
|
|
|
165 |
|
|
|
166 |
//
|
|
|
167 |
// BLTOUCH
|
|
|
168 |
//
|
|
|
169 |
bool bltouch_last_written_mode;
|
|
|
170 |
|
|
|
171 |
//
|
|
|
172 |
// DELTA / [XYZ]_DUAL_ENDSTOPS
|
|
|
173 |
//
|
|
|
174 |
#if ENABLED(DELTA)
|
|
|
175 |
|
|
|
176 |
float delta_height, // M666 H
|
|
|
177 |
delta_endstop_adj[ABC], // M666 XYZ
|
|
|
178 |
delta_radius, // M665 R
|
|
|
179 |
delta_diagonal_rod, // M665 L
|
|
|
180 |
delta_segments_per_second, // M665 S
|
|
|
181 |
delta_calibration_radius, // M665 B
|
|
|
182 |
delta_tower_angle_trim[ABC]; // M665 XYZ
|
|
|
183 |
|
|
|
184 |
#elif ENABLED(HANGPRINTER)
|
|
|
185 |
|
|
|
186 |
float anchor_A_y, // M665 W
|
|
|
187 |
anchor_A_z, // M665 E
|
|
|
188 |
anchor_B_x, // M665 R
|
|
|
189 |
anchor_B_y, // M665 T
|
|
|
190 |
anchor_B_z, // M665 Y
|
|
|
191 |
anchor_C_x, // M665 U
|
|
|
192 |
anchor_C_y, // M665 I
|
|
|
193 |
anchor_C_z, // M665 O
|
|
|
194 |
anchor_D_z, // M665 P
|
|
|
195 |
delta_segments_per_second, // M665 S
|
|
|
196 |
hangprinter_calibration_radius_placeholder;
|
|
|
197 |
|
|
|
198 |
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
199 |
|
|
|
200 |
float x_endstop_adj, // M666 X
|
|
|
201 |
y_endstop_adj, // M666 Y
|
|
|
202 |
z_endstop_adj; // M666 Z
|
|
|
203 |
|
|
|
204 |
#endif
|
|
|
205 |
|
|
|
206 |
//
|
|
|
207 |
// ULTIPANEL
|
|
|
208 |
//
|
|
|
209 |
int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
|
|
|
210 |
lcd_preheat_bed_temp[2], // M145 S0 B
|
|
|
211 |
lcd_preheat_fan_speed[2]; // M145 S0 F
|
|
|
212 |
|
|
|
213 |
//
|
|
|
214 |
// PIDTEMP
|
|
|
215 |
//
|
|
|
216 |
PIDC hotendPID[MAX_EXTRUDERS]; // M301 En PIDC / M303 En U
|
|
|
217 |
|
|
|
218 |
int16_t lpq_len; // M301 L
|
|
|
219 |
|
|
|
220 |
//
|
|
|
221 |
// PIDTEMPBED
|
|
|
222 |
//
|
|
|
223 |
PID bedPID; // M304 PID / M303 E-1 U
|
|
|
224 |
|
|
|
225 |
//
|
|
|
226 |
// HAS_LCD_CONTRAST
|
|
|
227 |
//
|
|
|
228 |
int16_t lcd_contrast; // M250 C
|
|
|
229 |
|
|
|
230 |
//
|
|
|
231 |
// FWRETRACT
|
|
|
232 |
//
|
|
|
233 |
bool autoretract_enabled; // M209 S
|
|
|
234 |
float retract_length, // M207 S
|
|
|
235 |
retract_feedrate_mm_s, // M207 F
|
|
|
236 |
retract_zlift, // M207 Z
|
|
|
237 |
retract_recover_length, // M208 S
|
|
|
238 |
retract_recover_feedrate_mm_s, // M208 F
|
|
|
239 |
swap_retract_length, // M207 W
|
|
|
240 |
swap_retract_recover_length, // M208 W
|
|
|
241 |
swap_retract_recover_feedrate_mm_s; // M208 R
|
|
|
242 |
|
|
|
243 |
//
|
|
|
244 |
// !NO_VOLUMETRIC
|
|
|
245 |
//
|
|
|
246 |
bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
|
|
|
247 |
float planner_filament_size[MAX_EXTRUDERS]; // M200 T D planner.filament_size[]
|
|
|
248 |
|
|
|
249 |
//
|
|
|
250 |
// HAS_TRINAMIC
|
|
|
251 |
//
|
|
|
252 |
#define TMC_AXES (MAX_EXTRUDERS + 6)
|
|
|
253 |
uint16_t tmc_stepper_current[TMC_AXES]; // M906 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
|
|
|
254 |
uint32_t tmc_hybrid_threshold[TMC_AXES]; // M913 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
|
|
|
255 |
int16_t tmc_sgt[XYZ]; // M914 X Y Z
|
|
|
256 |
|
|
|
257 |
//
|
|
|
258 |
// LIN_ADVANCE
|
|
|
259 |
//
|
|
|
260 |
float planner_extruder_advance_K; // M900 K planner.extruder_advance_K
|
|
|
261 |
|
|
|
262 |
//
|
|
|
263 |
// HAS_MOTOR_CURRENT_PWM
|
|
|
264 |
//
|
|
|
265 |
uint32_t motor_current_setting[XYZ]; // M907 X Z E
|
|
|
266 |
|
|
|
267 |
//
|
|
|
268 |
// CNC_COORDINATE_SYSTEMS
|
|
|
269 |
//
|
|
|
270 |
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
|
|
|
271 |
|
|
|
272 |
//
|
|
|
273 |
// SKEW_CORRECTION
|
|
|
274 |
//
|
|
|
275 |
float planner_xy_skew_factor, // M852 I planner.xy_skew_factor
|
|
|
276 |
planner_xz_skew_factor, // M852 J planner.xz_skew_factor
|
|
|
277 |
planner_yz_skew_factor; // M852 K planner.yz_skew_factor
|
|
|
278 |
|
|
|
279 |
//
|
|
|
280 |
// ADVANCED_PAUSE_FEATURE
|
|
|
281 |
//
|
|
|
282 |
float filament_change_unload_length[MAX_EXTRUDERS], // M603 T U
|
|
|
283 |
filament_change_load_length[MAX_EXTRUDERS]; // M603 T L
|
|
|
284 |
|
|
|
285 |
} SettingsData;
|
|
|
286 |
|
|
|
287 |
#pragma pack(pop)
|
|
|
288 |
|
|
|
289 |
MarlinSettings settings;
|
|
|
290 |
|
|
|
291 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
292 |
extern void refresh_bed_level();
|
|
|
293 |
#endif
|
|
|
294 |
|
|
|
295 |
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
|
|
|
296 |
|
|
|
297 |
/**
|
|
|
298 |
* Post-process after Retrieve or Reset
|
|
|
299 |
*/
|
|
|
300 |
|
|
|
301 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
302 |
float new_z_fade_height;
|
|
|
303 |
#endif
|
|
|
304 |
|
|
|
305 |
void MarlinSettings::postprocess() {
|
|
|
306 |
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
|
|
307 |
|
|
|
308 |
// steps per s2 needs to be updated to agree with units per s2
|
|
|
309 |
planner.reset_acceleration_rates();
|
|
|
310 |
|
|
|
311 |
// Make sure delta kinematics are updated before refreshing the
|
|
|
312 |
// planner position so the stepper counts will be set correctly.
|
|
|
313 |
#if ENABLED(DELTA)
|
|
|
314 |
recalc_delta_settings();
|
|
|
315 |
#elif ENABLED(HANGPRINTER)
|
|
|
316 |
recalc_hangprinter_settings();
|
|
|
317 |
#endif
|
|
|
318 |
|
|
|
319 |
#if ENABLED(PIDTEMP)
|
|
|
320 |
thermalManager.update_pid();
|
|
|
321 |
#endif
|
|
|
322 |
|
|
|
323 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
324 |
planner.calculate_volumetric_multipliers();
|
|
|
325 |
#else
|
|
|
326 |
for (uint8_t i = COUNT(planner.e_factor); i--;)
|
|
|
327 |
planner.refresh_e_factor(i);
|
|
|
328 |
#endif
|
|
|
329 |
|
|
|
330 |
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
|
|
331 |
// Software endstops depend on home_offset
|
|
|
332 |
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
|
|
|
333 |
#endif
|
|
|
334 |
|
|
|
335 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
336 |
set_z_fade_height(new_z_fade_height, false); // false = no report
|
|
|
337 |
#endif
|
|
|
338 |
|
|
|
339 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
340 |
refresh_bed_level();
|
|
|
341 |
#endif
|
|
|
342 |
|
|
|
343 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
344 |
stepper.refresh_motor_power();
|
|
|
345 |
#endif
|
|
|
346 |
|
|
|
347 |
#if ENABLED(FWRETRACT)
|
|
|
348 |
fwretract.refresh_autoretract();
|
|
|
349 |
#endif
|
|
|
350 |
|
|
|
351 |
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
|
|
|
352 |
planner.recalculate_max_e_jerk();
|
|
|
353 |
#endif
|
|
|
354 |
|
|
|
355 |
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
|
|
|
356 |
// and init stepper.count[], planner.position[] with current_position
|
|
|
357 |
planner.refresh_positioning();
|
|
|
358 |
|
|
|
359 |
// Various factors can change the current position
|
|
|
360 |
if (memcmp(oldpos, current_position, sizeof(oldpos)))
|
|
|
361 |
report_current_position();
|
|
|
362 |
}
|
|
|
363 |
|
|
|
364 |
#if ENABLED(EEPROM_SETTINGS)
|
|
|
365 |
|
|
|
366 |
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET
|
|
|
367 |
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
|
|
|
368 |
#define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
|
|
|
369 |
#define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
|
|
|
370 |
#define EEPROM_READ_ALWAYS(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, true)
|
|
|
371 |
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_error = true; }while(0)
|
|
|
372 |
|
|
|
373 |
#if ENABLED(DEBUG_EEPROM_READWRITE)
|
|
|
374 |
#define _FIELD_TEST(FIELD) \
|
|
|
375 |
EEPROM_ASSERT( \
|
|
|
376 |
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
|
|
|
377 |
"Field " STRINGIFY(FIELD) " mismatch." \
|
|
|
378 |
)
|
|
|
379 |
#else
|
|
|
380 |
#define _FIELD_TEST(FIELD) NOOP
|
|
|
381 |
#endif
|
|
|
382 |
|
|
|
383 |
const char version[4] = EEPROM_VERSION;
|
|
|
384 |
|
|
|
385 |
bool MarlinSettings::eeprom_error, MarlinSettings::validating;
|
|
|
386 |
|
|
|
387 |
void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
|
|
|
388 |
if (eeprom_error) { pos += size; return; }
|
|
|
389 |
while (size--) {
|
|
|
390 |
uint8_t * const p = (uint8_t * const)pos;
|
|
|
391 |
uint8_t v = *value;
|
|
|
392 |
// EEPROM has only ~100,000 write cycles,
|
|
|
393 |
// so only write bytes that have changed!
|
|
|
394 |
if (v != eeprom_read_byte(p)) {
|
|
|
395 |
eeprom_write_byte(p, v);
|
|
|
396 |
if (eeprom_read_byte(p) != v) {
|
|
|
397 |
SERIAL_ECHO_START();
|
|
|
398 |
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
|
|
|
399 |
eeprom_error = true;
|
|
|
400 |
return;
|
|
|
401 |
}
|
|
|
402 |
}
|
|
|
403 |
crc16(crc, &v, 1);
|
|
|
404 |
pos++;
|
|
|
405 |
value++;
|
|
|
406 |
};
|
|
|
407 |
}
|
|
|
408 |
|
|
|
409 |
void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool force/*=false*/) {
|
|
|
410 |
if (eeprom_error) { pos += size; return; }
|
|
|
411 |
do {
|
|
|
412 |
uint8_t c = eeprom_read_byte((unsigned char*)pos);
|
|
|
413 |
if (!validating || force) *value = c;
|
|
|
414 |
crc16(crc, &c, 1);
|
|
|
415 |
pos++;
|
|
|
416 |
value++;
|
|
|
417 |
} while (--size);
|
|
|
418 |
}
|
|
|
419 |
|
|
|
420 |
bool MarlinSettings::size_error(const uint16_t size) {
|
|
|
421 |
if (size != datasize()) {
|
|
|
422 |
SERIAL_ERROR_START();
|
|
|
423 |
SERIAL_ERRORLNPGM("EEPROM datasize error.");
|
|
|
424 |
return true;
|
|
|
425 |
}
|
|
|
426 |
return false;
|
|
|
427 |
}
|
|
|
428 |
|
|
|
429 |
/**
|
|
|
430 |
* M500 - Store Configuration
|
|
|
431 |
*/
|
|
|
432 |
bool MarlinSettings::save() {
|
|
|
433 |
float dummy = 0;
|
|
|
434 |
char ver[4] = "ERR";
|
|
|
435 |
|
|
|
436 |
uint16_t working_crc = 0;
|
|
|
437 |
|
|
|
438 |
EEPROM_START();
|
|
|
439 |
|
|
|
440 |
eeprom_error = false;
|
|
|
441 |
|
|
|
442 |
EEPROM_WRITE(ver); // invalidate data first
|
|
|
443 |
EEPROM_SKIP(working_crc); // Skip the checksum slot
|
|
|
444 |
|
|
|
445 |
working_crc = 0; // clear before first "real data"
|
|
|
446 |
|
|
|
447 |
_FIELD_TEST(esteppers);
|
|
|
448 |
|
|
|
449 |
const uint8_t esteppers = NUM_AXIS_N - MOV_AXIS;
|
|
|
450 |
EEPROM_WRITE(esteppers);
|
|
|
451 |
|
|
|
452 |
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
|
453 |
EEPROM_WRITE(planner.min_segment_time_us);
|
|
|
454 |
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
|
455 |
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
|
456 |
EEPROM_WRITE(planner.acceleration);
|
|
|
457 |
EEPROM_WRITE(planner.retract_acceleration);
|
|
|
458 |
EEPROM_WRITE(planner.travel_acceleration);
|
|
|
459 |
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
|
460 |
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
|
461 |
|
|
|
462 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
463 |
const float planner_max_jerk[] = {
|
|
|
464 |
#if ENABLED(HANGPRINTER)
|
|
|
465 |
float(DEFAULT_AJERK), float(DEFAULT_BJERK), float(DEFAULT_CJERK), float(DEFAULT_DJERK), float(DEFAULT_EJERK)
|
|
|
466 |
#else
|
|
|
467 |
float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK)
|
|
|
468 |
#endif
|
|
|
469 |
};
|
|
|
470 |
EEPROM_WRITE(planner_max_jerk);
|
|
|
471 |
EEPROM_WRITE(planner.junction_deviation_mm);
|
|
|
472 |
#else
|
|
|
473 |
EEPROM_WRITE(planner.max_jerk);
|
|
|
474 |
dummy = 0.02f;
|
|
|
475 |
EEPROM_WRITE(dummy);
|
|
|
476 |
#endif
|
|
|
477 |
|
|
|
478 |
_FIELD_TEST(home_offset);
|
|
|
479 |
|
|
|
480 |
#if !HAS_HOME_OFFSET
|
|
|
481 |
const float home_offset[XYZ] = { 0 };
|
|
|
482 |
#endif
|
|
|
483 |
EEPROM_WRITE(home_offset);
|
|
|
484 |
|
|
|
485 |
#if HOTENDS > 1
|
|
|
486 |
// Skip hotend 0 which must be 0
|
|
|
487 |
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
|
488 |
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
|
|
|
489 |
#endif
|
|
|
490 |
|
|
|
491 |
//
|
|
|
492 |
// Global Leveling
|
|
|
493 |
//
|
|
|
494 |
|
|
|
495 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
496 |
const float zfh = planner.z_fade_height;
|
|
|
497 |
#else
|
|
|
498 |
const float zfh = 10.0;
|
|
|
499 |
#endif
|
|
|
500 |
EEPROM_WRITE(zfh);
|
|
|
501 |
|
|
|
502 |
//
|
|
|
503 |
// Mesh Bed Leveling
|
|
|
504 |
//
|
|
|
505 |
|
|
|
506 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
507 |
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
|
508 |
static_assert(
|
|
|
509 |
sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
|
|
|
510 |
"MBL Z array is the wrong size."
|
|
|
511 |
);
|
|
|
512 |
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
|
|
|
513 |
EEPROM_WRITE(mbl.z_offset);
|
|
|
514 |
EEPROM_WRITE(mesh_num_x);
|
|
|
515 |
EEPROM_WRITE(mesh_num_y);
|
|
|
516 |
EEPROM_WRITE(mbl.z_values);
|
|
|
517 |
#else // For disabled MBL write a default mesh
|
|
|
518 |
dummy = 0;
|
|
|
519 |
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
|
|
|
520 |
EEPROM_WRITE(dummy); // z_offset
|
|
|
521 |
EEPROM_WRITE(mesh_num_x);
|
|
|
522 |
EEPROM_WRITE(mesh_num_y);
|
|
|
523 |
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
|
|
|
524 |
#endif // MESH_BED_LEVELING
|
|
|
525 |
|
|
|
526 |
_FIELD_TEST(zprobe_zoffset);
|
|
|
527 |
|
|
|
528 |
#if !HAS_BED_PROBE
|
|
|
529 |
const float zprobe_zoffset = 0;
|
|
|
530 |
#endif
|
|
|
531 |
EEPROM_WRITE(zprobe_zoffset);
|
|
|
532 |
|
|
|
533 |
//
|
|
|
534 |
// Planar Bed Leveling matrix
|
|
|
535 |
//
|
|
|
536 |
|
|
|
537 |
#if ABL_PLANAR
|
|
|
538 |
EEPROM_WRITE(planner.bed_level_matrix);
|
|
|
539 |
#else
|
|
|
540 |
dummy = 0;
|
|
|
541 |
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
|
542 |
#endif
|
|
|
543 |
|
|
|
544 |
//
|
|
|
545 |
// Bilinear Auto Bed Leveling
|
|
|
546 |
//
|
|
|
547 |
|
|
|
548 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
549 |
// Compile time test that sizeof(z_values) is as expected
|
|
|
550 |
static_assert(
|
|
|
551 |
sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
|
|
|
552 |
"Bilinear Z array is the wrong size."
|
|
|
553 |
);
|
|
|
554 |
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
|
|
|
555 |
EEPROM_WRITE(grid_max_x); // 1 byte
|
|
|
556 |
EEPROM_WRITE(grid_max_y); // 1 byte
|
|
|
557 |
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
|
|
|
558 |
EEPROM_WRITE(bilinear_start); // 2 ints
|
|
|
559 |
EEPROM_WRITE(z_values); // 9-256 floats
|
|
|
560 |
#else
|
|
|
561 |
// For disabled Bilinear Grid write an empty 3x3 grid
|
|
|
562 |
const uint8_t grid_max_x = 3, grid_max_y = 3;
|
|
|
563 |
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
|
|
|
564 |
dummy = 0;
|
|
|
565 |
EEPROM_WRITE(grid_max_x);
|
|
|
566 |
EEPROM_WRITE(grid_max_y);
|
|
|
567 |
EEPROM_WRITE(bilinear_grid_spacing);
|
|
|
568 |
EEPROM_WRITE(bilinear_start);
|
|
|
569 |
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
|
|
|
570 |
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
571 |
|
|
|
572 |
_FIELD_TEST(planner_leveling_active);
|
|
|
573 |
|
|
|
574 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
575 |
EEPROM_WRITE(planner.leveling_active);
|
|
|
576 |
EEPROM_WRITE(ubl.storage_slot);
|
|
|
577 |
#else
|
|
|
578 |
const bool ubl_active = false;
|
|
|
579 |
const int8_t storage_slot = -1;
|
|
|
580 |
EEPROM_WRITE(ubl_active);
|
|
|
581 |
EEPROM_WRITE(storage_slot);
|
|
|
582 |
#endif // AUTO_BED_LEVELING_UBL
|
|
|
583 |
|
|
|
584 |
//
|
|
|
585 |
// BLTOUCH
|
|
|
586 |
//
|
|
|
587 |
{
|
|
|
588 |
_FIELD_TEST(bltouch_last_written_mode);
|
|
|
589 |
#if ENABLED(BLTOUCH)
|
|
|
590 |
const bool &eeprom_bltouch_last_written_mode = bltouch_last_written_mode;
|
|
|
591 |
#else
|
|
|
592 |
constexpr bool eeprom_bltouch_last_written_mode = false;
|
|
|
593 |
#endif
|
|
|
594 |
EEPROM_WRITE(eeprom_bltouch_last_written_mode);
|
|
|
595 |
}
|
|
|
596 |
|
|
|
597 |
|
|
|
598 |
// 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
|
|
|
599 |
#if ENABLED(DELTA)
|
|
|
600 |
|
|
|
601 |
_FIELD_TEST(delta_height);
|
|
|
602 |
|
|
|
603 |
EEPROM_WRITE(delta_height); // 1 float
|
|
|
604 |
EEPROM_WRITE(delta_endstop_adj); // 3 floats
|
|
|
605 |
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
606 |
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
607 |
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
608 |
EEPROM_WRITE(delta_calibration_radius); // 1 float
|
|
|
609 |
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
|
|
|
610 |
|
|
|
611 |
#elif ENABLED(HANGPRINTER)
|
|
|
612 |
|
|
|
613 |
dummy = 0.0f;
|
|
|
614 |
_FIELD_TEST(anchor_A_y);
|
|
|
615 |
EEPROM_WRITE(anchor_A_y); // 1 float
|
|
|
616 |
EEPROM_WRITE(anchor_A_z); // 1 float
|
|
|
617 |
EEPROM_WRITE(anchor_B_x); // 1 float
|
|
|
618 |
EEPROM_WRITE(anchor_B_y); // 1 float
|
|
|
619 |
EEPROM_WRITE(anchor_B_z); // 1 float
|
|
|
620 |
EEPROM_WRITE(anchor_C_x); // 1 float
|
|
|
621 |
EEPROM_WRITE(anchor_C_y); // 1 float
|
|
|
622 |
EEPROM_WRITE(anchor_C_z); // 1 float
|
|
|
623 |
EEPROM_WRITE(anchor_D_z); // 1 float
|
|
|
624 |
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
625 |
EEPROM_WRITE(dummy); // 1 float
|
|
|
626 |
|
|
|
627 |
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
628 |
|
|
|
629 |
_FIELD_TEST(x_endstop_adj);
|
|
|
630 |
|
|
|
631 |
// Write dual endstops in X, Y, Z order. Unused = 0.0
|
|
|
632 |
dummy = 0;
|
|
|
633 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
634 |
EEPROM_WRITE(endstops.x_endstop_adj); // 1 float
|
|
|
635 |
#else
|
|
|
636 |
EEPROM_WRITE(dummy);
|
|
|
637 |
#endif
|
|
|
638 |
|
|
|
639 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
640 |
EEPROM_WRITE(endstops.y_endstop_adj); // 1 float
|
|
|
641 |
#else
|
|
|
642 |
EEPROM_WRITE(dummy);
|
|
|
643 |
#endif
|
|
|
644 |
|
|
|
645 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
646 |
EEPROM_WRITE(endstops.z_endstop_adj); // 1 float
|
|
|
647 |
#else
|
|
|
648 |
EEPROM_WRITE(dummy);
|
|
|
649 |
#endif
|
|
|
650 |
|
|
|
651 |
#endif
|
|
|
652 |
|
|
|
653 |
_FIELD_TEST(lcd_preheat_hotend_temp);
|
|
|
654 |
|
|
|
655 |
#if DISABLED(ULTIPANEL)
|
|
|
656 |
constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
|
|
|
657 |
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
|
|
|
658 |
lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
|
|
|
659 |
#endif
|
|
|
660 |
|
|
|
661 |
EEPROM_WRITE(lcd_preheat_hotend_temp);
|
|
|
662 |
EEPROM_WRITE(lcd_preheat_bed_temp);
|
|
|
663 |
EEPROM_WRITE(lcd_preheat_fan_speed);
|
|
|
664 |
|
|
|
665 |
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
666 |
|
|
|
667 |
#if ENABLED(PIDTEMP)
|
|
|
668 |
if (e < HOTENDS) {
|
|
|
669 |
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
|
670 |
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
|
671 |
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
|
672 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
673 |
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
|
674 |
#else
|
|
|
675 |
dummy = 1.0f; // 1.0 = default kc
|
|
|
676 |
EEPROM_WRITE(dummy);
|
|
|
677 |
#endif
|
|
|
678 |
}
|
|
|
679 |
else
|
|
|
680 |
#endif // !PIDTEMP
|
|
|
681 |
{
|
|
|
682 |
dummy = NAN; // When read, will not change the existing value
|
|
|
683 |
EEPROM_WRITE(dummy); // Kp
|
|
|
684 |
dummy = 0;
|
|
|
685 |
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
|
686 |
}
|
|
|
687 |
|
|
|
688 |
} // Hotends Loop
|
|
|
689 |
|
|
|
690 |
_FIELD_TEST(lpq_len);
|
|
|
691 |
|
|
|
692 |
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
693 |
const int16_t LPQ_LEN = 20;
|
|
|
694 |
#endif
|
|
|
695 |
EEPROM_WRITE(LPQ_LEN);
|
|
|
696 |
|
|
|
697 |
#if DISABLED(PIDTEMPBED)
|
|
|
698 |
dummy = NAN;
|
|
|
699 |
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
|
700 |
#else
|
|
|
701 |
EEPROM_WRITE(thermalManager.bedKp);
|
|
|
702 |
EEPROM_WRITE(thermalManager.bedKi);
|
|
|
703 |
EEPROM_WRITE(thermalManager.bedKd);
|
|
|
704 |
#endif
|
|
|
705 |
|
|
|
706 |
_FIELD_TEST(lcd_contrast);
|
|
|
707 |
|
|
|
708 |
#if !HAS_LCD_CONTRAST
|
|
|
709 |
const int16_t lcd_contrast = 32;
|
|
|
710 |
#endif
|
|
|
711 |
EEPROM_WRITE(lcd_contrast);
|
|
|
712 |
|
|
|
713 |
#if DISABLED(FWRETRACT)
|
|
|
714 |
const bool autoretract_enabled = false;
|
|
|
715 |
const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 };
|
|
|
716 |
EEPROM_WRITE(autoretract_enabled);
|
|
|
717 |
EEPROM_WRITE(autoretract_defaults);
|
|
|
718 |
#else
|
|
|
719 |
EEPROM_WRITE(fwretract.autoretract_enabled);
|
|
|
720 |
EEPROM_WRITE(fwretract.retract_length);
|
|
|
721 |
EEPROM_WRITE(fwretract.retract_feedrate_mm_s);
|
|
|
722 |
EEPROM_WRITE(fwretract.retract_zlift);
|
|
|
723 |
EEPROM_WRITE(fwretract.retract_recover_length);
|
|
|
724 |
EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s);
|
|
|
725 |
EEPROM_WRITE(fwretract.swap_retract_length);
|
|
|
726 |
EEPROM_WRITE(fwretract.swap_retract_recover_length);
|
|
|
727 |
EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s);
|
|
|
728 |
#endif
|
|
|
729 |
|
|
|
730 |
//
|
|
|
731 |
// Volumetric & Filament Size
|
|
|
732 |
//
|
|
|
733 |
|
|
|
734 |
_FIELD_TEST(parser_volumetric_enabled);
|
|
|
735 |
|
|
|
736 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
737 |
|
|
|
738 |
EEPROM_WRITE(parser.volumetric_enabled);
|
|
|
739 |
|
|
|
740 |
// Save filament sizes
|
|
|
741 |
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
742 |
if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
|
|
|
743 |
EEPROM_WRITE(dummy);
|
|
|
744 |
}
|
|
|
745 |
|
|
|
746 |
#else
|
|
|
747 |
|
|
|
748 |
const bool volumetric_enabled = false;
|
|
|
749 |
dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
|
750 |
EEPROM_WRITE(volumetric_enabled);
|
|
|
751 |
for (uint8_t q = MAX_EXTRUDERS; q--;) EEPROM_WRITE(dummy);
|
|
|
752 |
|
|
|
753 |
#endif
|
|
|
754 |
|
|
|
755 |
//
|
|
|
756 |
// Save TMC2130 or TMC2208 Configuration, and placeholder values
|
|
|
757 |
//
|
|
|
758 |
|
|
|
759 |
_FIELD_TEST(tmc_stepper_current);
|
|
|
760 |
|
|
|
761 |
uint16_t tmc_stepper_current[TMC_AXES] = {
|
|
|
762 |
#if HAS_TRINAMIC
|
|
|
763 |
#if AXIS_IS_TMC(X)
|
|
|
764 |
stepperX.getCurrent(),
|
|
|
765 |
#else
|
|
|
766 |
0,
|
|
|
767 |
#endif
|
|
|
768 |
#if AXIS_IS_TMC(Y)
|
|
|
769 |
stepperY.getCurrent(),
|
|
|
770 |
#else
|
|
|
771 |
0,
|
|
|
772 |
#endif
|
|
|
773 |
#if AXIS_IS_TMC(Z)
|
|
|
774 |
stepperZ.getCurrent(),
|
|
|
775 |
#else
|
|
|
776 |
0,
|
|
|
777 |
#endif
|
|
|
778 |
#if AXIS_IS_TMC(X2)
|
|
|
779 |
stepperX2.getCurrent(),
|
|
|
780 |
#else
|
|
|
781 |
0,
|
|
|
782 |
#endif
|
|
|
783 |
#if AXIS_IS_TMC(Y2)
|
|
|
784 |
stepperY2.getCurrent(),
|
|
|
785 |
#else
|
|
|
786 |
0,
|
|
|
787 |
#endif
|
|
|
788 |
#if AXIS_IS_TMC(Z2)
|
|
|
789 |
stepperZ2.getCurrent(),
|
|
|
790 |
#else
|
|
|
791 |
0,
|
|
|
792 |
#endif
|
|
|
793 |
#if AXIS_IS_TMC(E0)
|
|
|
794 |
stepperE0.getCurrent(),
|
|
|
795 |
#else
|
|
|
796 |
0,
|
|
|
797 |
#endif
|
|
|
798 |
#if AXIS_IS_TMC(E1)
|
|
|
799 |
stepperE1.getCurrent(),
|
|
|
800 |
#else
|
|
|
801 |
0,
|
|
|
802 |
#endif
|
|
|
803 |
#if AXIS_IS_TMC(E2)
|
|
|
804 |
stepperE2.getCurrent(),
|
|
|
805 |
#else
|
|
|
806 |
0,
|
|
|
807 |
#endif
|
|
|
808 |
#if AXIS_IS_TMC(E3)
|
|
|
809 |
stepperE3.getCurrent(),
|
|
|
810 |
#else
|
|
|
811 |
0,
|
|
|
812 |
#endif
|
|
|
813 |
#if AXIS_IS_TMC(E4)
|
|
|
814 |
stepperE4.getCurrent()
|
|
|
815 |
#else
|
|
|
816 |
|
|
|
817 |
#endif
|
|
|
818 |
#else
|
|
|
819 |
|
|
|
820 |
#endif
|
|
|
821 |
};
|
|
|
822 |
EEPROM_WRITE(tmc_stepper_current);
|
|
|
823 |
|
|
|
824 |
//
|
|
|
825 |
// Save TMC2130 or TMC2208 Hybrid Threshold, and placeholder values
|
|
|
826 |
//
|
|
|
827 |
|
|
|
828 |
_FIELD_TEST(tmc_hybrid_threshold);
|
|
|
829 |
|
|
|
830 |
uint32_t tmc_hybrid_threshold[TMC_AXES] = {
|
|
|
831 |
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
832 |
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
833 |
TMC_GET_PWMTHRS(X, X),
|
|
|
834 |
#else
|
|
|
835 |
X_HYBRID_THRESHOLD,
|
|
|
836 |
#endif
|
|
|
837 |
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
838 |
TMC_GET_PWMTHRS(Y, Y),
|
|
|
839 |
#else
|
|
|
840 |
Y_HYBRID_THRESHOLD,
|
|
|
841 |
#endif
|
|
|
842 |
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
843 |
TMC_GET_PWMTHRS(Z, Z),
|
|
|
844 |
#else
|
|
|
845 |
Z_HYBRID_THRESHOLD,
|
|
|
846 |
#endif
|
|
|
847 |
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
848 |
TMC_GET_PWMTHRS(X, X2),
|
|
|
849 |
#else
|
|
|
850 |
X2_HYBRID_THRESHOLD,
|
|
|
851 |
#endif
|
|
|
852 |
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
853 |
TMC_GET_PWMTHRS(Y, Y2),
|
|
|
854 |
#else
|
|
|
855 |
Y2_HYBRID_THRESHOLD,
|
|
|
856 |
#endif
|
|
|
857 |
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
858 |
TMC_GET_PWMTHRS(Z, Z2),
|
|
|
859 |
#else
|
|
|
860 |
Z2_HYBRID_THRESHOLD,
|
|
|
861 |
#endif
|
|
|
862 |
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
863 |
TMC_GET_PWMTHRS(E, E0),
|
|
|
864 |
#else
|
|
|
865 |
E0_HYBRID_THRESHOLD,
|
|
|
866 |
#endif
|
|
|
867 |
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
868 |
TMC_GET_PWMTHRS(E, E1),
|
|
|
869 |
#else
|
|
|
870 |
E1_HYBRID_THRESHOLD,
|
|
|
871 |
#endif
|
|
|
872 |
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
873 |
TMC_GET_PWMTHRS(E, E2),
|
|
|
874 |
#else
|
|
|
875 |
E2_HYBRID_THRESHOLD,
|
|
|
876 |
#endif
|
|
|
877 |
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
878 |
TMC_GET_PWMTHRS(E, E3),
|
|
|
879 |
#else
|
|
|
880 |
E3_HYBRID_THRESHOLD,
|
|
|
881 |
#endif
|
|
|
882 |
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
883 |
TMC_GET_PWMTHRS(E, E4)
|
|
|
884 |
#else
|
|
|
885 |
E4_HYBRID_THRESHOLD
|
|
|
886 |
#endif
|
|
|
887 |
#else
|
|
|
888 |
100, 100, 3, // X, Y, Z
|
|
|
889 |
100, 100, 3, // X2, Y2, Z2
|
|
|
890 |
30, 30, 30, 30, 30 // E0, E1, E2, E3, E4
|
|
|
891 |
#endif
|
|
|
892 |
};
|
|
|
893 |
EEPROM_WRITE(tmc_hybrid_threshold);
|
|
|
894 |
|
|
|
895 |
//
|
|
|
896 |
// TMC2130 Sensorless homing threshold
|
|
|
897 |
//
|
|
|
898 |
int16_t tmc_sgt[XYZ] = {
|
|
|
899 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
900 |
#if X_SENSORLESS
|
|
|
901 |
stepperX.sgt(),
|
|
|
902 |
#else
|
|
|
903 |
0,
|
|
|
904 |
#endif
|
|
|
905 |
#if Y_SENSORLESS
|
|
|
906 |
stepperY.sgt(),
|
|
|
907 |
#else
|
|
|
908 |
0,
|
|
|
909 |
#endif
|
|
|
910 |
#if Z_SENSORLESS
|
|
|
911 |
stepperZ.sgt()
|
|
|
912 |
#else
|
|
|
913 |
|
|
|
914 |
#endif
|
|
|
915 |
#else
|
|
|
916 |
|
|
|
917 |
#endif
|
|
|
918 |
};
|
|
|
919 |
EEPROM_WRITE(tmc_sgt);
|
|
|
920 |
|
|
|
921 |
//
|
|
|
922 |
// Linear Advance
|
|
|
923 |
//
|
|
|
924 |
|
|
|
925 |
_FIELD_TEST(planner_extruder_advance_K);
|
|
|
926 |
|
|
|
927 |
#if ENABLED(LIN_ADVANCE)
|
|
|
928 |
EEPROM_WRITE(planner.extruder_advance_K);
|
|
|
929 |
#else
|
|
|
930 |
dummy = 0;
|
|
|
931 |
EEPROM_WRITE(dummy);
|
|
|
932 |
#endif
|
|
|
933 |
|
|
|
934 |
_FIELD_TEST(motor_current_setting);
|
|
|
935 |
|
|
|
936 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
937 |
for (uint8_t q = XYZ; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
|
|
|
938 |
#else
|
|
|
939 |
const uint32_t dummyui32[XYZ] = { 0 };
|
|
|
940 |
EEPROM_WRITE(dummyui32);
|
|
|
941 |
#endif
|
|
|
942 |
|
|
|
943 |
//
|
|
|
944 |
// CNC Coordinate Systems
|
|
|
945 |
//
|
|
|
946 |
|
|
|
947 |
_FIELD_TEST(coordinate_system);
|
|
|
948 |
|
|
|
949 |
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
950 |
EEPROM_WRITE(coordinate_system); // 27 floats
|
|
|
951 |
#else
|
|
|
952 |
dummy = 0;
|
|
|
953 |
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy);
|
|
|
954 |
#endif
|
|
|
955 |
|
|
|
956 |
//
|
|
|
957 |
// Skew correction factors
|
|
|
958 |
//
|
|
|
959 |
|
|
|
960 |
_FIELD_TEST(planner_xy_skew_factor);
|
|
|
961 |
|
|
|
962 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
963 |
EEPROM_WRITE(planner.xy_skew_factor);
|
|
|
964 |
EEPROM_WRITE(planner.xz_skew_factor);
|
|
|
965 |
EEPROM_WRITE(planner.yz_skew_factor);
|
|
|
966 |
#else
|
|
|
967 |
dummy = 0;
|
|
|
968 |
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
|
969 |
#endif
|
|
|
970 |
|
|
|
971 |
//
|
|
|
972 |
// Advanced Pause filament load & unload lengths
|
|
|
973 |
//
|
|
|
974 |
|
|
|
975 |
_FIELD_TEST(filament_change_unload_length);
|
|
|
976 |
|
|
|
977 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
978 |
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
979 |
if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q];
|
|
|
980 |
EEPROM_WRITE(dummy);
|
|
|
981 |
}
|
|
|
982 |
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
983 |
if (q < COUNT(filament_change_load_length)) dummy = filament_change_load_length[q];
|
|
|
984 |
EEPROM_WRITE(dummy);
|
|
|
985 |
}
|
|
|
986 |
#else
|
|
|
987 |
dummy = 0;
|
|
|
988 |
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy);
|
|
|
989 |
#endif
|
|
|
990 |
|
|
|
991 |
//
|
|
|
992 |
// Validate CRC and Data Size
|
|
|
993 |
//
|
|
|
994 |
if (!eeprom_error) {
|
|
|
995 |
const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
|
|
|
996 |
final_crc = working_crc;
|
|
|
997 |
|
|
|
998 |
// Write the EEPROM header
|
|
|
999 |
eeprom_index = EEPROM_OFFSET;
|
|
|
1000 |
|
|
|
1001 |
EEPROM_WRITE(version);
|
|
|
1002 |
EEPROM_WRITE(final_crc);
|
|
|
1003 |
|
|
|
1004 |
// Report storage size
|
|
|
1005 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1006 |
SERIAL_ECHO_START();
|
|
|
1007 |
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
|
|
|
1008 |
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
|
|
|
1009 |
SERIAL_ECHOLNPGM(")");
|
|
|
1010 |
#endif
|
|
|
1011 |
|
|
|
1012 |
eeprom_error |= size_error(eeprom_size);
|
|
|
1013 |
}
|
|
|
1014 |
|
|
|
1015 |
//
|
|
|
1016 |
// UBL Mesh
|
|
|
1017 |
//
|
|
|
1018 |
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
|
|
|
1019 |
if (ubl.storage_slot >= 0)
|
|
|
1020 |
store_mesh(ubl.storage_slot);
|
|
|
1021 |
#endif
|
|
|
1022 |
|
|
|
1023 |
return !eeprom_error;
|
|
|
1024 |
}
|
|
|
1025 |
|
|
|
1026 |
/**
|
|
|
1027 |
* M501 - Retrieve Configuration
|
|
|
1028 |
*/
|
|
|
1029 |
bool MarlinSettings::_load() {
|
|
|
1030 |
uint16_t working_crc = 0;
|
|
|
1031 |
|
|
|
1032 |
EEPROM_START();
|
|
|
1033 |
|
|
|
1034 |
char stored_ver[4];
|
|
|
1035 |
EEPROM_READ_ALWAYS(stored_ver);
|
|
|
1036 |
|
|
|
1037 |
uint16_t stored_crc;
|
|
|
1038 |
EEPROM_READ_ALWAYS(stored_crc);
|
|
|
1039 |
|
|
|
1040 |
// Version has to match or defaults are used
|
|
|
1041 |
if (strncmp(version, stored_ver, 3) != 0) {
|
|
|
1042 |
if (stored_ver[3] != '\0') {
|
|
|
1043 |
stored_ver[0] = '?';
|
|
|
1044 |
stored_ver[1] = '\0';
|
|
|
1045 |
}
|
|
|
1046 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1047 |
SERIAL_ECHO_START();
|
|
|
1048 |
SERIAL_ECHOPGM("EEPROM version mismatch ");
|
|
|
1049 |
SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
|
|
|
1050 |
SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
|
|
|
1051 |
#endif
|
|
|
1052 |
eeprom_error = true;
|
|
|
1053 |
}
|
|
|
1054 |
else {
|
|
|
1055 |
float dummy = 0;
|
|
|
1056 |
#if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || ENABLED(NO_VOLUMETRICS)
|
|
|
1057 |
bool dummyb;
|
|
|
1058 |
#endif
|
|
|
1059 |
|
|
|
1060 |
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
|
|
|
1061 |
|
|
|
1062 |
_FIELD_TEST(esteppers);
|
|
|
1063 |
|
|
|
1064 |
// Number of esteppers may change
|
|
|
1065 |
uint8_t esteppers;
|
|
|
1066 |
EEPROM_READ_ALWAYS(esteppers);
|
|
|
1067 |
|
|
|
1068 |
//
|
|
|
1069 |
// Planner Motion
|
|
|
1070 |
//
|
|
|
1071 |
|
|
|
1072 |
// Get only the number of E stepper parameters previously stored
|
|
|
1073 |
// Any steppers added later are set to their defaults
|
|
|
1074 |
const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
|
|
|
1075 |
const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
|
|
|
1076 |
|
|
|
1077 |
uint32_t tmp1[MOV_AXIS + esteppers];
|
|
|
1078 |
EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
|
|
|
1079 |
EEPROM_READ(planner.min_segment_time_us);
|
|
|
1080 |
|
|
|
1081 |
float tmp2[MOV_AXIS + esteppers], tmp3[MOV_AXIS + esteppers];
|
|
|
1082 |
EEPROM_READ(tmp2); // axis_steps_per_mm
|
|
|
1083 |
EEPROM_READ(tmp3); // max_feedrate_mm_s
|
|
|
1084 |
if (!validating) LOOP_NUM_AXIS_N(i) {
|
|
|
1085 |
planner.max_acceleration_mm_per_s2[i] = i < MOV_AXIS + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
|
|
|
1086 |
planner.axis_steps_per_mm[i] = i < MOV_AXIS + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
|
|
|
1087 |
planner.max_feedrate_mm_s[i] = i < MOV_AXIS + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
|
|
|
1088 |
}
|
|
|
1089 |
|
|
|
1090 |
EEPROM_READ(planner.acceleration);
|
|
|
1091 |
EEPROM_READ(planner.retract_acceleration);
|
|
|
1092 |
EEPROM_READ(planner.travel_acceleration);
|
|
|
1093 |
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
|
1094 |
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
|
1095 |
|
|
|
1096 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
1097 |
for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
|
|
|
1098 |
EEPROM_READ(planner.junction_deviation_mm);
|
|
|
1099 |
#else
|
|
|
1100 |
EEPROM_READ(planner.max_jerk);
|
|
|
1101 |
EEPROM_READ(dummy);
|
|
|
1102 |
#endif
|
|
|
1103 |
|
|
|
1104 |
//
|
|
|
1105 |
// Home Offset (M206)
|
|
|
1106 |
//
|
|
|
1107 |
|
|
|
1108 |
_FIELD_TEST(home_offset);
|
|
|
1109 |
|
|
|
1110 |
#if !HAS_HOME_OFFSET
|
|
|
1111 |
float home_offset[XYZ];
|
|
|
1112 |
#endif
|
|
|
1113 |
EEPROM_READ(home_offset);
|
|
|
1114 |
|
|
|
1115 |
//
|
|
|
1116 |
// Hotend Offsets, if any
|
|
|
1117 |
//
|
|
|
1118 |
|
|
|
1119 |
#if HOTENDS > 1
|
|
|
1120 |
// Skip hotend 0 which must be 0
|
|
|
1121 |
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
|
1122 |
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
|
|
|
1123 |
#endif
|
|
|
1124 |
|
|
|
1125 |
//
|
|
|
1126 |
// Global Leveling
|
|
|
1127 |
//
|
|
|
1128 |
|
|
|
1129 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1130 |
EEPROM_READ(new_z_fade_height);
|
|
|
1131 |
#else
|
|
|
1132 |
EEPROM_READ(dummy);
|
|
|
1133 |
#endif
|
|
|
1134 |
|
|
|
1135 |
//
|
|
|
1136 |
// Mesh (Manual) Bed Leveling
|
|
|
1137 |
//
|
|
|
1138 |
|
|
|
1139 |
uint8_t mesh_num_x, mesh_num_y;
|
|
|
1140 |
EEPROM_READ(dummy);
|
|
|
1141 |
EEPROM_READ_ALWAYS(mesh_num_x);
|
|
|
1142 |
EEPROM_READ_ALWAYS(mesh_num_y);
|
|
|
1143 |
|
|
|
1144 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
1145 |
if (!validating) mbl.z_offset = dummy;
|
|
|
1146 |
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
|
|
|
1147 |
// EEPROM data fits the current mesh
|
|
|
1148 |
EEPROM_READ(mbl.z_values);
|
|
|
1149 |
}
|
|
|
1150 |
else {
|
|
|
1151 |
// EEPROM data is stale
|
|
|
1152 |
if (!validating) mbl.reset();
|
|
|
1153 |
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
|
|
|
1154 |
}
|
|
|
1155 |
#else
|
|
|
1156 |
// MBL is disabled - skip the stored data
|
|
|
1157 |
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
|
|
|
1158 |
#endif // MESH_BED_LEVELING
|
|
|
1159 |
|
|
|
1160 |
_FIELD_TEST(zprobe_zoffset);
|
|
|
1161 |
|
|
|
1162 |
#if !HAS_BED_PROBE
|
|
|
1163 |
float zprobe_zoffset;
|
|
|
1164 |
#endif
|
|
|
1165 |
EEPROM_READ(zprobe_zoffset);
|
|
|
1166 |
|
|
|
1167 |
//
|
|
|
1168 |
// Planar Bed Leveling matrix
|
|
|
1169 |
//
|
|
|
1170 |
|
|
|
1171 |
#if ABL_PLANAR
|
|
|
1172 |
EEPROM_READ(planner.bed_level_matrix);
|
|
|
1173 |
#else
|
|
|
1174 |
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
|
|
|
1175 |
#endif
|
|
|
1176 |
|
|
|
1177 |
//
|
|
|
1178 |
// Bilinear Auto Bed Leveling
|
|
|
1179 |
//
|
|
|
1180 |
|
|
|
1181 |
uint8_t grid_max_x, grid_max_y;
|
|
|
1182 |
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
|
|
|
1183 |
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
|
|
|
1184 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
1185 |
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
|
|
|
1186 |
if (!validating) set_bed_leveling_enabled(false);
|
|
|
1187 |
EEPROM_READ(bilinear_grid_spacing); // 2 ints
|
|
|
1188 |
EEPROM_READ(bilinear_start); // 2 ints
|
|
|
1189 |
EEPROM_READ(z_values); // 9 to 256 floats
|
|
|
1190 |
}
|
|
|
1191 |
else // EEPROM data is stale
|
|
|
1192 |
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
1193 |
{
|
|
|
1194 |
// Skip past disabled (or stale) Bilinear Grid data
|
|
|
1195 |
int bgs[2], bs[2];
|
|
|
1196 |
EEPROM_READ(bgs);
|
|
|
1197 |
EEPROM_READ(bs);
|
|
|
1198 |
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
|
|
|
1199 |
}
|
|
|
1200 |
|
|
|
1201 |
//
|
|
|
1202 |
// Unified Bed Leveling active state
|
|
|
1203 |
//
|
|
|
1204 |
|
|
|
1205 |
_FIELD_TEST(planner_leveling_active);
|
|
|
1206 |
|
|
|
1207 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
1208 |
EEPROM_READ(planner.leveling_active);
|
|
|
1209 |
EEPROM_READ(ubl.storage_slot);
|
|
|
1210 |
#else
|
|
|
1211 |
uint8_t dummyui8;
|
|
|
1212 |
EEPROM_READ(dummyb);
|
|
|
1213 |
EEPROM_READ(dummyui8);
|
|
|
1214 |
#endif // AUTO_BED_LEVELING_UBL
|
|
|
1215 |
|
|
|
1216 |
//
|
|
|
1217 |
// BLTOUCH
|
|
|
1218 |
//
|
|
|
1219 |
{
|
|
|
1220 |
_FIELD_TEST(bltouch_last_written_mode);
|
|
|
1221 |
#if ENABLED(BLTOUCH)
|
|
|
1222 |
bool &eeprom_bltouch_last_written_mode = bltouch_last_written_mode;
|
|
|
1223 |
#else
|
|
|
1224 |
bool eeprom_bltouch_last_written_mode;
|
|
|
1225 |
#endif
|
|
|
1226 |
EEPROM_READ(eeprom_bltouch_last_written_mode);
|
|
|
1227 |
}
|
|
|
1228 |
|
|
|
1229 |
//
|
|
|
1230 |
// DELTA Geometry or Dual Endstops offsets
|
|
|
1231 |
//
|
|
|
1232 |
|
|
|
1233 |
#if ENABLED(DELTA)
|
|
|
1234 |
|
|
|
1235 |
_FIELD_TEST(delta_height);
|
|
|
1236 |
|
|
|
1237 |
EEPROM_READ(delta_height); // 1 float
|
|
|
1238 |
EEPROM_READ(delta_endstop_adj); // 3 floats
|
|
|
1239 |
EEPROM_READ(delta_radius); // 1 float
|
|
|
1240 |
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
1241 |
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
1242 |
EEPROM_READ(delta_calibration_radius); // 1 float
|
|
|
1243 |
EEPROM_READ(delta_tower_angle_trim); // 3 floats
|
|
|
1244 |
|
|
|
1245 |
#elif ENABLED(HANGPRINTER)
|
|
|
1246 |
EEPROM_READ(anchor_A_y); // 1 float
|
|
|
1247 |
EEPROM_READ(anchor_A_z); // 1 float
|
|
|
1248 |
EEPROM_READ(anchor_B_x); // 1 float
|
|
|
1249 |
EEPROM_READ(anchor_B_y); // 1 float
|
|
|
1250 |
EEPROM_READ(anchor_B_z); // 1 float
|
|
|
1251 |
EEPROM_READ(anchor_C_x); // 1 float
|
|
|
1252 |
EEPROM_READ(anchor_C_y); // 1 float
|
|
|
1253 |
EEPROM_READ(anchor_C_z); // 1 float
|
|
|
1254 |
EEPROM_READ(anchor_D_z); // 1 float
|
|
|
1255 |
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
1256 |
EEPROM_READ(dummy); // 1 float
|
|
|
1257 |
|
|
|
1258 |
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
1259 |
|
|
|
1260 |
_FIELD_TEST(x_endstop_adj);
|
|
|
1261 |
|
|
|
1262 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
1263 |
EEPROM_READ(endstops.x_endstop_adj); // 1 float
|
|
|
1264 |
#else
|
|
|
1265 |
EEPROM_READ(dummy);
|
|
|
1266 |
#endif
|
|
|
1267 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
1268 |
EEPROM_READ(endstops.y_endstop_adj); // 1 float
|
|
|
1269 |
#else
|
|
|
1270 |
EEPROM_READ(dummy);
|
|
|
1271 |
#endif
|
|
|
1272 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
1273 |
EEPROM_READ(endstops.z_endstop_adj); // 1 float
|
|
|
1274 |
#else
|
|
|
1275 |
EEPROM_READ(dummy);
|
|
|
1276 |
#endif
|
|
|
1277 |
|
|
|
1278 |
#endif
|
|
|
1279 |
|
|
|
1280 |
//
|
|
|
1281 |
// LCD Preheat settings
|
|
|
1282 |
//
|
|
|
1283 |
|
|
|
1284 |
_FIELD_TEST(lcd_preheat_hotend_temp);
|
|
|
1285 |
|
|
|
1286 |
#if DISABLED(ULTIPANEL)
|
|
|
1287 |
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
|
|
|
1288 |
#endif
|
|
|
1289 |
EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
|
|
|
1290 |
EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
|
|
|
1291 |
EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
|
|
|
1292 |
|
|
|
1293 |
//EEPROM_ASSERT(
|
|
|
1294 |
// WITHIN(lcd_preheat_fan_speed, 0, 255),
|
|
|
1295 |
// "lcd_preheat_fan_speed out of range"
|
|
|
1296 |
//);
|
|
|
1297 |
|
|
|
1298 |
//
|
|
|
1299 |
// Hotend PID
|
|
|
1300 |
//
|
|
|
1301 |
|
|
|
1302 |
#if ENABLED(PIDTEMP)
|
|
|
1303 |
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
1304 |
EEPROM_READ(dummy); // Kp
|
|
|
1305 |
if (e < HOTENDS && !isnan(dummy)) {
|
|
|
1306 |
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
|
1307 |
if (!validating) PID_PARAM(Kp, e) = dummy;
|
|
|
1308 |
EEPROM_READ(PID_PARAM(Ki, e));
|
|
|
1309 |
EEPROM_READ(PID_PARAM(Kd, e));
|
|
|
1310 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
1311 |
EEPROM_READ(PID_PARAM(Kc, e));
|
|
|
1312 |
#else
|
|
|
1313 |
EEPROM_READ(dummy);
|
|
|
1314 |
#endif
|
|
|
1315 |
}
|
|
|
1316 |
else {
|
|
|
1317 |
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
|
1318 |
}
|
|
|
1319 |
}
|
|
|
1320 |
#else // !PIDTEMP
|
|
|
1321 |
// 4 x 4 = 16 slots for PID parameters
|
|
|
1322 |
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
|
1323 |
#endif // !PIDTEMP
|
|
|
1324 |
|
|
|
1325 |
//
|
|
|
1326 |
// PID Extrusion Scaling
|
|
|
1327 |
//
|
|
|
1328 |
|
|
|
1329 |
_FIELD_TEST(lpq_len);
|
|
|
1330 |
|
|
|
1331 |
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
1332 |
int16_t LPQ_LEN;
|
|
|
1333 |
#endif
|
|
|
1334 |
EEPROM_READ(LPQ_LEN);
|
|
|
1335 |
|
|
|
1336 |
//
|
|
|
1337 |
// Heated Bed PID
|
|
|
1338 |
//
|
|
|
1339 |
|
|
|
1340 |
#if ENABLED(PIDTEMPBED)
|
|
|
1341 |
EEPROM_READ(dummy); // bedKp
|
|
|
1342 |
if (!isnan(dummy)) {
|
|
|
1343 |
if (!validating) thermalManager.bedKp = dummy;
|
|
|
1344 |
EEPROM_READ(thermalManager.bedKi);
|
|
|
1345 |
EEPROM_READ(thermalManager.bedKd);
|
|
|
1346 |
}
|
|
|
1347 |
#else
|
|
|
1348 |
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
|
1349 |
#endif
|
|
|
1350 |
|
|
|
1351 |
//
|
|
|
1352 |
// LCD Contrast
|
|
|
1353 |
//
|
|
|
1354 |
|
|
|
1355 |
_FIELD_TEST(lcd_contrast);
|
|
|
1356 |
|
|
|
1357 |
#if !HAS_LCD_CONTRAST
|
|
|
1358 |
int16_t lcd_contrast;
|
|
|
1359 |
#endif
|
|
|
1360 |
EEPROM_READ(lcd_contrast);
|
|
|
1361 |
|
|
|
1362 |
//
|
|
|
1363 |
// Firmware Retraction
|
|
|
1364 |
//
|
|
|
1365 |
|
|
|
1366 |
#if ENABLED(FWRETRACT)
|
|
|
1367 |
EEPROM_READ(fwretract.autoretract_enabled);
|
|
|
1368 |
EEPROM_READ(fwretract.retract_length);
|
|
|
1369 |
EEPROM_READ(fwretract.retract_feedrate_mm_s);
|
|
|
1370 |
EEPROM_READ(fwretract.retract_zlift);
|
|
|
1371 |
EEPROM_READ(fwretract.retract_recover_length);
|
|
|
1372 |
EEPROM_READ(fwretract.retract_recover_feedrate_mm_s);
|
|
|
1373 |
EEPROM_READ(fwretract.swap_retract_length);
|
|
|
1374 |
EEPROM_READ(fwretract.swap_retract_recover_length);
|
|
|
1375 |
EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s);
|
|
|
1376 |
#else
|
|
|
1377 |
EEPROM_READ(dummyb);
|
|
|
1378 |
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
|
|
|
1379 |
#endif
|
|
|
1380 |
|
|
|
1381 |
//
|
|
|
1382 |
// Volumetric & Filament Size
|
|
|
1383 |
//
|
|
|
1384 |
|
|
|
1385 |
_FIELD_TEST(parser_volumetric_enabled);
|
|
|
1386 |
|
|
|
1387 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
1388 |
|
|
|
1389 |
EEPROM_READ(parser.volumetric_enabled);
|
|
|
1390 |
|
|
|
1391 |
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
1392 |
EEPROM_READ(dummy);
|
|
|
1393 |
if (!validating && q < COUNT(planner.filament_size))
|
|
|
1394 |
planner.filament_size[q] = dummy;
|
|
|
1395 |
}
|
|
|
1396 |
|
|
|
1397 |
#else
|
|
|
1398 |
|
|
|
1399 |
EEPROM_READ(dummyb);
|
|
|
1400 |
for (uint8_t q=MAX_EXTRUDERS; q--;) EEPROM_READ(dummy);
|
|
|
1401 |
|
|
|
1402 |
#endif
|
|
|
1403 |
|
|
|
1404 |
if (!validating) reset_stepper_drivers();
|
|
|
1405 |
|
|
|
1406 |
//
|
|
|
1407 |
// TMC2130 Stepper Settings
|
|
|
1408 |
//
|
|
|
1409 |
|
|
|
1410 |
_FIELD_TEST(tmc_stepper_current);
|
|
|
1411 |
|
|
|
1412 |
#if HAS_TRINAMIC
|
|
|
1413 |
|
|
|
1414 |
#define SET_CURR(Q) stepper##Q.setCurrent(currents[TMC_##Q] ? currents[TMC_##Q] : Q##_CURRENT, R_SENSE, HOLD_MULTIPLIER)
|
|
|
1415 |
uint16_t currents[TMC_AXES];
|
|
|
1416 |
EEPROM_READ(currents);
|
|
|
1417 |
if (!validating) {
|
|
|
1418 |
#if AXIS_IS_TMC(X)
|
|
|
1419 |
SET_CURR(X);
|
|
|
1420 |
#endif
|
|
|
1421 |
#if AXIS_IS_TMC(Y)
|
|
|
1422 |
SET_CURR(Y);
|
|
|
1423 |
#endif
|
|
|
1424 |
#if AXIS_IS_TMC(Z)
|
|
|
1425 |
SET_CURR(Z);
|
|
|
1426 |
#endif
|
|
|
1427 |
#if AXIS_IS_TMC(X2)
|
|
|
1428 |
SET_CURR(X2);
|
|
|
1429 |
#endif
|
|
|
1430 |
#if AXIS_IS_TMC(Y2)
|
|
|
1431 |
SET_CURR(Y2);
|
|
|
1432 |
#endif
|
|
|
1433 |
#if AXIS_IS_TMC(Z2)
|
|
|
1434 |
SET_CURR(Z2);
|
|
|
1435 |
#endif
|
|
|
1436 |
#if AXIS_IS_TMC(E0)
|
|
|
1437 |
SET_CURR(E0);
|
|
|
1438 |
#endif
|
|
|
1439 |
#if AXIS_IS_TMC(E1)
|
|
|
1440 |
SET_CURR(E1);
|
|
|
1441 |
#endif
|
|
|
1442 |
#if AXIS_IS_TMC(E2)
|
|
|
1443 |
SET_CURR(E2);
|
|
|
1444 |
#endif
|
|
|
1445 |
#if AXIS_IS_TMC(E3)
|
|
|
1446 |
SET_CURR(E3);
|
|
|
1447 |
#endif
|
|
|
1448 |
#if AXIS_IS_TMC(E4)
|
|
|
1449 |
SET_CURR(E4);
|
|
|
1450 |
#endif
|
|
|
1451 |
}
|
|
|
1452 |
#else
|
|
|
1453 |
uint16_t val;
|
|
|
1454 |
for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(val);
|
|
|
1455 |
#endif
|
|
|
1456 |
|
|
|
1457 |
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
1458 |
#define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold[TMC_##Q], planner.axis_steps_per_mm[_AXIS(A)])
|
|
|
1459 |
uint32_t tmc_hybrid_threshold[TMC_AXES];
|
|
|
1460 |
EEPROM_READ(tmc_hybrid_threshold);
|
|
|
1461 |
if (!validating) {
|
|
|
1462 |
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
1463 |
TMC_SET_PWMTHRS(X, X);
|
|
|
1464 |
#endif
|
|
|
1465 |
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
1466 |
TMC_SET_PWMTHRS(Y, Y);
|
|
|
1467 |
#endif
|
|
|
1468 |
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
1469 |
TMC_SET_PWMTHRS(Z, Z);
|
|
|
1470 |
#endif
|
|
|
1471 |
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
1472 |
TMC_SET_PWMTHRS(X, X2);
|
|
|
1473 |
#endif
|
|
|
1474 |
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
1475 |
TMC_SET_PWMTHRS(Y, Y2);
|
|
|
1476 |
#endif
|
|
|
1477 |
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
1478 |
TMC_SET_PWMTHRS(Z, Z2);
|
|
|
1479 |
#endif
|
|
|
1480 |
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
1481 |
TMC_SET_PWMTHRS(E, E0);
|
|
|
1482 |
#endif
|
|
|
1483 |
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
1484 |
TMC_SET_PWMTHRS(E, E1);
|
|
|
1485 |
#endif
|
|
|
1486 |
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
1487 |
TMC_SET_PWMTHRS(E, E2);
|
|
|
1488 |
#endif
|
|
|
1489 |
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
1490 |
TMC_SET_PWMTHRS(E, E3);
|
|
|
1491 |
#endif
|
|
|
1492 |
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
1493 |
TMC_SET_PWMTHRS(E, E4);
|
|
|
1494 |
#endif
|
|
|
1495 |
}
|
|
|
1496 |
#else
|
|
|
1497 |
uint32_t thrs_val;
|
|
|
1498 |
for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(thrs_val);
|
|
|
1499 |
#endif
|
|
|
1500 |
|
|
|
1501 |
/*
|
|
|
1502 |
* TMC2130 Sensorless homing threshold.
|
|
|
1503 |
* X and X2 use the same value
|
|
|
1504 |
* Y and Y2 use the same value
|
|
|
1505 |
* Z and Z2 use the same value
|
|
|
1506 |
*/
|
|
|
1507 |
int16_t tmc_sgt[XYZ];
|
|
|
1508 |
EEPROM_READ(tmc_sgt);
|
|
|
1509 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
1510 |
if (!validating) {
|
|
|
1511 |
#ifdef X_HOMING_SENSITIVITY
|
|
|
1512 |
#if AXIS_HAS_STALLGUARD(X)
|
|
|
1513 |
stepperX.sgt(tmc_sgt[0]);
|
|
|
1514 |
#endif
|
|
|
1515 |
#if AXIS_HAS_STALLGUARD(X2)
|
|
|
1516 |
stepperX2.sgt(tmc_sgt[0]);
|
|
|
1517 |
#endif
|
|
|
1518 |
#endif
|
|
|
1519 |
#ifdef Y_HOMING_SENSITIVITY
|
|
|
1520 |
#if AXIS_HAS_STALLGUARD(Y)
|
|
|
1521 |
stepperY.sgt(tmc_sgt[1]);
|
|
|
1522 |
#endif
|
|
|
1523 |
#if AXIS_HAS_STALLGUARD(Y2)
|
|
|
1524 |
stepperY2.sgt(tmc_sgt[1]);
|
|
|
1525 |
#endif
|
|
|
1526 |
#endif
|
|
|
1527 |
#ifdef Z_HOMING_SENSITIVITY
|
|
|
1528 |
#if AXIS_HAS_STALLGUARD(Z)
|
|
|
1529 |
stepperZ.sgt(tmc_sgt[2]);
|
|
|
1530 |
#endif
|
|
|
1531 |
#if AXIS_HAS_STALLGUARD(Z2)
|
|
|
1532 |
stepperZ2.sgt(tmc_sgt[2]);
|
|
|
1533 |
#endif
|
|
|
1534 |
#endif
|
|
|
1535 |
}
|
|
|
1536 |
#endif
|
|
|
1537 |
|
|
|
1538 |
//
|
|
|
1539 |
// Linear Advance
|
|
|
1540 |
//
|
|
|
1541 |
|
|
|
1542 |
_FIELD_TEST(planner_extruder_advance_K);
|
|
|
1543 |
|
|
|
1544 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1545 |
EEPROM_READ(planner.extruder_advance_K);
|
|
|
1546 |
#else
|
|
|
1547 |
EEPROM_READ(dummy);
|
|
|
1548 |
#endif
|
|
|
1549 |
|
|
|
1550 |
//
|
|
|
1551 |
// Motor Current PWM
|
|
|
1552 |
//
|
|
|
1553 |
|
|
|
1554 |
_FIELD_TEST(motor_current_setting);
|
|
|
1555 |
|
|
|
1556 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
1557 |
for (uint8_t q = XYZ; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
|
|
|
1558 |
#else
|
|
|
1559 |
uint32_t dummyui32[XYZ];
|
|
|
1560 |
EEPROM_READ(dummyui32);
|
|
|
1561 |
#endif
|
|
|
1562 |
|
|
|
1563 |
//
|
|
|
1564 |
// CNC Coordinate System
|
|
|
1565 |
//
|
|
|
1566 |
|
|
|
1567 |
_FIELD_TEST(coordinate_system);
|
|
|
1568 |
|
|
|
1569 |
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
1570 |
if (!validating) (void)select_coordinate_system(-1); // Go back to machine space
|
|
|
1571 |
EEPROM_READ(coordinate_system); // 27 floats
|
|
|
1572 |
#else
|
|
|
1573 |
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy);
|
|
|
1574 |
#endif
|
|
|
1575 |
|
|
|
1576 |
//
|
|
|
1577 |
// Skew correction factors
|
|
|
1578 |
//
|
|
|
1579 |
|
|
|
1580 |
_FIELD_TEST(planner_xy_skew_factor);
|
|
|
1581 |
|
|
|
1582 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
1583 |
EEPROM_READ(planner.xy_skew_factor);
|
|
|
1584 |
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
1585 |
EEPROM_READ(planner.xz_skew_factor);
|
|
|
1586 |
EEPROM_READ(planner.yz_skew_factor);
|
|
|
1587 |
#else
|
|
|
1588 |
EEPROM_READ(dummy);
|
|
|
1589 |
EEPROM_READ(dummy);
|
|
|
1590 |
#endif
|
|
|
1591 |
#else
|
|
|
1592 |
for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
|
|
|
1593 |
#endif
|
|
|
1594 |
|
|
|
1595 |
//
|
|
|
1596 |
// Advanced Pause filament load & unload lengths
|
|
|
1597 |
//
|
|
|
1598 |
|
|
|
1599 |
_FIELD_TEST(filament_change_unload_length);
|
|
|
1600 |
|
|
|
1601 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
1602 |
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
1603 |
EEPROM_READ(dummy);
|
|
|
1604 |
if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy;
|
|
|
1605 |
}
|
|
|
1606 |
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
1607 |
EEPROM_READ(dummy);
|
|
|
1608 |
if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy;
|
|
|
1609 |
}
|
|
|
1610 |
#else
|
|
|
1611 |
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy);
|
|
|
1612 |
#endif
|
|
|
1613 |
|
|
|
1614 |
eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
|
|
|
1615 |
if (eeprom_error) {
|
|
|
1616 |
SERIAL_ECHO_START();
|
|
|
1617 |
SERIAL_ECHOPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)));
|
|
|
1618 |
SERIAL_ECHOLNPAIR(" Size: ", datasize());
|
|
|
1619 |
}
|
|
|
1620 |
else if (working_crc != stored_crc) {
|
|
|
1621 |
eeprom_error = true;
|
|
|
1622 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1623 |
SERIAL_ERROR_START();
|
|
|
1624 |
SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
|
|
|
1625 |
SERIAL_ERROR(stored_crc);
|
|
|
1626 |
SERIAL_ERRORPGM(" != ");
|
|
|
1627 |
SERIAL_ERROR(working_crc);
|
|
|
1628 |
SERIAL_ERRORLNPGM(" (calculated)!");
|
|
|
1629 |
#endif
|
|
|
1630 |
}
|
|
|
1631 |
else if (!validating) {
|
|
|
1632 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1633 |
SERIAL_ECHO_START();
|
|
|
1634 |
SERIAL_ECHO(version);
|
|
|
1635 |
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
|
|
|
1636 |
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
|
|
|
1637 |
SERIAL_ECHOLNPGM(")");
|
|
|
1638 |
#endif
|
|
|
1639 |
}
|
|
|
1640 |
|
|
|
1641 |
if (!validating && !eeprom_error) postprocess();
|
|
|
1642 |
|
|
|
1643 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
1644 |
if (!validating) {
|
|
|
1645 |
ubl.report_state();
|
|
|
1646 |
|
|
|
1647 |
if (!ubl.sanity_check()) {
|
|
|
1648 |
SERIAL_EOL();
|
|
|
1649 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1650 |
ubl.echo_name();
|
|
|
1651 |
SERIAL_ECHOLNPGM(" initialized.\n");
|
|
|
1652 |
#endif
|
|
|
1653 |
}
|
|
|
1654 |
else {
|
|
|
1655 |
eeprom_error = true;
|
|
|
1656 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1657 |
SERIAL_PROTOCOLPGM("?Can't enable ");
|
|
|
1658 |
ubl.echo_name();
|
|
|
1659 |
SERIAL_PROTOCOLLNPGM(".");
|
|
|
1660 |
#endif
|
|
|
1661 |
ubl.reset();
|
|
|
1662 |
}
|
|
|
1663 |
|
|
|
1664 |
if (ubl.storage_slot >= 0) {
|
|
|
1665 |
load_mesh(ubl.storage_slot);
|
|
|
1666 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1667 |
SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
|
|
|
1668 |
SERIAL_ECHOLNPGM(" loaded from storage.");
|
|
|
1669 |
#endif
|
|
|
1670 |
}
|
|
|
1671 |
else {
|
|
|
1672 |
ubl.reset();
|
|
|
1673 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1674 |
SERIAL_ECHOLNPGM("UBL System reset()");
|
|
|
1675 |
#endif
|
|
|
1676 |
}
|
|
|
1677 |
}
|
|
|
1678 |
#endif
|
|
|
1679 |
}
|
|
|
1680 |
|
|
|
1681 |
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
|
|
|
1682 |
if (!validating) report();
|
|
|
1683 |
#endif
|
|
|
1684 |
|
|
|
1685 |
return !eeprom_error;
|
|
|
1686 |
}
|
|
|
1687 |
|
|
|
1688 |
bool MarlinSettings::validate() {
|
|
|
1689 |
validating = true;
|
|
|
1690 |
const bool success = _load();
|
|
|
1691 |
validating = false;
|
|
|
1692 |
return success;
|
|
|
1693 |
}
|
|
|
1694 |
|
|
|
1695 |
bool MarlinSettings::load() {
|
|
|
1696 |
if (validate()) return _load();
|
|
|
1697 |
reset();
|
|
|
1698 |
return true;
|
|
|
1699 |
}
|
|
|
1700 |
|
|
|
1701 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
1702 |
|
|
|
1703 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1704 |
void ubl_invalid_slot(const int s) {
|
|
|
1705 |
SERIAL_PROTOCOLLNPGM("?Invalid slot.");
|
|
|
1706 |
SERIAL_PROTOCOL(s);
|
|
|
1707 |
SERIAL_PROTOCOLLNPGM(" mesh slots available.");
|
|
|
1708 |
}
|
|
|
1709 |
#endif
|
|
|
1710 |
|
|
|
1711 |
uint16_t MarlinSettings::meshes_start_index() {
|
|
|
1712 |
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
|
|
|
1713 |
// or down a little bit without disrupting the mesh data
|
|
|
1714 |
}
|
|
|
1715 |
|
|
|
1716 |
uint16_t MarlinSettings::calc_num_meshes() {
|
|
|
1717 |
return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
|
|
|
1718 |
}
|
|
|
1719 |
|
|
|
1720 |
int MarlinSettings::mesh_slot_offset(const int8_t slot) {
|
|
|
1721 |
return meshes_end - (slot + 1) * sizeof(ubl.z_values);
|
|
|
1722 |
}
|
|
|
1723 |
|
|
|
1724 |
void MarlinSettings::store_mesh(const int8_t slot) {
|
|
|
1725 |
|
|
|
1726 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
1727 |
const int16_t a = calc_num_meshes();
|
|
|
1728 |
if (!WITHIN(slot, 0, a - 1)) {
|
|
|
1729 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1730 |
ubl_invalid_slot(a);
|
|
|
1731 |
SERIAL_PROTOCOLPAIR("E2END=", E2END);
|
|
|
1732 |
SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
|
|
|
1733 |
SERIAL_PROTOCOLLNPAIR(" slot=", slot);
|
|
|
1734 |
SERIAL_EOL();
|
|
|
1735 |
#endif
|
|
|
1736 |
return;
|
|
|
1737 |
}
|
|
|
1738 |
|
|
|
1739 |
int pos = mesh_slot_offset(slot);
|
|
|
1740 |
uint16_t crc = 0;
|
|
|
1741 |
write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
|
|
|
1742 |
|
|
|
1743 |
// Write crc to MAT along with other data, or just tack on to the beginning or end
|
|
|
1744 |
|
|
|
1745 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1746 |
SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
|
|
|
1747 |
#endif
|
|
|
1748 |
|
|
|
1749 |
#else
|
|
|
1750 |
|
|
|
1751 |
// Other mesh types
|
|
|
1752 |
|
|
|
1753 |
#endif
|
|
|
1754 |
}
|
|
|
1755 |
|
|
|
1756 |
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
|
|
|
1757 |
|
|
|
1758 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
1759 |
|
|
|
1760 |
const int16_t a = settings.calc_num_meshes();
|
|
|
1761 |
|
|
|
1762 |
if (!WITHIN(slot, 0, a - 1)) {
|
|
|
1763 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1764 |
ubl_invalid_slot(a);
|
|
|
1765 |
#endif
|
|
|
1766 |
return;
|
|
|
1767 |
}
|
|
|
1768 |
|
|
|
1769 |
int pos = mesh_slot_offset(slot);
|
|
|
1770 |
uint16_t crc = 0;
|
|
|
1771 |
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
|
|
|
1772 |
read_data(pos, dest, sizeof(ubl.z_values), &crc);
|
|
|
1773 |
|
|
|
1774 |
// Compare crc with crc from MAT, or read from end
|
|
|
1775 |
|
|
|
1776 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
1777 |
SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
|
|
|
1778 |
#endif
|
|
|
1779 |
|
|
|
1780 |
#else
|
|
|
1781 |
|
|
|
1782 |
// Other mesh types
|
|
|
1783 |
|
|
|
1784 |
#endif
|
|
|
1785 |
}
|
|
|
1786 |
|
|
|
1787 |
//void MarlinSettings::delete_mesh() { return; }
|
|
|
1788 |
//void MarlinSettings::defrag_meshes() { return; }
|
|
|
1789 |
|
|
|
1790 |
#endif // AUTO_BED_LEVELING_UBL
|
|
|
1791 |
|
|
|
1792 |
#else // !EEPROM_SETTINGS
|
|
|
1793 |
|
|
|
1794 |
bool MarlinSettings::save() {
|
|
|
1795 |
SERIAL_ERROR_START();
|
|
|
1796 |
SERIAL_ERRORLNPGM("EEPROM disabled");
|
|
|
1797 |
return false;
|
|
|
1798 |
}
|
|
|
1799 |
|
|
|
1800 |
#endif // !EEPROM_SETTINGS
|
|
|
1801 |
|
|
|
1802 |
/**
|
|
|
1803 |
* M502 - Reset Configuration
|
|
|
1804 |
*/
|
|
|
1805 |
void MarlinSettings::reset() {
|
|
|
1806 |
static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
|
|
|
1807 |
|
|
|
1808 |
static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
|
|
|
1809 |
LOOP_NUM_AXIS_N(i) {
|
|
|
1810 |
planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
|
|
|
1811 |
planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
|
|
|
1812 |
planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
|
|
|
1813 |
}
|
|
|
1814 |
|
|
|
1815 |
planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
|
|
|
1816 |
planner.acceleration = DEFAULT_ACCELERATION;
|
|
|
1817 |
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
|
|
1818 |
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
|
|
1819 |
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
|
|
|
1820 |
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
|
|
|
1821 |
|
|
|
1822 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
1823 |
planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
|
|
|
1824 |
#else
|
|
|
1825 |
#if ENABLED(HANGPRINTER)
|
|
|
1826 |
planner.max_jerk[A_AXIS] = DEFAULT_AJERK;
|
|
|
1827 |
planner.max_jerk[B_AXIS] = DEFAULT_BJERK;
|
|
|
1828 |
planner.max_jerk[C_AXIS] = DEFAULT_CJERK;
|
|
|
1829 |
planner.max_jerk[D_AXIS] = DEFAULT_DJERK;
|
|
|
1830 |
#else
|
|
|
1831 |
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
|
|
|
1832 |
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
|
|
|
1833 |
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
|
|
|
1834 |
#endif
|
|
|
1835 |
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
|
|
|
1836 |
#endif
|
|
|
1837 |
|
|
|
1838 |
#if HAS_HOME_OFFSET
|
|
|
1839 |
ZERO(home_offset);
|
|
|
1840 |
#endif
|
|
|
1841 |
|
|
|
1842 |
#if HOTENDS > 1
|
|
|
1843 |
constexpr float tmp4[XYZ][HOTENDS] = {
|
|
|
1844 |
HOTEND_OFFSET_X,
|
|
|
1845 |
HOTEND_OFFSET_Y
|
|
|
1846 |
#if HAS_HOTEND_OFFSET_Z
|
|
|
1847 |
, HOTEND_OFFSET_Z
|
|
|
1848 |
#else
|
|
|
1849 |
, { 0 }
|
|
|
1850 |
#endif
|
|
|
1851 |
};
|
|
|
1852 |
static_assert(
|
|
|
1853 |
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
|
|
|
1854 |
"Offsets for the first hotend must be 0.0."
|
|
|
1855 |
);
|
|
|
1856 |
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
|
|
|
1857 |
#endif
|
|
|
1858 |
|
|
|
1859 |
//
|
|
|
1860 |
// Global Leveling
|
|
|
1861 |
//
|
|
|
1862 |
|
|
|
1863 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1864 |
new_z_fade_height = 0.0;
|
|
|
1865 |
#endif
|
|
|
1866 |
|
|
|
1867 |
#if HAS_LEVELING
|
|
|
1868 |
reset_bed_level();
|
|
|
1869 |
#endif
|
|
|
1870 |
|
|
|
1871 |
#if HAS_BED_PROBE
|
|
|
1872 |
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
1873 |
#endif
|
|
|
1874 |
|
|
|
1875 |
#if ENABLED(DELTA)
|
|
|
1876 |
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
|
|
|
1877 |
dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
|
|
|
1878 |
delta_height = DELTA_HEIGHT;
|
|
|
1879 |
COPY(delta_endstop_adj, adj);
|
|
|
1880 |
delta_radius = DELTA_RADIUS;
|
|
|
1881 |
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
|
1882 |
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
|
1883 |
delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
|
|
|
1884 |
COPY(delta_tower_angle_trim, dta);
|
|
|
1885 |
|
|
|
1886 |
#elif ENABLED(HANGPRINTER)
|
|
|
1887 |
|
|
|
1888 |
anchor_A_y = float(ANCHOR_A_Y);
|
|
|
1889 |
anchor_A_z = float(ANCHOR_A_Z);
|
|
|
1890 |
anchor_B_x = float(ANCHOR_B_X);
|
|
|
1891 |
anchor_B_y = float(ANCHOR_B_Y);
|
|
|
1892 |
anchor_B_z = float(ANCHOR_B_Z);
|
|
|
1893 |
anchor_C_x = float(ANCHOR_C_X);
|
|
|
1894 |
anchor_C_y = float(ANCHOR_C_Y);
|
|
|
1895 |
anchor_C_z = float(ANCHOR_C_Z);
|
|
|
1896 |
anchor_D_z = float(ANCHOR_D_Z);
|
|
|
1897 |
delta_segments_per_second = KINEMATIC_SEGMENTS_PER_SECOND;
|
|
|
1898 |
|
|
|
1899 |
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
1900 |
|
|
|
1901 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
1902 |
endstops.x_endstop_adj = (
|
|
|
1903 |
#ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
|
|
|
1904 |
X_DUAL_ENDSTOPS_ADJUSTMENT
|
|
|
1905 |
#else
|
|
|
1906 |
|
|
|
1907 |
#endif
|
|
|
1908 |
);
|
|
|
1909 |
#endif
|
|
|
1910 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
1911 |
endstops.y_endstop_adj = (
|
|
|
1912 |
#ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
|
|
|
1913 |
Y_DUAL_ENDSTOPS_ADJUSTMENT
|
|
|
1914 |
#else
|
|
|
1915 |
|
|
|
1916 |
#endif
|
|
|
1917 |
);
|
|
|
1918 |
#endif
|
|
|
1919 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
1920 |
endstops.z_endstop_adj = (
|
|
|
1921 |
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
|
|
|
1922 |
Z_DUAL_ENDSTOPS_ADJUSTMENT
|
|
|
1923 |
#else
|
|
|
1924 |
|
|
|
1925 |
#endif
|
|
|
1926 |
);
|
|
|
1927 |
#endif
|
|
|
1928 |
#endif
|
|
|
1929 |
|
|
|
1930 |
#if ENABLED(ULTIPANEL)
|
|
|
1931 |
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
|
|
|
1932 |
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
|
|
|
1933 |
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
|
|
|
1934 |
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
|
|
|
1935 |
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
|
|
|
1936 |
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
|
|
|
1937 |
#endif
|
|
|
1938 |
|
|
|
1939 |
#if ENABLED(PIDTEMP)
|
|
|
1940 |
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
|
|
|
1941 |
HOTEND_LOOP()
|
|
|
1942 |
#endif
|
|
|
1943 |
{
|
|
|
1944 |
PID_PARAM(Kp, e) = float(DEFAULT_Kp);
|
|
|
1945 |
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
|
|
|
1946 |
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
|
|
|
1947 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
1948 |
PID_PARAM(Kc, e) = DEFAULT_Kc;
|
|
|
1949 |
#endif
|
|
|
1950 |
}
|
|
|
1951 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
1952 |
thermalManager.lpq_len = 20; // default last-position-queue size
|
|
|
1953 |
#endif
|
|
|
1954 |
#endif // PIDTEMP
|
|
|
1955 |
|
|
|
1956 |
#if ENABLED(PIDTEMPBED)
|
|
|
1957 |
thermalManager.bedKp = DEFAULT_bedKp;
|
|
|
1958 |
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
|
|
|
1959 |
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
|
|
|
1960 |
#endif
|
|
|
1961 |
|
|
|
1962 |
#if HAS_LCD_CONTRAST
|
|
|
1963 |
lcd_contrast = DEFAULT_LCD_CONTRAST;
|
|
|
1964 |
#endif
|
|
|
1965 |
|
|
|
1966 |
#if ENABLED(FWRETRACT)
|
|
|
1967 |
fwretract.reset();
|
|
|
1968 |
#endif
|
|
|
1969 |
|
|
|
1970 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
1971 |
|
|
|
1972 |
parser.volumetric_enabled =
|
|
|
1973 |
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
|
|
|
1974 |
true
|
|
|
1975 |
#else
|
|
|
1976 |
false
|
|
|
1977 |
#endif
|
|
|
1978 |
;
|
|
|
1979 |
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
|
|
|
1980 |
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
|
1981 |
|
|
|
1982 |
#endif
|
|
|
1983 |
|
|
|
1984 |
endstops.enable_globally(
|
|
|
1985 |
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
|
|
|
1986 |
true
|
|
|
1987 |
#else
|
|
|
1988 |
false
|
|
|
1989 |
#endif
|
|
|
1990 |
);
|
|
|
1991 |
|
|
|
1992 |
reset_stepper_drivers();
|
|
|
1993 |
|
|
|
1994 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1995 |
planner.extruder_advance_K = LIN_ADVANCE_K;
|
|
|
1996 |
#endif
|
|
|
1997 |
|
|
|
1998 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
1999 |
uint32_t tmp_motor_current_setting[XYZ] = PWM_MOTOR_CURRENT;
|
|
|
2000 |
for (uint8_t q = XYZ; q--;)
|
|
|
2001 |
stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
|
|
|
2002 |
#endif
|
|
|
2003 |
|
|
|
2004 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
2005 |
planner.xy_skew_factor = XY_SKEW_FACTOR;
|
|
|
2006 |
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
2007 |
planner.xz_skew_factor = XZ_SKEW_FACTOR;
|
|
|
2008 |
planner.yz_skew_factor = YZ_SKEW_FACTOR;
|
|
|
2009 |
#endif
|
|
|
2010 |
#endif
|
|
|
2011 |
|
|
|
2012 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
2013 |
for (uint8_t e = 0; e < EXTRUDERS; e++) {
|
|
|
2014 |
filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH;
|
|
|
2015 |
filament_change_load_length[e] = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
|
|
|
2016 |
}
|
|
|
2017 |
#endif
|
|
|
2018 |
|
|
|
2019 |
postprocess();
|
|
|
2020 |
|
|
|
2021 |
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
2022 |
SERIAL_ECHO_START();
|
|
|
2023 |
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
|
|
|
2024 |
#endif
|
|
|
2025 |
}
|
|
|
2026 |
|
|
|
2027 |
#if DISABLED(DISABLE_M503)
|
|
|
2028 |
|
|
|
2029 |
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
|
|
|
2030 |
|
|
|
2031 |
#if HAS_TRINAMIC
|
|
|
2032 |
void say_M906() { SERIAL_ECHOPGM(" M906"); }
|
|
|
2033 |
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
2034 |
void say_M913() { SERIAL_ECHOPGM(" M913"); }
|
|
|
2035 |
#endif
|
|
|
2036 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
2037 |
void say_M914() { SERIAL_ECHOPGM(" M914"); }
|
|
|
2038 |
#endif
|
|
|
2039 |
#endif
|
|
|
2040 |
|
|
|
2041 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
2042 |
void say_M603() { SERIAL_ECHOPGM(" M603 "); }
|
|
|
2043 |
#endif
|
|
|
2044 |
|
|
|
2045 |
inline void say_units(const bool colon=false) {
|
|
|
2046 |
serialprintPGM(
|
|
|
2047 |
#if ENABLED(INCH_MODE_SUPPORT)
|
|
|
2048 |
parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
|
|
|
2049 |
#endif
|
|
|
2050 |
PSTR(" (mm)")
|
|
|
2051 |
);
|
|
|
2052 |
if (colon) SERIAL_ECHOLNPGM(":");
|
|
|
2053 |
}
|
|
|
2054 |
|
|
|
2055 |
/**
|
|
|
2056 |
* M503 - Report current settings in RAM
|
|
|
2057 |
*
|
|
|
2058 |
* Unless specifically disabled, M503 is available even without EEPROM
|
|
|
2059 |
*/
|
|
|
2060 |
void MarlinSettings::report(const bool forReplay) {
|
|
|
2061 |
|
|
|
2062 |
/**
|
|
|
2063 |
* Announce current units, in case inches are being displayed
|
|
|
2064 |
*/
|
|
|
2065 |
CONFIG_ECHO_START;
|
|
|
2066 |
#if ENABLED(INCH_MODE_SUPPORT)
|
|
|
2067 |
#define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
|
|
|
2068 |
#define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
|
|
|
2069 |
SERIAL_ECHOPGM(" G2");
|
|
|
2070 |
SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
|
|
|
2071 |
SERIAL_ECHOPGM(" ;");
|
|
|
2072 |
say_units();
|
|
|
2073 |
#else
|
|
|
2074 |
#define LINEAR_UNIT(N) (N)
|
|
|
2075 |
#define VOLUMETRIC_UNIT(N) (N)
|
|
|
2076 |
SERIAL_ECHOPGM(" G21 ;");
|
|
|
2077 |
say_units();
|
|
|
2078 |
#endif
|
|
|
2079 |
SERIAL_EOL();
|
|
|
2080 |
|
|
|
2081 |
#if ENABLED(ULTIPANEL)
|
|
|
2082 |
|
|
|
2083 |
// Temperature units - for Ultipanel temperature options
|
|
|
2084 |
|
|
|
2085 |
CONFIG_ECHO_START;
|
|
|
2086 |
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
|
2087 |
#define TEMP_UNIT(N) parser.to_temp_units(N)
|
|
|
2088 |
SERIAL_ECHOPGM(" M149 ");
|
|
|
2089 |
SERIAL_CHAR(parser.temp_units_code());
|
|
|
2090 |
SERIAL_ECHOPGM(" ; Units in ");
|
|
|
2091 |
serialprintPGM(parser.temp_units_name());
|
|
|
2092 |
#else
|
|
|
2093 |
#define TEMP_UNIT(N) (N)
|
|
|
2094 |
SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
|
|
|
2095 |
#endif
|
|
|
2096 |
|
|
|
2097 |
#endif
|
|
|
2098 |
|
|
|
2099 |
SERIAL_EOL();
|
|
|
2100 |
|
|
|
2101 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
2102 |
|
|
|
2103 |
/**
|
|
|
2104 |
* Volumetric extrusion M200
|
|
|
2105 |
*/
|
|
|
2106 |
if (!forReplay) {
|
|
|
2107 |
CONFIG_ECHO_START;
|
|
|
2108 |
SERIAL_ECHOPGM("Filament settings:");
|
|
|
2109 |
if (parser.volumetric_enabled)
|
|
|
2110 |
SERIAL_EOL();
|
|
|
2111 |
else
|
|
|
2112 |
SERIAL_ECHOLNPGM(" Disabled");
|
|
|
2113 |
}
|
|
|
2114 |
|
|
|
2115 |
CONFIG_ECHO_START;
|
|
|
2116 |
SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
|
|
|
2117 |
SERIAL_EOL();
|
|
|
2118 |
#if EXTRUDERS > 1
|
|
|
2119 |
CONFIG_ECHO_START;
|
|
|
2120 |
SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
|
|
|
2121 |
SERIAL_EOL();
|
|
|
2122 |
#if EXTRUDERS > 2
|
|
|
2123 |
CONFIG_ECHO_START;
|
|
|
2124 |
SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
|
|
|
2125 |
SERIAL_EOL();
|
|
|
2126 |
#if EXTRUDERS > 3
|
|
|
2127 |
CONFIG_ECHO_START;
|
|
|
2128 |
SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
|
|
|
2129 |
SERIAL_EOL();
|
|
|
2130 |
#if EXTRUDERS > 4
|
|
|
2131 |
CONFIG_ECHO_START;
|
|
|
2132 |
SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
|
|
|
2133 |
SERIAL_EOL();
|
|
|
2134 |
#endif // EXTRUDERS > 4
|
|
|
2135 |
#endif // EXTRUDERS > 3
|
|
|
2136 |
#endif // EXTRUDERS > 2
|
|
|
2137 |
#endif // EXTRUDERS > 1
|
|
|
2138 |
|
|
|
2139 |
if (!parser.volumetric_enabled) {
|
|
|
2140 |
CONFIG_ECHO_START;
|
|
|
2141 |
SERIAL_ECHOLNPGM(" M200 D0");
|
|
|
2142 |
}
|
|
|
2143 |
|
|
|
2144 |
#endif // !NO_VOLUMETRICS
|
|
|
2145 |
|
|
|
2146 |
if (!forReplay) {
|
|
|
2147 |
CONFIG_ECHO_START;
|
|
|
2148 |
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
|
2149 |
}
|
|
|
2150 |
CONFIG_ECHO_START;
|
|
|
2151 |
#if ENABLED(HANGPRINTER)
|
|
|
2152 |
SERIAL_ECHOPAIR(" M92 A", LINEAR_UNIT(planner.axis_steps_per_mm[A_AXIS]));
|
|
|
2153 |
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(planner.axis_steps_per_mm[B_AXIS]));
|
|
|
2154 |
SERIAL_ECHOPAIR(" C", LINEAR_UNIT(planner.axis_steps_per_mm[C_AXIS]));
|
|
|
2155 |
SERIAL_ECHOPAIR(" D", LINEAR_UNIT(planner.axis_steps_per_mm[D_AXIS]));
|
|
|
2156 |
#else
|
|
|
2157 |
SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
|
|
|
2158 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
|
|
|
2159 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
|
|
|
2160 |
#endif
|
|
|
2161 |
#if DISABLED(DISTINCT_E_FACTORS)
|
|
|
2162 |
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
|
|
|
2163 |
#endif
|
|
|
2164 |
SERIAL_EOL();
|
|
|
2165 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2166 |
CONFIG_ECHO_START;
|
|
|
2167 |
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
|
2168 |
SERIAL_ECHOPAIR(" M92 T", (int)i);
|
|
|
2169 |
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
|
|
|
2170 |
}
|
|
|
2171 |
#endif
|
|
|
2172 |
|
|
|
2173 |
if (!forReplay) {
|
|
|
2174 |
CONFIG_ECHO_START;
|
|
|
2175 |
SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
|
|
|
2176 |
}
|
|
|
2177 |
CONFIG_ECHO_START;
|
|
|
2178 |
#if ENABLED(HANGPRINTER)
|
|
|
2179 |
SERIAL_ECHOPAIR(" M203 A", LINEAR_UNIT(planner.max_feedrate_mm_s[A_AXIS]));
|
|
|
2180 |
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(planner.max_feedrate_mm_s[B_AXIS]));
|
|
|
2181 |
SERIAL_ECHOPAIR(" C", LINEAR_UNIT(planner.max_feedrate_mm_s[C_AXIS]));
|
|
|
2182 |
SERIAL_ECHOPAIR(" D", LINEAR_UNIT(planner.max_feedrate_mm_s[D_AXIS]));
|
|
|
2183 |
#else
|
|
|
2184 |
SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
|
|
|
2185 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
|
|
|
2186 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
|
|
|
2187 |
#endif
|
|
|
2188 |
#if DISABLED(DISTINCT_E_FACTORS)
|
|
|
2189 |
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
|
|
|
2190 |
#endif
|
|
|
2191 |
SERIAL_EOL();
|
|
|
2192 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2193 |
CONFIG_ECHO_START;
|
|
|
2194 |
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
|
2195 |
SERIAL_ECHOPAIR(" M203 T", (int)i);
|
|
|
2196 |
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
|
|
|
2197 |
}
|
|
|
2198 |
#endif
|
|
|
2199 |
|
|
|
2200 |
if (!forReplay) {
|
|
|
2201 |
CONFIG_ECHO_START;
|
|
|
2202 |
SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
|
|
|
2203 |
}
|
|
|
2204 |
CONFIG_ECHO_START;
|
|
|
2205 |
#if ENABLED(HANGPRINTER)
|
|
|
2206 |
SERIAL_ECHOPAIR(" M201 A", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[A_AXIS]));
|
|
|
2207 |
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[B_AXIS]));
|
|
|
2208 |
SERIAL_ECHOPAIR(" C", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[C_AXIS]));
|
|
|
2209 |
SERIAL_ECHOPAIR(" D", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[D_AXIS]));
|
|
|
2210 |
#else
|
|
|
2211 |
SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
|
|
|
2212 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
|
|
|
2213 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
|
|
|
2214 |
#endif
|
|
|
2215 |
#if DISABLED(DISTINCT_E_FACTORS)
|
|
|
2216 |
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
|
|
|
2217 |
#endif
|
|
|
2218 |
SERIAL_EOL();
|
|
|
2219 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2220 |
CONFIG_ECHO_START;
|
|
|
2221 |
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
|
2222 |
SERIAL_ECHOPAIR(" M201 T", (int)i);
|
|
|
2223 |
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
|
|
|
2224 |
}
|
|
|
2225 |
#endif
|
|
|
2226 |
|
|
|
2227 |
if (!forReplay) {
|
|
|
2228 |
CONFIG_ECHO_START;
|
|
|
2229 |
SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
|
|
|
2230 |
}
|
|
|
2231 |
CONFIG_ECHO_START;
|
|
|
2232 |
SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
|
|
|
2233 |
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
|
|
|
2234 |
SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
|
|
|
2235 |
|
|
|
2236 |
if (!forReplay) {
|
|
|
2237 |
CONFIG_ECHO_START;
|
|
|
2238 |
SERIAL_ECHOPGM("Advanced: Q<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
|
|
|
2239 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
2240 |
SERIAL_ECHOPGM(" J<junc_dev>");
|
|
|
2241 |
#else
|
|
|
2242 |
#if ENABLED(HANGPRINTER)
|
|
|
2243 |
SERIAL_ECHOPGM(" A<max_a_jerk> B<max_b_jerk> C<max_c_jerk> D<max_d_jerk>");
|
|
|
2244 |
#else
|
|
|
2245 |
SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
|
|
|
2246 |
#endif
|
|
|
2247 |
#endif
|
|
|
2248 |
#if DISABLED(JUNCTION_DEVIATION) || ENABLED(LIN_ADVANCE)
|
|
|
2249 |
SERIAL_ECHOPGM(" E<max_e_jerk>");
|
|
|
2250 |
#endif
|
|
|
2251 |
SERIAL_EOL();
|
|
|
2252 |
}
|
|
|
2253 |
CONFIG_ECHO_START;
|
|
|
2254 |
SERIAL_ECHOPAIR(" M205 Q", LINEAR_UNIT(planner.min_segment_time_us));
|
|
|
2255 |
SERIAL_ECHOPAIR(" S", LINEAR_UNIT(planner.min_feedrate_mm_s));
|
|
|
2256 |
SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
|
|
|
2257 |
|
|
|
2258 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
2259 |
SERIAL_ECHOPAIR(" J", LINEAR_UNIT(planner.junction_deviation_mm));
|
|
|
2260 |
#else
|
|
|
2261 |
#if ENABLED(HANGPRINTER)
|
|
|
2262 |
SERIAL_ECHOPAIR(" A", LINEAR_UNIT(planner.max_jerk[A_AXIS]));
|
|
|
2263 |
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(planner.max_jerk[B_AXIS]));
|
|
|
2264 |
SERIAL_ECHOPAIR(" C", LINEAR_UNIT(planner.max_jerk[C_AXIS]));
|
|
|
2265 |
SERIAL_ECHOPAIR(" D", LINEAR_UNIT(planner.max_jerk[D_AXIS]));
|
|
|
2266 |
#else
|
|
|
2267 |
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
|
|
|
2268 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
|
|
|
2269 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
|
|
|
2270 |
#endif
|
|
|
2271 |
SERIAL_ECHOPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
|
|
|
2272 |
#endif
|
|
|
2273 |
SERIAL_EOL();
|
|
|
2274 |
|
|
|
2275 |
#if HAS_M206_COMMAND
|
|
|
2276 |
if (!forReplay) {
|
|
|
2277 |
CONFIG_ECHO_START;
|
|
|
2278 |
SERIAL_ECHOLNPGM("Home offset:");
|
|
|
2279 |
}
|
|
|
2280 |
CONFIG_ECHO_START;
|
|
|
2281 |
SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
|
|
|
2282 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
|
|
|
2283 |
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
|
|
|
2284 |
#endif
|
|
|
2285 |
|
|
|
2286 |
#if HOTENDS > 1
|
|
|
2287 |
if (!forReplay) {
|
|
|
2288 |
CONFIG_ECHO_START;
|
|
|
2289 |
SERIAL_ECHOLNPGM("Hotend offsets:");
|
|
|
2290 |
}
|
|
|
2291 |
CONFIG_ECHO_START;
|
|
|
2292 |
for (uint8_t e = 1; e < HOTENDS; e++) {
|
|
|
2293 |
SERIAL_ECHOPAIR(" M218 T", (int)e);
|
|
|
2294 |
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
|
|
|
2295 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
|
|
|
2296 |
#if HAS_HOTEND_OFFSET_Z
|
|
|
2297 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
|
|
|
2298 |
#endif
|
|
|
2299 |
SERIAL_EOL();
|
|
|
2300 |
}
|
|
|
2301 |
#endif
|
|
|
2302 |
|
|
|
2303 |
/**
|
|
|
2304 |
* Bed Leveling
|
|
|
2305 |
*/
|
|
|
2306 |
#if HAS_LEVELING
|
|
|
2307 |
|
|
|
2308 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
2309 |
|
|
|
2310 |
if (!forReplay) {
|
|
|
2311 |
CONFIG_ECHO_START;
|
|
|
2312 |
SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
|
|
|
2313 |
}
|
|
|
2314 |
|
|
|
2315 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
2316 |
|
|
|
2317 |
if (!forReplay) {
|
|
|
2318 |
CONFIG_ECHO_START;
|
|
|
2319 |
ubl.echo_name();
|
|
|
2320 |
SERIAL_ECHOLNPGM(":");
|
|
|
2321 |
}
|
|
|
2322 |
|
|
|
2323 |
#elif HAS_ABL
|
|
|
2324 |
|
|
|
2325 |
if (!forReplay) {
|
|
|
2326 |
CONFIG_ECHO_START;
|
|
|
2327 |
SERIAL_ECHOLNPGM("Auto Bed Leveling:");
|
|
|
2328 |
}
|
|
|
2329 |
|
|
|
2330 |
#endif
|
|
|
2331 |
|
|
|
2332 |
CONFIG_ECHO_START;
|
|
|
2333 |
SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
|
|
|
2334 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
2335 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
|
|
|
2336 |
#endif
|
|
|
2337 |
SERIAL_EOL();
|
|
|
2338 |
|
|
|
2339 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
2340 |
|
|
|
2341 |
if (leveling_is_valid()) {
|
|
|
2342 |
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
|
|
|
2343 |
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
|
|
|
2344 |
CONFIG_ECHO_START;
|
|
|
2345 |
SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
|
|
|
2346 |
SERIAL_ECHOPAIR(" Y", (int)py + 1);
|
|
|
2347 |
SERIAL_ECHOPGM(" Z");
|
|
|
2348 |
SERIAL_ECHO_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
|
|
|
2349 |
SERIAL_EOL();
|
|
|
2350 |
}
|
|
|
2351 |
}
|
|
|
2352 |
}
|
|
|
2353 |
|
|
|
2354 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
2355 |
|
|
|
2356 |
if (!forReplay) {
|
|
|
2357 |
SERIAL_EOL();
|
|
|
2358 |
ubl.report_state();
|
|
|
2359 |
SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
|
|
|
2360 |
SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
|
|
|
2361 |
SERIAL_ECHOLNPGM(" meshes.\n");
|
|
|
2362 |
}
|
|
|
2363 |
|
|
|
2364 |
//ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
|
|
|
2365 |
// solution needs to be found.
|
|
|
2366 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
2367 |
|
|
|
2368 |
if (leveling_is_valid()) {
|
|
|
2369 |
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
|
|
|
2370 |
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
|
|
|
2371 |
CONFIG_ECHO_START;
|
|
|
2372 |
SERIAL_ECHOPAIR(" G29 W I", (int)px);
|
|
|
2373 |
SERIAL_ECHOPAIR(" J", (int)py);
|
|
|
2374 |
SERIAL_ECHOPGM(" Z");
|
|
|
2375 |
SERIAL_ECHO_F(LINEAR_UNIT(z_values[px][py]), 5);
|
|
|
2376 |
SERIAL_EOL();
|
|
|
2377 |
}
|
|
|
2378 |
}
|
|
|
2379 |
}
|
|
|
2380 |
|
|
|
2381 |
#endif
|
|
|
2382 |
|
|
|
2383 |
#endif // HAS_LEVELING
|
|
|
2384 |
|
|
|
2385 |
#if ENABLED(DELTA)
|
|
|
2386 |
|
|
|
2387 |
if (!forReplay) {
|
|
|
2388 |
CONFIG_ECHO_START;
|
|
|
2389 |
SERIAL_ECHOLNPGM("Endstop adjustment:");
|
|
|
2390 |
}
|
|
|
2391 |
CONFIG_ECHO_START;
|
|
|
2392 |
SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
|
|
|
2393 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
|
|
|
2394 |
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
|
|
|
2395 |
if (!forReplay) {
|
|
|
2396 |
CONFIG_ECHO_START;
|
|
|
2397 |
SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
|
|
|
2398 |
}
|
|
|
2399 |
CONFIG_ECHO_START;
|
|
|
2400 |
SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
|
|
|
2401 |
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
|
|
|
2402 |
SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
|
|
|
2403 |
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
|
2404 |
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
|
|
|
2405 |
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
|
|
|
2406 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
|
|
|
2407 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
|
|
|
2408 |
SERIAL_EOL();
|
|
|
2409 |
|
|
|
2410 |
#elif ENABLED(HANGPRINTER)
|
|
|
2411 |
if (!forReplay) {
|
|
|
2412 |
CONFIG_ECHO_START;
|
|
|
2413 |
SERIAL_ECHOLNPGM("Hangprinter settings: W<Ay> E<Az> R<Bx> T<By> Y<Bz> U<Cx> I<Cy> O<Cz> P<Dz> S<segments_per_s>");
|
|
|
2414 |
}
|
|
|
2415 |
CONFIG_ECHO_START;
|
|
|
2416 |
SERIAL_ECHOPAIR(" M665 W", anchor_A_y);
|
|
|
2417 |
SERIAL_ECHOPAIR(" E", anchor_A_z);
|
|
|
2418 |
SERIAL_ECHOPAIR(" R", anchor_B_x);
|
|
|
2419 |
SERIAL_ECHOPAIR(" T", anchor_B_y);
|
|
|
2420 |
SERIAL_ECHOPAIR(" Y", anchor_B_z);
|
|
|
2421 |
SERIAL_ECHOPAIR(" U", anchor_C_x);
|
|
|
2422 |
SERIAL_ECHOPAIR(" I", anchor_C_y);
|
|
|
2423 |
SERIAL_ECHOPAIR(" O", anchor_C_z);
|
|
|
2424 |
SERIAL_ECHOPAIR(" P", anchor_D_z);
|
|
|
2425 |
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
|
2426 |
SERIAL_EOL();
|
|
|
2427 |
|
|
|
2428 |
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
2429 |
|
|
|
2430 |
if (!forReplay) {
|
|
|
2431 |
CONFIG_ECHO_START;
|
|
|
2432 |
SERIAL_ECHOLNPGM("Endstop adjustment:");
|
|
|
2433 |
}
|
|
|
2434 |
CONFIG_ECHO_START;
|
|
|
2435 |
SERIAL_ECHOPGM(" M666");
|
|
|
2436 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
2437 |
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(endstops.x_endstop_adj));
|
|
|
2438 |
#endif
|
|
|
2439 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
2440 |
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstops.y_endstop_adj));
|
|
|
2441 |
#endif
|
|
|
2442 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
2443 |
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(endstops.z_endstop_adj));
|
|
|
2444 |
#endif
|
|
|
2445 |
SERIAL_EOL();
|
|
|
2446 |
|
|
|
2447 |
#endif // [XYZ]_DUAL_ENDSTOPS
|
|
|
2448 |
|
|
|
2449 |
#if ENABLED(ULTIPANEL)
|
|
|
2450 |
if (!forReplay) {
|
|
|
2451 |
CONFIG_ECHO_START;
|
|
|
2452 |
SERIAL_ECHOLNPGM("Material heatup parameters:");
|
|
|
2453 |
}
|
|
|
2454 |
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
|
|
|
2455 |
CONFIG_ECHO_START;
|
|
|
2456 |
SERIAL_ECHOPAIR(" M145 S", (int)i);
|
|
|
2457 |
SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
|
|
|
2458 |
SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
|
|
|
2459 |
SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
|
|
|
2460 |
}
|
|
|
2461 |
#endif // ULTIPANEL
|
|
|
2462 |
|
|
|
2463 |
#if HAS_PID_HEATING
|
|
|
2464 |
|
|
|
2465 |
if (!forReplay) {
|
|
|
2466 |
CONFIG_ECHO_START;
|
|
|
2467 |
SERIAL_ECHOLNPGM("PID settings:");
|
|
|
2468 |
}
|
|
|
2469 |
#if ENABLED(PIDTEMP)
|
|
|
2470 |
#if HOTENDS > 1
|
|
|
2471 |
if (forReplay) {
|
|
|
2472 |
HOTEND_LOOP() {
|
|
|
2473 |
CONFIG_ECHO_START;
|
|
|
2474 |
SERIAL_ECHOPAIR(" M301 E", e);
|
|
|
2475 |
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
|
|
|
2476 |
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
|
|
|
2477 |
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
|
|
|
2478 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
2479 |
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
|
|
|
2480 |
if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
|
|
|
2481 |
#endif
|
|
|
2482 |
SERIAL_EOL();
|
|
|
2483 |
}
|
|
|
2484 |
}
|
|
|
2485 |
else
|
|
|
2486 |
#endif // HOTENDS > 1
|
|
|
2487 |
// !forReplay || HOTENDS == 1
|
|
|
2488 |
{
|
|
|
2489 |
CONFIG_ECHO_START;
|
|
|
2490 |
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
|
2491 |
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
|
2492 |
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
|
2493 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
2494 |
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
|
|
|
2495 |
SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
|
|
|
2496 |
#endif
|
|
|
2497 |
SERIAL_EOL();
|
|
|
2498 |
}
|
|
|
2499 |
#endif // PIDTEMP
|
|
|
2500 |
|
|
|
2501 |
#if ENABLED(PIDTEMPBED)
|
|
|
2502 |
CONFIG_ECHO_START;
|
|
|
2503 |
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
|
|
|
2504 |
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
|
|
|
2505 |
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
|
|
|
2506 |
SERIAL_EOL();
|
|
|
2507 |
#endif
|
|
|
2508 |
|
|
|
2509 |
#endif // PIDTEMP || PIDTEMPBED
|
|
|
2510 |
|
|
|
2511 |
#if HAS_LCD_CONTRAST
|
|
|
2512 |
if (!forReplay) {
|
|
|
2513 |
CONFIG_ECHO_START;
|
|
|
2514 |
SERIAL_ECHOLNPGM("LCD Contrast:");
|
|
|
2515 |
}
|
|
|
2516 |
CONFIG_ECHO_START;
|
|
|
2517 |
SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
|
|
|
2518 |
#endif
|
|
|
2519 |
|
|
|
2520 |
#if ENABLED(FWRETRACT)
|
|
|
2521 |
|
|
|
2522 |
if (!forReplay) {
|
|
|
2523 |
CONFIG_ECHO_START;
|
|
|
2524 |
SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
|
|
|
2525 |
}
|
|
|
2526 |
CONFIG_ECHO_START;
|
|
|
2527 |
SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(fwretract.retract_length));
|
|
|
2528 |
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_length));
|
|
|
2529 |
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s)));
|
|
|
2530 |
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(fwretract.retract_zlift));
|
|
|
2531 |
|
|
|
2532 |
if (!forReplay) {
|
|
|
2533 |
CONFIG_ECHO_START;
|
|
|
2534 |
SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
|
|
|
2535 |
}
|
|
|
2536 |
CONFIG_ECHO_START;
|
|
|
2537 |
SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(fwretract.retract_recover_length));
|
|
|
2538 |
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_recover_length));
|
|
|
2539 |
SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s)));
|
|
|
2540 |
|
|
|
2541 |
if (!forReplay) {
|
|
|
2542 |
CONFIG_ECHO_START;
|
|
|
2543 |
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
|
|
|
2544 |
}
|
|
|
2545 |
CONFIG_ECHO_START;
|
|
|
2546 |
SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
|
|
|
2547 |
|
|
|
2548 |
#endif // FWRETRACT
|
|
|
2549 |
|
|
|
2550 |
/**
|
|
|
2551 |
* Probe Offset
|
|
|
2552 |
*/
|
|
|
2553 |
#if HAS_BED_PROBE
|
|
|
2554 |
if (!forReplay) {
|
|
|
2555 |
CONFIG_ECHO_START;
|
|
|
2556 |
SERIAL_ECHOPGM("Z-Probe Offset");
|
|
|
2557 |
say_units(true);
|
|
|
2558 |
}
|
|
|
2559 |
CONFIG_ECHO_START;
|
|
|
2560 |
SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
|
|
|
2561 |
#endif
|
|
|
2562 |
|
|
|
2563 |
/**
|
|
|
2564 |
* Bed Skew Correction
|
|
|
2565 |
*/
|
|
|
2566 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
2567 |
if (!forReplay) {
|
|
|
2568 |
CONFIG_ECHO_START;
|
|
|
2569 |
SERIAL_ECHOLNPGM("Skew Factor: ");
|
|
|
2570 |
}
|
|
|
2571 |
CONFIG_ECHO_START;
|
|
|
2572 |
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
2573 |
SERIAL_ECHOPGM(" M852 I");
|
|
|
2574 |
SERIAL_ECHO_F(LINEAR_UNIT(planner.xy_skew_factor), 6);
|
|
|
2575 |
SERIAL_ECHOPGM(" J");
|
|
|
2576 |
SERIAL_ECHO_F(LINEAR_UNIT(planner.xz_skew_factor), 6);
|
|
|
2577 |
SERIAL_ECHOPGM(" K");
|
|
|
2578 |
SERIAL_ECHO_F(LINEAR_UNIT(planner.yz_skew_factor), 6);
|
|
|
2579 |
SERIAL_EOL();
|
|
|
2580 |
#else
|
|
|
2581 |
SERIAL_ECHOPGM(" M852 S");
|
|
|
2582 |
SERIAL_ECHO_F(LINEAR_UNIT(planner.xy_skew_factor), 6);
|
|
|
2583 |
SERIAL_EOL();
|
|
|
2584 |
#endif
|
|
|
2585 |
#endif
|
|
|
2586 |
|
|
|
2587 |
#if HAS_TRINAMIC
|
|
|
2588 |
|
|
|
2589 |
/**
|
|
|
2590 |
* TMC2130 / TMC2208 stepper driver current
|
|
|
2591 |
*/
|
|
|
2592 |
if (!forReplay) {
|
|
|
2593 |
CONFIG_ECHO_START;
|
|
|
2594 |
SERIAL_ECHOLNPGM("Stepper driver current:");
|
|
|
2595 |
}
|
|
|
2596 |
CONFIG_ECHO_START;
|
|
|
2597 |
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
|
2598 |
say_M906();
|
|
|
2599 |
#endif
|
|
|
2600 |
#if AXIS_IS_TMC(X)
|
|
|
2601 |
SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
|
|
|
2602 |
#endif
|
|
|
2603 |
#if AXIS_IS_TMC(Y)
|
|
|
2604 |
SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
|
|
|
2605 |
#endif
|
|
|
2606 |
#if AXIS_IS_TMC(Z)
|
|
|
2607 |
SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
|
|
|
2608 |
#endif
|
|
|
2609 |
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
|
2610 |
SERIAL_EOL();
|
|
|
2611 |
#endif
|
|
|
2612 |
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
|
2613 |
say_M906();
|
|
|
2614 |
SERIAL_ECHOPGM(" I1");
|
|
|
2615 |
#endif
|
|
|
2616 |
#if AXIS_IS_TMC(X2)
|
|
|
2617 |
SERIAL_ECHOPAIR(" X", stepperX2.getCurrent());
|
|
|
2618 |
#endif
|
|
|
2619 |
#if AXIS_IS_TMC(Y2)
|
|
|
2620 |
SERIAL_ECHOPAIR(" Y", stepperY2.getCurrent());
|
|
|
2621 |
#endif
|
|
|
2622 |
#if AXIS_IS_TMC(Z2)
|
|
|
2623 |
SERIAL_ECHOPAIR(" Z", stepperZ2.getCurrent());
|
|
|
2624 |
#endif
|
|
|
2625 |
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
|
2626 |
SERIAL_EOL();
|
|
|
2627 |
#endif
|
|
|
2628 |
#if AXIS_IS_TMC(E0)
|
|
|
2629 |
say_M906();
|
|
|
2630 |
SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getCurrent());
|
|
|
2631 |
#endif
|
|
|
2632 |
#if E_STEPPERS > 1 && AXIS_IS_TMC(E1)
|
|
|
2633 |
say_M906();
|
|
|
2634 |
SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getCurrent());
|
|
|
2635 |
#endif
|
|
|
2636 |
#if E_STEPPERS > 2 && AXIS_IS_TMC(E2)
|
|
|
2637 |
say_M906();
|
|
|
2638 |
SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getCurrent());
|
|
|
2639 |
#endif
|
|
|
2640 |
#if E_STEPPERS > 3 && AXIS_IS_TMC(E3)
|
|
|
2641 |
say_M906();
|
|
|
2642 |
SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getCurrent());
|
|
|
2643 |
#endif
|
|
|
2644 |
#if E_STEPPERS > 4 && AXIS_IS_TMC(E4)
|
|
|
2645 |
say_M906();
|
|
|
2646 |
SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getCurrent());
|
|
|
2647 |
#endif
|
|
|
2648 |
SERIAL_EOL();
|
|
|
2649 |
|
|
|
2650 |
/**
|
|
|
2651 |
* TMC2130 / TMC2208 / TRAMS Hybrid Threshold
|
|
|
2652 |
*/
|
|
|
2653 |
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
2654 |
if (!forReplay) {
|
|
|
2655 |
CONFIG_ECHO_START;
|
|
|
2656 |
SERIAL_ECHOLNPGM("Hybrid Threshold:");
|
|
|
2657 |
}
|
|
|
2658 |
CONFIG_ECHO_START;
|
|
|
2659 |
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
|
2660 |
say_M913();
|
|
|
2661 |
#endif
|
|
|
2662 |
#if AXIS_IS_TMC(X)
|
|
|
2663 |
SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X));
|
|
|
2664 |
#endif
|
|
|
2665 |
#if AXIS_IS_TMC(Y)
|
|
|
2666 |
SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y));
|
|
|
2667 |
#endif
|
|
|
2668 |
#if AXIS_IS_TMC(Z)
|
|
|
2669 |
SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z));
|
|
|
2670 |
#endif
|
|
|
2671 |
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
|
2672 |
SERIAL_EOL();
|
|
|
2673 |
#endif
|
|
|
2674 |
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
|
2675 |
say_M913();
|
|
|
2676 |
SERIAL_ECHOPGM(" I1");
|
|
|
2677 |
#endif
|
|
|
2678 |
#if AXIS_IS_TMC(X2)
|
|
|
2679 |
SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X2));
|
|
|
2680 |
#endif
|
|
|
2681 |
#if AXIS_IS_TMC(Y2)
|
|
|
2682 |
SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y2));
|
|
|
2683 |
#endif
|
|
|
2684 |
#if AXIS_IS_TMC(Z2)
|
|
|
2685 |
SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z2));
|
|
|
2686 |
#endif
|
|
|
2687 |
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
|
2688 |
SERIAL_EOL();
|
|
|
2689 |
#endif
|
|
|
2690 |
#if AXIS_IS_TMC(E0)
|
|
|
2691 |
say_M913();
|
|
|
2692 |
SERIAL_ECHOLNPAIR(" T0 E", TMC_GET_PWMTHRS(E, E0));
|
|
|
2693 |
#endif
|
|
|
2694 |
#if E_STEPPERS > 1 && AXIS_IS_TMC(E1)
|
|
|
2695 |
say_M913();
|
|
|
2696 |
SERIAL_ECHOLNPAIR(" T1 E", TMC_GET_PWMTHRS(E, E1));
|
|
|
2697 |
#endif
|
|
|
2698 |
#if E_STEPPERS > 2 && AXIS_IS_TMC(E2)
|
|
|
2699 |
say_M913();
|
|
|
2700 |
SERIAL_ECHOLNPAIR(" T2 E", TMC_GET_PWMTHRS(E, E2));
|
|
|
2701 |
#endif
|
|
|
2702 |
#if E_STEPPERS > 3 && AXIS_IS_TMC(E3)
|
|
|
2703 |
say_M913();
|
|
|
2704 |
SERIAL_ECHOLNPAIR(" T3 E", TMC_GET_PWMTHRS(E, E3));
|
|
|
2705 |
#endif
|
|
|
2706 |
#if E_STEPPERS > 4 && AXIS_IS_TMC(E4)
|
|
|
2707 |
say_M913();
|
|
|
2708 |
SERIAL_ECHOLNPAIR(" T4 E", TMC_GET_PWMTHRS(E, E4));
|
|
|
2709 |
#endif
|
|
|
2710 |
SERIAL_EOL();
|
|
|
2711 |
#endif // HYBRID_THRESHOLD
|
|
|
2712 |
|
|
|
2713 |
/**
|
|
|
2714 |
* TMC2130 Sensorless homing thresholds
|
|
|
2715 |
*/
|
|
|
2716 |
#if ENABLED(SENSORLESS_HOMING)
|
|
|
2717 |
if (!forReplay) {
|
|
|
2718 |
CONFIG_ECHO_START;
|
|
|
2719 |
SERIAL_ECHOLNPGM("Sensorless homing threshold:");
|
|
|
2720 |
}
|
|
|
2721 |
CONFIG_ECHO_START;
|
|
|
2722 |
#if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
|
|
|
2723 |
say_M914();
|
|
|
2724 |
#if X_SENSORLESS
|
|
|
2725 |
SERIAL_ECHOPAIR(" X", stepperX.sgt());
|
|
|
2726 |
#endif
|
|
|
2727 |
#if Y_SENSORLESS
|
|
|
2728 |
SERIAL_ECHOPAIR(" Y", stepperY.sgt());
|
|
|
2729 |
#endif
|
|
|
2730 |
#if Z_SENSORLESS
|
|
|
2731 |
SERIAL_ECHOPAIR(" Z", stepperZ.sgt());
|
|
|
2732 |
#endif
|
|
|
2733 |
SERIAL_EOL();
|
|
|
2734 |
#endif
|
|
|
2735 |
|
|
|
2736 |
#define X2_SENSORLESS (defined(X_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
|
|
|
2737 |
#define Y2_SENSORLESS (defined(Y_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
|
|
|
2738 |
#define Z2_SENSORLESS (defined(Z_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
|
|
|
2739 |
#if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
|
|
|
2740 |
say_M914();
|
|
|
2741 |
SERIAL_ECHOPGM(" I1");
|
|
|
2742 |
#if X2_SENSORLESS
|
|
|
2743 |
SERIAL_ECHOPAIR(" X", stepperX2.sgt());
|
|
|
2744 |
#endif
|
|
|
2745 |
#if Y2_SENSORLESS
|
|
|
2746 |
SERIAL_ECHOPAIR(" Y", stepperY2.sgt());
|
|
|
2747 |
#endif
|
|
|
2748 |
#if Z2_SENSORLESS
|
|
|
2749 |
SERIAL_ECHOPAIR(" Z", stepperZ2.sgt());
|
|
|
2750 |
#endif
|
|
|
2751 |
SERIAL_EOL();
|
|
|
2752 |
#endif
|
|
|
2753 |
|
|
|
2754 |
#endif // SENSORLESS_HOMING
|
|
|
2755 |
|
|
|
2756 |
#endif // HAS_TRINAMIC
|
|
|
2757 |
|
|
|
2758 |
/**
|
|
|
2759 |
* Linear Advance
|
|
|
2760 |
*/
|
|
|
2761 |
#if ENABLED(LIN_ADVANCE)
|
|
|
2762 |
if (!forReplay) {
|
|
|
2763 |
CONFIG_ECHO_START;
|
|
|
2764 |
SERIAL_ECHOLNPGM("Linear Advance:");
|
|
|
2765 |
}
|
|
|
2766 |
CONFIG_ECHO_START;
|
|
|
2767 |
SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K);
|
|
|
2768 |
#endif
|
|
|
2769 |
|
|
|
2770 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
2771 |
CONFIG_ECHO_START;
|
|
|
2772 |
if (!forReplay) {
|
|
|
2773 |
SERIAL_ECHOLNPGM("Stepper motor currents:");
|
|
|
2774 |
CONFIG_ECHO_START;
|
|
|
2775 |
}
|
|
|
2776 |
SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
|
|
|
2777 |
SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
|
|
|
2778 |
SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
|
|
|
2779 |
SERIAL_EOL();
|
|
|
2780 |
#endif
|
|
|
2781 |
|
|
|
2782 |
/**
|
|
|
2783 |
* Advanced Pause filament load & unload lengths
|
|
|
2784 |
*/
|
|
|
2785 |
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
2786 |
if (!forReplay) {
|
|
|
2787 |
CONFIG_ECHO_START;
|
|
|
2788 |
SERIAL_ECHOLNPGM("Filament load/unload lengths:");
|
|
|
2789 |
}
|
|
|
2790 |
CONFIG_ECHO_START;
|
|
|
2791 |
#if EXTRUDERS == 1
|
|
|
2792 |
say_M603();
|
|
|
2793 |
SERIAL_ECHOPAIR("L", LINEAR_UNIT(filament_change_load_length[0]));
|
|
|
2794 |
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[0]));
|
|
|
2795 |
#else
|
|
|
2796 |
say_M603();
|
|
|
2797 |
SERIAL_ECHOPAIR("T0 L", LINEAR_UNIT(filament_change_load_length[0]));
|
|
|
2798 |
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[0]));
|
|
|
2799 |
CONFIG_ECHO_START;
|
|
|
2800 |
say_M603();
|
|
|
2801 |
SERIAL_ECHOPAIR("T1 L", LINEAR_UNIT(filament_change_load_length[1]));
|
|
|
2802 |
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[1]));
|
|
|
2803 |
#if EXTRUDERS > 2
|
|
|
2804 |
CONFIG_ECHO_START;
|
|
|
2805 |
say_M603();
|
|
|
2806 |
SERIAL_ECHOPAIR("T2 L", LINEAR_UNIT(filament_change_load_length[2]));
|
|
|
2807 |
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[2]));
|
|
|
2808 |
#if EXTRUDERS > 3
|
|
|
2809 |
CONFIG_ECHO_START;
|
|
|
2810 |
say_M603();
|
|
|
2811 |
SERIAL_ECHOPAIR("T3 L", LINEAR_UNIT(filament_change_load_length[3]));
|
|
|
2812 |
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[3]));
|
|
|
2813 |
#if EXTRUDERS > 4
|
|
|
2814 |
CONFIG_ECHO_START;
|
|
|
2815 |
say_M603();
|
|
|
2816 |
SERIAL_ECHOPAIR("T4 L", LINEAR_UNIT(filament_change_load_length[4]));
|
|
|
2817 |
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[4]));
|
|
|
2818 |
#endif // EXTRUDERS > 4
|
|
|
2819 |
#endif // EXTRUDERS > 3
|
|
|
2820 |
#endif // EXTRUDERS > 2
|
|
|
2821 |
#endif // EXTRUDERS == 1
|
|
|
2822 |
#endif // ADVANCED_PAUSE_FEATURE
|
|
|
2823 |
}
|
|
|
2824 |
|
|
|
2825 |
#endif // !DISABLE_M503
|