1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* planner.cpp
|
|
|
25 |
*
|
|
|
26 |
* Buffer movement commands and manage the acceleration profile plan
|
|
|
27 |
*
|
|
|
28 |
* Derived from Grbl
|
|
|
29 |
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
30 |
*
|
|
|
31 |
* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
|
|
|
32 |
*
|
|
|
33 |
*
|
|
|
34 |
* Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
|
|
35 |
*
|
|
|
36 |
* s == speed, a == acceleration, t == time, d == distance
|
|
|
37 |
*
|
|
|
38 |
* Basic definitions:
|
|
|
39 |
* Speed[s_, a_, t_] := s + (a*t)
|
|
|
40 |
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
|
|
41 |
*
|
|
|
42 |
* Distance to reach a specific speed with a constant acceleration:
|
|
|
43 |
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
|
|
44 |
* d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
|
|
45 |
*
|
|
|
46 |
* Speed after a given distance of travel with constant acceleration:
|
|
|
47 |
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
|
|
48 |
* m -> Sqrt[2 a d + s^2]
|
|
|
49 |
*
|
|
|
50 |
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
|
|
51 |
*
|
|
|
52 |
* When to start braking (di) to reach a specified destination speed (s2) after accelerating
|
|
|
53 |
* from initial speed s1 without ever stopping at a plateau:
|
|
|
54 |
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
|
|
55 |
* di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
|
56 |
*
|
|
|
57 |
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
|
|
58 |
*
|
|
|
59 |
* --
|
|
|
60 |
*
|
|
|
61 |
* The fast inverse function needed for Bézier interpolation for AVR
|
|
|
62 |
* was designed, written and tested by Eduardo José Tagle on April/2018
|
|
|
63 |
*/
|
|
|
64 |
|
|
|
65 |
#include "planner.h"
|
|
|
66 |
#include "stepper.h"
|
|
|
67 |
#include "temperature.h"
|
|
|
68 |
#include "ultralcd.h"
|
|
|
69 |
#include "language.h"
|
|
|
70 |
#include "parser.h"
|
|
|
71 |
|
|
|
72 |
#include "Marlin.h"
|
|
|
73 |
|
|
|
74 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
75 |
#include "mesh_bed_leveling.h"
|
|
|
76 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
77 |
#include "ubl.h"
|
|
|
78 |
#endif
|
|
|
79 |
|
|
|
80 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
81 |
#include "power.h"
|
|
|
82 |
#endif
|
|
|
83 |
|
|
|
84 |
// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
|
|
|
85 |
// fewer movements. The delay is measured in milliseconds, and must be less than 250ms
|
|
|
86 |
#define BLOCK_DELAY_FOR_1ST_MOVE 100
|
|
|
87 |
|
|
|
88 |
Planner planner;
|
|
|
89 |
|
|
|
90 |
// public:
|
|
|
91 |
|
|
|
92 |
/**
|
|
|
93 |
* A ring buffer of moves described in steps
|
|
|
94 |
*/
|
|
|
95 |
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
|
|
|
96 |
volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
|
|
|
97 |
Planner::block_buffer_nonbusy, // Index of the first non-busy block
|
|
|
98 |
Planner::block_buffer_planned, // Index of the optimally planned block
|
|
|
99 |
Planner::block_buffer_tail; // Index of the busy block, if any
|
|
|
100 |
uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
|
|
|
101 |
uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
|
|
|
102 |
|
|
|
103 |
uint32_t Planner::max_acceleration_mm_per_s2[NUM_AXIS_N], // (mm/s^2) M201 XYZE
|
|
|
104 |
Planner::max_acceleration_steps_per_s2[NUM_AXIS_N], // (steps/s^2) Derived from mm_per_s2
|
|
|
105 |
Planner::min_segment_time_us; // (µs) M205 Q
|
|
|
106 |
|
|
|
107 |
float Planner::max_feedrate_mm_s[NUM_AXIS_N], // (mm/s) M203 XYZE - Max speeds
|
|
|
108 |
Planner::axis_steps_per_mm[NUM_AXIS_N], // (steps) M92 XYZE - Steps per millimeter
|
|
|
109 |
Planner::steps_to_mm[NUM_AXIS_N], // (mm) Millimeters per step
|
|
|
110 |
Planner::min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
|
|
|
111 |
Planner::acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
|
|
|
112 |
Planner::retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
|
|
|
113 |
Planner::travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
|
|
|
114 |
Planner::min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
|
|
|
115 |
|
|
|
116 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
117 |
float Planner::junction_deviation_mm; // (mm) M205 J
|
|
|
118 |
#if ENABLED(LIN_ADVANCE)
|
|
|
119 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
120 |
float Planner::max_e_jerk[EXTRUDERS]; // Calculated from junction_deviation_mm
|
|
|
121 |
#else
|
|
|
122 |
float Planner::max_e_jerk;
|
|
|
123 |
#endif
|
|
|
124 |
#endif
|
|
|
125 |
#else
|
|
|
126 |
float Planner::max_jerk[NUM_AXIS]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
|
|
|
127 |
#endif
|
|
|
128 |
|
|
|
129 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
130 |
float Planner::k0[MOV_AXIS],
|
|
|
131 |
Planner::k1[MOV_AXIS],
|
|
|
132 |
Planner::k2[MOV_AXIS],
|
|
|
133 |
Planner::sqrtk1[MOV_AXIS];
|
|
|
134 |
#endif
|
|
|
135 |
|
|
|
136 |
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
137 |
bool Planner::abort_on_endstop_hit = false;
|
|
|
138 |
#endif
|
|
|
139 |
|
|
|
140 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
141 |
uint8_t Planner::last_extruder = 0; // Respond to extruder change
|
|
|
142 |
#define _EINDEX (E_AXIS + active_extruder)
|
|
|
143 |
#else
|
|
|
144 |
#define _EINDEX E_AXIS
|
|
|
145 |
#endif
|
|
|
146 |
|
|
|
147 |
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
|
|
|
148 |
|
|
|
149 |
float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
|
|
|
150 |
|
|
|
151 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
152 |
float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
|
|
153 |
Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
|
|
|
154 |
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
|
|
155 |
#endif
|
|
|
156 |
|
|
|
157 |
#if HAS_LEVELING
|
|
|
158 |
bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
|
|
|
159 |
#if ABL_PLANAR
|
|
|
160 |
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
|
|
161 |
#endif
|
|
|
162 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
163 |
float Planner::z_fade_height, // Initialized by settings.load()
|
|
|
164 |
Planner::inverse_z_fade_height,
|
|
|
165 |
Planner::last_fade_z;
|
|
|
166 |
#endif
|
|
|
167 |
#else
|
|
|
168 |
constexpr bool Planner::leveling_active;
|
|
|
169 |
#endif
|
|
|
170 |
|
|
|
171 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
172 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
173 |
float Planner::xy_skew_factor;
|
|
|
174 |
#else
|
|
|
175 |
constexpr float Planner::xy_skew_factor;
|
|
|
176 |
#endif
|
|
|
177 |
#if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
178 |
float Planner::xz_skew_factor, Planner::yz_skew_factor;
|
|
|
179 |
#else
|
|
|
180 |
constexpr float Planner::xz_skew_factor, Planner::yz_skew_factor;
|
|
|
181 |
#endif
|
|
|
182 |
#endif
|
|
|
183 |
|
|
|
184 |
#if ENABLED(AUTOTEMP)
|
|
|
185 |
float Planner::autotemp_max = 250,
|
|
|
186 |
Planner::autotemp_min = 210,
|
|
|
187 |
Planner::autotemp_factor = 0.1f;
|
|
|
188 |
bool Planner::autotemp_enabled = false;
|
|
|
189 |
#endif
|
|
|
190 |
|
|
|
191 |
// private:
|
|
|
192 |
|
|
|
193 |
int32_t Planner::position[NUM_AXIS] = { 0 };
|
|
|
194 |
|
|
|
195 |
uint32_t Planner::cutoff_long;
|
|
|
196 |
|
|
|
197 |
float Planner::previous_speed[NUM_AXIS],
|
|
|
198 |
Planner::previous_nominal_speed_sqr;
|
|
|
199 |
|
|
|
200 |
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
|
|
|
201 |
uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
|
|
|
202 |
#endif
|
|
|
203 |
|
|
|
204 |
#ifdef XY_FREQUENCY_LIMIT
|
|
|
205 |
// Old direction bits. Used for speed calculations
|
|
|
206 |
unsigned char Planner::old_direction_bits = 0;
|
|
|
207 |
// Segment times (in µs). Used for speed calculations
|
|
|
208 |
uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } };
|
|
|
209 |
#endif
|
|
|
210 |
|
|
|
211 |
#if ENABLED(LIN_ADVANCE)
|
|
|
212 |
float Planner::extruder_advance_K; // Initialized by settings.load()
|
|
|
213 |
#endif
|
|
|
214 |
|
|
|
215 |
#if HAS_POSITION_FLOAT
|
|
|
216 |
float Planner::position_float[NUM_AXIS]; // Needed for accurate maths. Steps cannot be used!
|
|
|
217 |
#endif
|
|
|
218 |
|
|
|
219 |
#if ENABLED(ULTRA_LCD)
|
|
|
220 |
volatile uint32_t Planner::block_buffer_runtime_us = 0;
|
|
|
221 |
#endif
|
|
|
222 |
|
|
|
223 |
/**
|
|
|
224 |
* Class and Instance Methods
|
|
|
225 |
*/
|
|
|
226 |
|
|
|
227 |
Planner::Planner() { init(); }
|
|
|
228 |
|
|
|
229 |
void Planner::init() {
|
|
|
230 |
ZERO(position);
|
|
|
231 |
#if HAS_POSITION_FLOAT
|
|
|
232 |
ZERO(position_float);
|
|
|
233 |
#endif
|
|
|
234 |
ZERO(previous_speed);
|
|
|
235 |
previous_nominal_speed_sqr = 0;
|
|
|
236 |
#if ABL_PLANAR
|
|
|
237 |
bed_level_matrix.set_to_identity();
|
|
|
238 |
#endif
|
|
|
239 |
clear_block_buffer();
|
|
|
240 |
delay_before_delivering = 0;
|
|
|
241 |
}
|
|
|
242 |
|
|
|
243 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
244 |
|
|
|
245 |
/**
|
|
|
246 |
* This routine returns 0x1000000 / d, getting the inverse as fast as possible.
|
|
|
247 |
* A fast-converging iterative Newton-Raphson method can reach full precision in
|
|
|
248 |
* just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
|
|
|
249 |
* to 30 cycles for small divisors), instead of the 500 cycles a normal division
|
|
|
250 |
* would take.
|
|
|
251 |
*
|
|
|
252 |
* Inspired by the following page:
|
|
|
253 |
* https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
|
|
|
254 |
*
|
|
|
255 |
* Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
|
|
|
256 |
* Then, B must be <= 2^k, otherwise, the quotient is 0.
|
|
|
257 |
*
|
|
|
258 |
* The Newton - Raphson iteration for x = B / 2 ^ k yields:
|
|
|
259 |
* q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
|
|
|
260 |
*
|
|
|
261 |
* This can be rearranged to:
|
|
|
262 |
* q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
|
|
|
263 |
*
|
|
|
264 |
* Each iteration requires only integer multiplications and bit shifts.
|
|
|
265 |
* It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
|
|
|
266 |
* it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
|
|
|
267 |
* So it checks for this case and extracts floor(2 ^ k / B).
|
|
|
268 |
*
|
|
|
269 |
* A simple but important optimization for this approach is to truncate
|
|
|
270 |
* multiplications (i.e., calculate only the higher bits of the product) in the
|
|
|
271 |
* early iterations of the Newton - Raphson method. This is done so the results
|
|
|
272 |
* of the early iterations are far from the quotient. Then it doesn't matter if
|
|
|
273 |
* they are done inaccurately.
|
|
|
274 |
* It's important to pick a good starting value for x. Knowing how many
|
|
|
275 |
* digits the divisor has, it can be estimated:
|
|
|
276 |
*
|
|
|
277 |
* 2^k / x = 2 ^ log2(2^k / x)
|
|
|
278 |
* 2^k / x = 2 ^(log2(2^k)-log2(x))
|
|
|
279 |
* 2^k / x = 2 ^(k*log2(2)-log2(x))
|
|
|
280 |
* 2^k / x = 2 ^ (k-log2(x))
|
|
|
281 |
* 2^k / x >= 2 ^ (k-floor(log2(x)))
|
|
|
282 |
* floor(log2(x)) is simply the index of the most significant bit set.
|
|
|
283 |
*
|
|
|
284 |
* If this estimation can be improved even further the number of iterations can be
|
|
|
285 |
* reduced a lot, saving valuable execution time.
|
|
|
286 |
* The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
|
|
|
287 |
* Research, Silicon Valley,August 26, 2008, available at
|
|
|
288 |
* https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
|
|
|
289 |
* suggests, for its integer division algorithm, using a table to supply the first
|
|
|
290 |
* 8 bits of precision, then, due to the quadratic convergence nature of the
|
|
|
291 |
* Newton-Raphon iteration, just 2 iterations should be enough to get maximum
|
|
|
292 |
* precision of the division.
|
|
|
293 |
* By precomputing values of inverses for small denominator values, just one
|
|
|
294 |
* Newton-Raphson iteration is enough to reach full precision.
|
|
|
295 |
* This code uses the top 9 bits of the denominator as index.
|
|
|
296 |
*
|
|
|
297 |
* The AVR assembly function implements this C code using the data below:
|
|
|
298 |
*
|
|
|
299 |
* // For small divisors, it is best to directly retrieve the results
|
|
|
300 |
* if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
|
|
|
301 |
*
|
|
|
302 |
* // Compute initial estimation of 0x1000000/x -
|
|
|
303 |
* // Get most significant bit set on divider
|
|
|
304 |
* uint8_t idx = 0;
|
|
|
305 |
* uint32_t nr = d;
|
|
|
306 |
* if (!(nr & 0xFF0000)) {
|
|
|
307 |
* nr <<= 8; idx += 8;
|
|
|
308 |
* if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
|
|
|
309 |
* }
|
|
|
310 |
* if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
|
|
|
311 |
* if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
|
|
|
312 |
* if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
|
|
|
313 |
*
|
|
|
314 |
* // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
|
|
|
315 |
* uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
|
|
|
316 |
* ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
|
|
|
317 |
* x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
|
|
|
318 |
*
|
|
|
319 |
* x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
|
|
|
320 |
* const uint32_t r = _BV(24) - x * d; // Estimate remainder
|
|
|
321 |
* if (r >= d) x++; // Check whether to adjust result
|
|
|
322 |
* return uint32_t(x); // x holds the proper estimation
|
|
|
323 |
*
|
|
|
324 |
*/
|
|
|
325 |
static uint32_t get_period_inverse(uint32_t d) {
|
|
|
326 |
|
|
|
327 |
static const uint8_t inv_tab[256] PROGMEM = {
|
|
|
328 |
255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
|
|
|
329 |
225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
|
|
|
330 |
199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
|
|
|
331 |
175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
|
|
|
332 |
153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
|
|
|
333 |
134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
|
|
|
334 |
116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
|
|
|
335 |
100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
|
|
|
336 |
85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
|
|
|
337 |
71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
|
|
|
338 |
59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
|
|
|
339 |
47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
|
|
|
340 |
36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
|
|
|
341 |
26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
|
|
|
342 |
17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
|
|
|
343 |
8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
|
|
|
344 |
};
|
|
|
345 |
|
|
|
346 |
// For small denominators, it is cheaper to directly store the result.
|
|
|
347 |
// For bigger ones, just ONE Newton-Raphson iteration is enough to get
|
|
|
348 |
// maximum precision we need
|
|
|
349 |
static const uint32_t small_inv_tab[111] PROGMEM = {
|
|
|
350 |
16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
|
|
|
351 |
1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
|
|
|
352 |
524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
|
|
|
353 |
349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
|
|
|
354 |
262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
|
|
|
355 |
209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
|
|
|
356 |
174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
|
|
|
357 |
};
|
|
|
358 |
|
|
|
359 |
// For small divisors, it is best to directly retrieve the results
|
|
|
360 |
if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
|
|
|
361 |
|
|
|
362 |
register uint8_t r8 = d & 0xFF,
|
|
|
363 |
r9 = (d >> 8) & 0xFF,
|
|
|
364 |
r10 = (d >> 16) & 0xFF,
|
|
|
365 |
r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
|
|
|
366 |
register const uint8_t* ptab = inv_tab;
|
|
|
367 |
|
|
|
368 |
__asm__ __volatile__(
|
|
|
369 |
// %8:%7:%6 = interval
|
|
|
370 |
// r31:r30: MUST be those registers, and they must point to the inv_tab
|
|
|
371 |
|
|
|
372 |
A("clr %13") // %13 = 0
|
|
|
373 |
|
|
|
374 |
// Now we must compute
|
|
|
375 |
// result = 0xFFFFFF / d
|
|
|
376 |
// %8:%7:%6 = interval
|
|
|
377 |
// %16:%15:%14 = nr
|
|
|
378 |
// %13 = 0
|
|
|
379 |
|
|
|
380 |
// A plain division of 24x24 bits should take 388 cycles to complete. We will
|
|
|
381 |
// use Newton-Raphson for the calculation, and will strive to get way less cycles
|
|
|
382 |
// for the same result - Using C division, it takes 500cycles to complete .
|
|
|
383 |
|
|
|
384 |
A("clr %3") // idx = 0
|
|
|
385 |
A("mov %14,%6")
|
|
|
386 |
A("mov %15,%7")
|
|
|
387 |
A("mov %16,%8") // nr = interval
|
|
|
388 |
A("tst %16") // nr & 0xFF0000 == 0 ?
|
|
|
389 |
A("brne 2f") // No, skip this
|
|
|
390 |
A("mov %16,%15")
|
|
|
391 |
A("mov %15,%14") // nr <<= 8, %14 not needed
|
|
|
392 |
A("subi %3,-8") // idx += 8
|
|
|
393 |
A("tst %16") // nr & 0xFF0000 == 0 ?
|
|
|
394 |
A("brne 2f") // No, skip this
|
|
|
395 |
A("mov %16,%15") // nr <<= 8, %14 not needed
|
|
|
396 |
A("clr %15") // We clear %14
|
|
|
397 |
A("subi %3,-8") // idx += 8
|
|
|
398 |
|
|
|
399 |
// here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
|
|
|
400 |
L("2")
|
|
|
401 |
A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
|
|
|
402 |
A("brcc 3f") // No, skip this
|
|
|
403 |
A("swap %15") // Swap nibbles
|
|
|
404 |
A("swap %16") // Swap nibbles. Low nibble is 0
|
|
|
405 |
A("mov %14, %15")
|
|
|
406 |
A("andi %14,0x0F") // Isolate low nibble
|
|
|
407 |
A("andi %15,0xF0") // Keep proper nibble in %15
|
|
|
408 |
A("or %16, %14") // %16:%15 <<= 4
|
|
|
409 |
A("subi %3,-4") // idx += 4
|
|
|
410 |
|
|
|
411 |
L("3")
|
|
|
412 |
A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
|
|
|
413 |
A("brcc 4f") // No, skip this
|
|
|
414 |
A("add %15,%15")
|
|
|
415 |
A("adc %16,%16")
|
|
|
416 |
A("add %15,%15")
|
|
|
417 |
A("adc %16,%16") // %16:%15 <<= 2
|
|
|
418 |
A("subi %3,-2") // idx += 2
|
|
|
419 |
|
|
|
420 |
L("4")
|
|
|
421 |
A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
|
|
|
422 |
A("brcc 5f") // No, skip this
|
|
|
423 |
A("add %15,%15")
|
|
|
424 |
A("adc %16,%16") // %16:%15 <<= 1
|
|
|
425 |
A("inc %3") // idx += 1
|
|
|
426 |
|
|
|
427 |
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
|
|
|
428 |
// we have at least 9 MSBits available to enter the initial estimation table
|
|
|
429 |
L("5")
|
|
|
430 |
A("add %15,%15")
|
|
|
431 |
A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
|
|
|
432 |
A("add r30,%16") // Only use top 8 bits
|
|
|
433 |
A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
|
|
|
434 |
A("lpm %14, Z") // %14 = inv_tab[tidx]
|
|
|
435 |
A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
|
|
|
436 |
|
|
|
437 |
// We must scale the approximation to the proper place
|
|
|
438 |
A("clr %16") // %16 will always be 0 here
|
|
|
439 |
A("subi %3,8") // idx == 8 ?
|
|
|
440 |
A("breq 6f") // yes, no need to scale
|
|
|
441 |
A("brcs 7f") // If C=1, means idx < 8, result was negative!
|
|
|
442 |
|
|
|
443 |
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
|
|
|
444 |
A("sbrs %3,0") // shift by 1bit position?
|
|
|
445 |
A("rjmp 8f") // No
|
|
|
446 |
A("add %14,%14")
|
|
|
447 |
A("adc %15,%15") // %15:16 <<= 1
|
|
|
448 |
L("8")
|
|
|
449 |
A("sbrs %3,1") // shift by 2bit position?
|
|
|
450 |
A("rjmp 9f") // No
|
|
|
451 |
A("add %14,%14")
|
|
|
452 |
A("adc %15,%15")
|
|
|
453 |
A("add %14,%14")
|
|
|
454 |
A("adc %15,%15") // %15:16 <<= 1
|
|
|
455 |
L("9")
|
|
|
456 |
A("sbrs %3,2") // shift by 4bits position?
|
|
|
457 |
A("rjmp 16f") // No
|
|
|
458 |
A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
|
|
|
459 |
A("swap %14") // Swap nibbles
|
|
|
460 |
A("mov %12,%14")
|
|
|
461 |
A("andi %12,0x0F") // isolate low nibble
|
|
|
462 |
A("andi %14,0xF0") // and clear it
|
|
|
463 |
A("or %15,%12") // %15:%16 <<= 4
|
|
|
464 |
L("16")
|
|
|
465 |
A("sbrs %3,3") // shift by 8bits position?
|
|
|
466 |
A("rjmp 6f") // No, we are done
|
|
|
467 |
A("mov %16,%15")
|
|
|
468 |
A("mov %15,%14")
|
|
|
469 |
A("clr %14")
|
|
|
470 |
A("jmp 6f")
|
|
|
471 |
|
|
|
472 |
// idx < 8, now %3 = idx - 8. Get the count of bits
|
|
|
473 |
L("7")
|
|
|
474 |
A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
|
|
|
475 |
A("sbrs %3,0") // shift by 1 bit position ?
|
|
|
476 |
A("rjmp 10f") // No, skip it
|
|
|
477 |
A("asr %15") // (bit7 is always 0 here)
|
|
|
478 |
A("ror %14")
|
|
|
479 |
L("10")
|
|
|
480 |
A("sbrs %3,1") // shift by 2 bit position ?
|
|
|
481 |
A("rjmp 11f") // No, skip it
|
|
|
482 |
A("asr %15") // (bit7 is always 0 here)
|
|
|
483 |
A("ror %14")
|
|
|
484 |
A("asr %15") // (bit7 is always 0 here)
|
|
|
485 |
A("ror %14")
|
|
|
486 |
L("11")
|
|
|
487 |
A("sbrs %3,2") // shift by 4 bit position ?
|
|
|
488 |
A("rjmp 12f") // No, skip it
|
|
|
489 |
A("swap %15") // Swap nibbles
|
|
|
490 |
A("andi %14, 0xF0") // Lose the lowest nibble
|
|
|
491 |
A("swap %14") // Swap nibbles. Upper nibble is 0
|
|
|
492 |
A("or %14,%15") // Pass nibble from upper byte
|
|
|
493 |
A("andi %15, 0x0F") // And get rid of that nibble
|
|
|
494 |
L("12")
|
|
|
495 |
A("sbrs %3,3") // shift by 8 bit position ?
|
|
|
496 |
A("rjmp 6f") // No, skip it
|
|
|
497 |
A("mov %14,%15")
|
|
|
498 |
A("clr %15")
|
|
|
499 |
L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
|
|
|
500 |
|
|
|
501 |
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
|
|
|
502 |
// of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
|
|
|
503 |
// to get more than 18bits of precision (the initial table lookup gives 9 bits of
|
|
|
504 |
// precision to start from). 18bits of precision is all what is needed here for result
|
|
|
505 |
|
|
|
506 |
// %8:%7:%6 = d = interval
|
|
|
507 |
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
|
|
|
508 |
// %13 = 0
|
|
|
509 |
// %3:%2:%1:%0 = working accumulator
|
|
|
510 |
|
|
|
511 |
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
|
|
|
512 |
A("clr %0")
|
|
|
513 |
A("clr %1")
|
|
|
514 |
A("clr %2")
|
|
|
515 |
A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
|
|
|
516 |
A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
|
|
|
517 |
A("sub %0,r0")
|
|
|
518 |
A("sbc %1,r1")
|
|
|
519 |
A("sbc %2,%13")
|
|
|
520 |
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
|
|
|
521 |
A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
|
|
|
522 |
A("sub %1,r0")
|
|
|
523 |
A("sbc %2,r1")
|
|
|
524 |
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
|
|
|
525 |
A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
|
|
|
526 |
A("sub %2,r0")
|
|
|
527 |
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
|
|
|
528 |
A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
|
|
|
529 |
A("sub %1,r0")
|
|
|
530 |
A("sbc %2,r1")
|
|
|
531 |
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
|
|
|
532 |
A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
|
|
|
533 |
A("sub %2,r0")
|
|
|
534 |
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
|
|
|
535 |
A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
|
|
|
536 |
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
|
|
|
537 |
A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
|
|
|
538 |
A("sub %2,r0")
|
|
|
539 |
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
|
|
|
540 |
A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
|
|
|
541 |
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
|
|
|
542 |
// %3:%2:%1:%0 = (1<<25) - x*d [169]
|
|
|
543 |
|
|
|
544 |
// We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
|
|
|
545 |
|
|
|
546 |
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
|
|
|
547 |
// %3:%2:%1:%0 = (1<<25) - x*d = acc
|
|
|
548 |
// %13 = 0
|
|
|
549 |
|
|
|
550 |
// result = %11:%10:%9:%5:%4
|
|
|
551 |
A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
|
|
|
552 |
A("mov %4,r1")
|
|
|
553 |
A("clr %5")
|
|
|
554 |
A("clr %9")
|
|
|
555 |
A("clr %10")
|
|
|
556 |
A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
|
|
|
557 |
A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
|
|
|
558 |
A("add %4,r0")
|
|
|
559 |
A("adc %5,r1")
|
|
|
560 |
A("adc %9,%13")
|
|
|
561 |
A("adc %10,%13")
|
|
|
562 |
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
|
|
|
563 |
A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
|
|
|
564 |
A("add %5,r0")
|
|
|
565 |
A("adc %9,r1")
|
|
|
566 |
A("adc %10,%13")
|
|
|
567 |
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
|
|
|
568 |
|
|
|
569 |
A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
|
|
|
570 |
A("add %4,r0")
|
|
|
571 |
A("adc %5,r1")
|
|
|
572 |
A("adc %9,%13")
|
|
|
573 |
A("adc %10,%13")
|
|
|
574 |
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
|
|
|
575 |
A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
|
|
|
576 |
A("add %5,r0")
|
|
|
577 |
A("adc %9,r1")
|
|
|
578 |
A("adc %10,%13")
|
|
|
579 |
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
|
|
|
580 |
A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
|
|
|
581 |
A("add %9,r0")
|
|
|
582 |
A("adc %10,r1")
|
|
|
583 |
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
|
|
|
584 |
|
|
|
585 |
A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
|
|
|
586 |
A("add %5,r0")
|
|
|
587 |
A("adc %9,r1")
|
|
|
588 |
A("adc %10,%13")
|
|
|
589 |
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
|
|
|
590 |
A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
|
|
|
591 |
A("add %9,r0")
|
|
|
592 |
A("adc %10,r1")
|
|
|
593 |
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
|
|
|
594 |
A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
|
|
|
595 |
A("add %10,r0")
|
|
|
596 |
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
|
|
|
597 |
|
|
|
598 |
A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
|
|
|
599 |
A("add %9,r0")
|
|
|
600 |
A("adc %10,r1")
|
|
|
601 |
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
|
|
|
602 |
A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
|
|
|
603 |
A("add %10,r0")
|
|
|
604 |
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
|
|
|
605 |
A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
|
|
|
606 |
A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
|
|
|
607 |
|
|
|
608 |
// At this point, %11:%10:%9 contains the new estimation of x.
|
|
|
609 |
|
|
|
610 |
// Finally, we must correct the result. Estimate remainder as
|
|
|
611 |
// (1<<24) - x*d
|
|
|
612 |
// %11:%10:%9 = x
|
|
|
613 |
// %8:%7:%6 = d = interval" "\n\t"
|
|
|
614 |
A("ldi %3,1")
|
|
|
615 |
A("clr %2")
|
|
|
616 |
A("clr %1")
|
|
|
617 |
A("clr %0") // %3:%2:%1:%0 = 0x1000000
|
|
|
618 |
A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
|
|
|
619 |
A("sub %0,r0")
|
|
|
620 |
A("sbc %1,r1")
|
|
|
621 |
A("sbc %2,%13")
|
|
|
622 |
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
|
|
|
623 |
A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
|
|
|
624 |
A("sub %1,r0")
|
|
|
625 |
A("sbc %2,r1")
|
|
|
626 |
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
|
|
|
627 |
A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
|
|
|
628 |
A("sub %2,r0")
|
|
|
629 |
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
|
|
|
630 |
A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
|
|
|
631 |
A("sub %1,r0")
|
|
|
632 |
A("sbc %2,r1")
|
|
|
633 |
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
|
|
|
634 |
A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
|
|
|
635 |
A("sub %2,r0")
|
|
|
636 |
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
|
|
|
637 |
A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
|
|
|
638 |
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
|
|
|
639 |
A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
|
|
|
640 |
A("sub %2,r0")
|
|
|
641 |
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
|
|
|
642 |
A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
|
|
|
643 |
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
|
|
|
644 |
// %3:%2:%1:%0 = r = (1<<24) - x*d
|
|
|
645 |
// %8:%7:%6 = d = interval
|
|
|
646 |
|
|
|
647 |
// Perform the final correction
|
|
|
648 |
A("sub %0,%6")
|
|
|
649 |
A("sbc %1,%7")
|
|
|
650 |
A("sbc %2,%8") // r -= d
|
|
|
651 |
A("brcs 14f") // if ( r >= d)
|
|
|
652 |
|
|
|
653 |
// %11:%10:%9 = x
|
|
|
654 |
A("ldi %3,1")
|
|
|
655 |
A("add %9,%3")
|
|
|
656 |
A("adc %10,%13")
|
|
|
657 |
A("adc %11,%13") // x++
|
|
|
658 |
L("14")
|
|
|
659 |
|
|
|
660 |
// Estimation is done. %11:%10:%9 = x
|
|
|
661 |
A("clr __zero_reg__") // Make C runtime happy
|
|
|
662 |
// [211 cycles total]
|
|
|
663 |
: "=r" (r2),
|
|
|
664 |
"=r" (r3),
|
|
|
665 |
"=r" (r4),
|
|
|
666 |
"=d" (r5),
|
|
|
667 |
"=r" (r6),
|
|
|
668 |
"=r" (r7),
|
|
|
669 |
"+r" (r8),
|
|
|
670 |
"+r" (r9),
|
|
|
671 |
"+r" (r10),
|
|
|
672 |
"=d" (r11),
|
|
|
673 |
"=r" (r12),
|
|
|
674 |
"=r" (r13),
|
|
|
675 |
"=d" (r14),
|
|
|
676 |
"=d" (r15),
|
|
|
677 |
"=d" (r16),
|
|
|
678 |
"=d" (r17),
|
|
|
679 |
"=d" (r18),
|
|
|
680 |
"+z" (ptab)
|
|
|
681 |
:
|
|
|
682 |
: "r0", "r1", "cc"
|
|
|
683 |
);
|
|
|
684 |
|
|
|
685 |
// Return the result
|
|
|
686 |
return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
|
|
|
687 |
}
|
|
|
688 |
|
|
|
689 |
#endif // S_CURVE_ACCELERATION
|
|
|
690 |
|
|
|
691 |
#define MINIMAL_STEP_RATE 120
|
|
|
692 |
|
|
|
693 |
/**
|
|
|
694 |
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
|
|
|
695 |
* by the provided factors.
|
|
|
696 |
**
|
|
|
697 |
* ############ VERY IMPORTANT ############
|
|
|
698 |
* NOTE that the PRECONDITION to call this function is that the block is
|
|
|
699 |
* NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
|
|
|
700 |
* is not and will not use the block while we modify it, so it is safe to
|
|
|
701 |
* alter its values.
|
|
|
702 |
*/
|
|
|
703 |
void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
|
|
|
704 |
|
|
|
705 |
uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
|
|
|
706 |
final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
|
|
|
707 |
|
|
|
708 |
// Limit minimal step rate (Otherwise the timer will overflow.)
|
|
|
709 |
NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
|
|
|
710 |
NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
|
|
|
711 |
|
|
|
712 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
713 |
uint32_t cruise_rate = initial_rate;
|
|
|
714 |
#endif
|
|
|
715 |
|
|
|
716 |
const int32_t accel = block->acceleration_steps_per_s2;
|
|
|
717 |
|
|
|
718 |
// Steps required for acceleration, deceleration to/from nominal rate
|
|
|
719 |
uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
|
|
|
720 |
decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
|
|
|
721 |
// Steps between acceleration and deceleration, if any
|
|
|
722 |
int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
|
|
|
723 |
|
|
|
724 |
// Does accelerate_steps + decelerate_steps exceed step_event_count?
|
|
|
725 |
// Then we can't possibly reach the nominal rate, there will be no cruising.
|
|
|
726 |
// Use intersection_distance() to calculate accel / braking time in order to
|
|
|
727 |
// reach the final_rate exactly at the end of this block.
|
|
|
728 |
if (plateau_steps < 0) {
|
|
|
729 |
const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
|
|
|
730 |
accelerate_steps = MIN(uint32_t(MAX(accelerate_steps_float, 0)), block->step_event_count);
|
|
|
731 |
plateau_steps = 0;
|
|
|
732 |
|
|
|
733 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
734 |
// We won't reach the cruising rate. Let's calculate the speed we will reach
|
|
|
735 |
cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
|
|
|
736 |
#endif
|
|
|
737 |
}
|
|
|
738 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
739 |
else // We have some plateau time, so the cruise rate will be the nominal rate
|
|
|
740 |
cruise_rate = block->nominal_rate;
|
|
|
741 |
#endif
|
|
|
742 |
|
|
|
743 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
744 |
// Jerk controlled speed requires to express speed versus time, NOT steps
|
|
|
745 |
uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE),
|
|
|
746 |
deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE);
|
|
|
747 |
|
|
|
748 |
// And to offload calculations from the ISR, we also calculate the inverse of those times here
|
|
|
749 |
uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time);
|
|
|
750 |
uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time);
|
|
|
751 |
#endif
|
|
|
752 |
|
|
|
753 |
// Store new block parameters
|
|
|
754 |
block->accelerate_until = accelerate_steps;
|
|
|
755 |
block->decelerate_after = accelerate_steps + plateau_steps;
|
|
|
756 |
block->initial_rate = initial_rate;
|
|
|
757 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
758 |
block->acceleration_time = acceleration_time;
|
|
|
759 |
block->deceleration_time = deceleration_time;
|
|
|
760 |
block->acceleration_time_inverse = acceleration_time_inverse;
|
|
|
761 |
block->deceleration_time_inverse = deceleration_time_inverse;
|
|
|
762 |
block->cruise_rate = cruise_rate;
|
|
|
763 |
#endif
|
|
|
764 |
block->final_rate = final_rate;
|
|
|
765 |
}
|
|
|
766 |
|
|
|
767 |
/* PLANNER SPEED DEFINITION
|
|
|
768 |
+--------+ <- current->nominal_speed
|
|
|
769 |
/ \
|
|
|
770 |
current->entry_speed -> + \
|
|
|
771 |
| + <- next->entry_speed (aka exit speed)
|
|
|
772 |
+-------------+
|
|
|
773 |
time -->
|
|
|
774 |
|
|
|
775 |
Recalculates the motion plan according to the following basic guidelines:
|
|
|
776 |
|
|
|
777 |
1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
|
|
|
778 |
(i.e. current->entry_speed) such that:
|
|
|
779 |
a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
|
|
|
780 |
neighboring blocks.
|
|
|
781 |
b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
|
|
|
782 |
with a maximum allowable deceleration over the block travel distance.
|
|
|
783 |
c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
|
|
|
784 |
2. Go over every block in chronological (forward) order and dial down junction speed values if
|
|
|
785 |
a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
|
|
|
786 |
acceleration over the block travel distance.
|
|
|
787 |
|
|
|
788 |
When these stages are complete, the planner will have maximized the velocity profiles throughout the all
|
|
|
789 |
of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
|
|
|
790 |
other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
|
|
|
791 |
are possible. If a new block is added to the buffer, the plan is recomputed according to the said
|
|
|
792 |
guidelines for a new optimal plan.
|
|
|
793 |
|
|
|
794 |
To increase computational efficiency of these guidelines, a set of planner block pointers have been
|
|
|
795 |
created to indicate stop-compute points for when the planner guidelines cannot logically make any further
|
|
|
796 |
changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
|
|
|
797 |
planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
|
|
|
798 |
bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
|
|
|
799 |
added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
|
|
|
800 |
them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
|
|
|
801 |
point) are all accelerating, they are all optimal and can not be altered by a new block added to the
|
|
|
802 |
planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
|
|
|
803 |
junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
|
|
|
804 |
used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
|
|
|
805 |
recomputed as stated in the general guidelines.
|
|
|
806 |
|
|
|
807 |
Planner buffer index mapping:
|
|
|
808 |
- block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
|
|
|
809 |
- block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
|
|
|
810 |
the buffer is full or empty. As described for standard ring buffers, this block is always empty.
|
|
|
811 |
- block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
|
|
|
812 |
streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
|
|
|
813 |
planner buffer that don't change with the addition of a new block, as describe above. In addition,
|
|
|
814 |
this block can never be less than block_buffer_tail and will always be pushed forward and maintain
|
|
|
815 |
this requirement when encountered by the Planner::discard_current_block() routine during a cycle.
|
|
|
816 |
|
|
|
817 |
NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short
|
|
|
818 |
line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't
|
|
|
819 |
enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then
|
|
|
820 |
decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and
|
|
|
821 |
becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner
|
|
|
822 |
will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line
|
|
|
823 |
motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use,
|
|
|
824 |
the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance
|
|
|
825 |
for the planner to compute over. It also increases the number of computations the planner has to perform
|
|
|
826 |
to compute an optimal plan, so select carefully.
|
|
|
827 |
*/
|
|
|
828 |
|
|
|
829 |
// The kernel called by recalculate() when scanning the plan from last to first entry.
|
|
|
830 |
void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
|
|
|
831 |
if (current) {
|
|
|
832 |
// If entry speed is already at the maximum entry speed, and there was no change of speed
|
|
|
833 |
// in the next block, there is no need to recheck. Block is cruising and there is no need to
|
|
|
834 |
// compute anything for this block,
|
|
|
835 |
// If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
|
|
|
836 |
const float max_entry_speed_sqr = current->max_entry_speed_sqr;
|
|
|
837 |
|
|
|
838 |
// Compute maximum entry speed decelerating over the current block from its exit speed.
|
|
|
839 |
// If not at the maximum entry speed, or the previous block entry speed changed
|
|
|
840 |
if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) {
|
|
|
841 |
|
|
|
842 |
// If nominal length true, max junction speed is guaranteed to be reached.
|
|
|
843 |
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
|
|
844 |
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
|
|
845 |
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
|
|
846 |
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
|
847 |
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
|
848 |
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
|
849 |
|
|
|
850 |
const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH)
|
|
|
851 |
? max_entry_speed_sqr
|
|
|
852 |
: MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(float(MINIMUM_PLANNER_SPEED)), current->millimeters));
|
|
|
853 |
if (current->entry_speed_sqr != new_entry_speed_sqr) {
|
|
|
854 |
|
|
|
855 |
// Need to recalculate the block speed - Mark it now, so the stepper
|
|
|
856 |
// ISR does not consume the block before being recalculated
|
|
|
857 |
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
858 |
|
|
|
859 |
// But there is an inherent race condition here, as the block may have
|
|
|
860 |
// become BUSY just before being marked RECALCULATE, so check for that!
|
|
|
861 |
if (stepper.is_block_busy(current)) {
|
|
|
862 |
// Block became busy. Clear the RECALCULATE flag (no point in
|
|
|
863 |
// recalculating BUSY blocks). And don't set its speed, as it can't
|
|
|
864 |
// be updated at this time.
|
|
|
865 |
CBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
866 |
}
|
|
|
867 |
else {
|
|
|
868 |
// Block is not BUSY so this is ahead of the Stepper ISR:
|
|
|
869 |
// Just Set the new entry speed.
|
|
|
870 |
current->entry_speed_sqr = new_entry_speed_sqr;
|
|
|
871 |
}
|
|
|
872 |
}
|
|
|
873 |
}
|
|
|
874 |
}
|
|
|
875 |
}
|
|
|
876 |
|
|
|
877 |
/**
|
|
|
878 |
* recalculate() needs to go over the current plan twice.
|
|
|
879 |
* Once in reverse and once forward. This implements the reverse pass.
|
|
|
880 |
*/
|
|
|
881 |
void Planner::reverse_pass() {
|
|
|
882 |
// Initialize block index to the last block in the planner buffer.
|
|
|
883 |
uint8_t block_index = prev_block_index(block_buffer_head);
|
|
|
884 |
|
|
|
885 |
// Read the index of the last buffer planned block.
|
|
|
886 |
// The ISR may change it so get a stable local copy.
|
|
|
887 |
uint8_t planned_block_index = block_buffer_planned;
|
|
|
888 |
|
|
|
889 |
// If there was a race condition and block_buffer_planned was incremented
|
|
|
890 |
// or was pointing at the head (queue empty) break loop now and avoid
|
|
|
891 |
// planning already consumed blocks
|
|
|
892 |
if (planned_block_index == block_buffer_head) return;
|
|
|
893 |
|
|
|
894 |
// Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last
|
|
|
895 |
// block in buffer. Cease planning when the last optimal planned or tail pointer is reached.
|
|
|
896 |
// NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan.
|
|
|
897 |
const block_t *next = NULL;
|
|
|
898 |
while (block_index != planned_block_index) {
|
|
|
899 |
|
|
|
900 |
// Perform the reverse pass
|
|
|
901 |
block_t *current = &block_buffer[block_index];
|
|
|
902 |
|
|
|
903 |
// Only consider non sync blocks
|
|
|
904 |
if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
|
905 |
reverse_pass_kernel(current, next);
|
|
|
906 |
next = current;
|
|
|
907 |
}
|
|
|
908 |
|
|
|
909 |
// Advance to the next
|
|
|
910 |
block_index = prev_block_index(block_index);
|
|
|
911 |
|
|
|
912 |
// The ISR could advance the block_buffer_planned while we were doing the reverse pass.
|
|
|
913 |
// We must try to avoid using an already consumed block as the last one - So follow
|
|
|
914 |
// changes to the pointer and make sure to limit the loop to the currently busy block
|
|
|
915 |
while (planned_block_index != block_buffer_planned) {
|
|
|
916 |
|
|
|
917 |
// If we reached the busy block or an already processed block, break the loop now
|
|
|
918 |
if (block_index == planned_block_index) return;
|
|
|
919 |
|
|
|
920 |
// Advance the pointer, following the busy block
|
|
|
921 |
planned_block_index = next_block_index(planned_block_index);
|
|
|
922 |
}
|
|
|
923 |
}
|
|
|
924 |
}
|
|
|
925 |
|
|
|
926 |
// The kernel called by recalculate() when scanning the plan from first to last entry.
|
|
|
927 |
void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current, const uint8_t block_index) {
|
|
|
928 |
if (previous) {
|
|
|
929 |
// If the previous block is an acceleration block, too short to complete the full speed
|
|
|
930 |
// change, adjust the entry speed accordingly. Entry speeds have already been reset,
|
|
|
931 |
// maximized, and reverse-planned. If nominal length is set, max junction speed is
|
|
|
932 |
// guaranteed to be reached. No need to recheck.
|
|
|
933 |
if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) &&
|
|
|
934 |
previous->entry_speed_sqr < current->entry_speed_sqr) {
|
|
|
935 |
|
|
|
936 |
// Compute the maximum allowable speed
|
|
|
937 |
const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);
|
|
|
938 |
|
|
|
939 |
// If true, current block is full-acceleration and we can move the planned pointer forward.
|
|
|
940 |
if (new_entry_speed_sqr < current->entry_speed_sqr) {
|
|
|
941 |
|
|
|
942 |
// Mark we need to recompute the trapezoidal shape, and do it now,
|
|
|
943 |
// so the stepper ISR does not consume the block before being recalculated
|
|
|
944 |
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
945 |
|
|
|
946 |
// But there is an inherent race condition here, as the block maybe
|
|
|
947 |
// became BUSY, just before it was marked as RECALCULATE, so check
|
|
|
948 |
// if that is the case!
|
|
|
949 |
if (stepper.is_block_busy(current)) {
|
|
|
950 |
// Block became busy. Clear the RECALCULATE flag (no point in
|
|
|
951 |
// recalculating BUSY blocks and don't set its speed, as it can't
|
|
|
952 |
// be updated at this time.
|
|
|
953 |
CBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
954 |
}
|
|
|
955 |
else {
|
|
|
956 |
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
957 |
|
|
|
958 |
// Always <= max_entry_speed_sqr. Backward pass sets this.
|
|
|
959 |
current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this.
|
|
|
960 |
|
|
|
961 |
// Set optimal plan pointer.
|
|
|
962 |
block_buffer_planned = block_index;
|
|
|
963 |
}
|
|
|
964 |
}
|
|
|
965 |
}
|
|
|
966 |
|
|
|
967 |
// Any block set at its maximum entry speed also creates an optimal plan up to this
|
|
|
968 |
// point in the buffer. When the plan is bracketed by either the beginning of the
|
|
|
969 |
// buffer and a maximum entry speed or two maximum entry speeds, every block in between
|
|
|
970 |
// cannot logically be further improved. Hence, we don't have to recompute them anymore.
|
|
|
971 |
if (current->entry_speed_sqr == current->max_entry_speed_sqr)
|
|
|
972 |
block_buffer_planned = block_index;
|
|
|
973 |
}
|
|
|
974 |
}
|
|
|
975 |
|
|
|
976 |
/**
|
|
|
977 |
* recalculate() needs to go over the current plan twice.
|
|
|
978 |
* Once in reverse and once forward. This implements the forward pass.
|
|
|
979 |
*/
|
|
|
980 |
void Planner::forward_pass() {
|
|
|
981 |
|
|
|
982 |
// Forward Pass: Forward plan the acceleration curve from the planned pointer onward.
|
|
|
983 |
// Also scans for optimal plan breakpoints and appropriately updates the planned pointer.
|
|
|
984 |
|
|
|
985 |
// Begin at buffer planned pointer. Note that block_buffer_planned can be modified
|
|
|
986 |
// by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned
|
|
|
987 |
// will never lead head, so the loop is safe to execute. Also note that the forward
|
|
|
988 |
// pass will never modify the values at the tail.
|
|
|
989 |
uint8_t block_index = block_buffer_planned;
|
|
|
990 |
|
|
|
991 |
block_t *current;
|
|
|
992 |
const block_t * previous = NULL;
|
|
|
993 |
while (block_index != block_buffer_head) {
|
|
|
994 |
|
|
|
995 |
// Perform the forward pass
|
|
|
996 |
current = &block_buffer[block_index];
|
|
|
997 |
|
|
|
998 |
// Skip SYNC blocks
|
|
|
999 |
if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
|
1000 |
// If there's no previous block or the previous block is not
|
|
|
1001 |
// BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise,
|
|
|
1002 |
// the previous block became BUSY, so assume the current block's
|
|
|
1003 |
// entry speed can't be altered (since that would also require
|
|
|
1004 |
// updating the exit speed of the previous block).
|
|
|
1005 |
if (!previous || !stepper.is_block_busy(previous))
|
|
|
1006 |
forward_pass_kernel(previous, current, block_index);
|
|
|
1007 |
previous = current;
|
|
|
1008 |
}
|
|
|
1009 |
// Advance to the previous
|
|
|
1010 |
block_index = next_block_index(block_index);
|
|
|
1011 |
}
|
|
|
1012 |
}
|
|
|
1013 |
|
|
|
1014 |
/**
|
|
|
1015 |
* Recalculate the trapezoid speed profiles for all blocks in the plan
|
|
|
1016 |
* according to the entry_factor for each junction. Must be called by
|
|
|
1017 |
* recalculate() after updating the blocks.
|
|
|
1018 |
*/
|
|
|
1019 |
void Planner::recalculate_trapezoids() {
|
|
|
1020 |
// The tail may be changed by the ISR so get a local copy.
|
|
|
1021 |
uint8_t block_index = block_buffer_tail,
|
|
|
1022 |
head_block_index = block_buffer_head;
|
|
|
1023 |
// Since there could be a sync block in the head of the queue, and the
|
|
|
1024 |
// next loop must not recalculate the head block (as it needs to be
|
|
|
1025 |
// specially handled), scan backwards to the first non-SYNC block.
|
|
|
1026 |
while (head_block_index != block_index) {
|
|
|
1027 |
|
|
|
1028 |
// Go back (head always point to the first free block)
|
|
|
1029 |
const uint8_t prev_index = prev_block_index(head_block_index);
|
|
|
1030 |
|
|
|
1031 |
// Get the pointer to the block
|
|
|
1032 |
block_t *prev = &block_buffer[prev_index];
|
|
|
1033 |
|
|
|
1034 |
// If not dealing with a sync block, we are done. The last block is not a SYNC block
|
|
|
1035 |
if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break;
|
|
|
1036 |
|
|
|
1037 |
// Examine the previous block. This and all following are SYNC blocks
|
|
|
1038 |
head_block_index = prev_index;
|
|
|
1039 |
}
|
|
|
1040 |
|
|
|
1041 |
// Go from the tail (currently executed block) to the first block, without including it)
|
|
|
1042 |
block_t *current = NULL, *next = NULL;
|
|
|
1043 |
float current_entry_speed = 0.0, next_entry_speed = 0.0;
|
|
|
1044 |
while (block_index != head_block_index) {
|
|
|
1045 |
|
|
|
1046 |
next = &block_buffer[block_index];
|
|
|
1047 |
|
|
|
1048 |
// Skip sync blocks
|
|
|
1049 |
if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
|
1050 |
next_entry_speed = SQRT(next->entry_speed_sqr);
|
|
|
1051 |
|
|
|
1052 |
if (current) {
|
|
|
1053 |
// Recalculate if current block entry or exit junction speed has changed.
|
|
|
1054 |
if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
|
|
|
1055 |
|
|
|
1056 |
// Mark the current block as RECALCULATE, to protect it from the Stepper ISR running it.
|
|
|
1057 |
// Note that due to the above condition, there's a chance the current block isn't marked as
|
|
|
1058 |
// RECALCULATE yet, but the next one is. That's the reason for the following line.
|
|
|
1059 |
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
1060 |
|
|
|
1061 |
// But there is an inherent race condition here, as the block maybe
|
|
|
1062 |
// became BUSY, just before it was marked as RECALCULATE, so check
|
|
|
1063 |
// if that is the case!
|
|
|
1064 |
if (!stepper.is_block_busy(current)) {
|
|
|
1065 |
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
1066 |
|
|
|
1067 |
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
|
|
1068 |
const float current_nominal_speed = SQRT(current->nominal_speed_sqr),
|
|
|
1069 |
nomr = 1.0f / current_nominal_speed;
|
|
|
1070 |
calculate_trapezoid_for_block(current, current_entry_speed * nomr, next_entry_speed * nomr);
|
|
|
1071 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1072 |
if (current->use_advance_lead) {
|
|
|
1073 |
const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS];
|
|
|
1074 |
current->max_adv_steps = current_nominal_speed * comp;
|
|
|
1075 |
current->final_adv_steps = next_entry_speed * comp;
|
|
|
1076 |
}
|
|
|
1077 |
#endif
|
|
|
1078 |
}
|
|
|
1079 |
|
|
|
1080 |
// Reset current only to ensure next trapezoid is computed - The
|
|
|
1081 |
// stepper is free to use the block from now on.
|
|
|
1082 |
CBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
1083 |
}
|
|
|
1084 |
}
|
|
|
1085 |
|
|
|
1086 |
current = next;
|
|
|
1087 |
current_entry_speed = next_entry_speed;
|
|
|
1088 |
}
|
|
|
1089 |
|
|
|
1090 |
block_index = next_block_index(block_index);
|
|
|
1091 |
}
|
|
|
1092 |
|
|
|
1093 |
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
|
|
1094 |
if (next) {
|
|
|
1095 |
|
|
|
1096 |
// Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
|
|
|
1097 |
// As the last block is always recalculated here, there is a chance the block isn't
|
|
|
1098 |
// marked as RECALCULATE yet. That's the reason for the following line.
|
|
|
1099 |
SBI(next->flag, BLOCK_BIT_RECALCULATE);
|
|
|
1100 |
|
|
|
1101 |
// But there is an inherent race condition here, as the block maybe
|
|
|
1102 |
// became BUSY, just before it was marked as RECALCULATE, so check
|
|
|
1103 |
// if that is the case!
|
|
|
1104 |
if (!stepper.is_block_busy(current)) {
|
|
|
1105 |
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
1106 |
|
|
|
1107 |
const float next_nominal_speed = SQRT(next->nominal_speed_sqr),
|
|
|
1108 |
nomr = 1.0f / next_nominal_speed;
|
|
|
1109 |
calculate_trapezoid_for_block(next, next_entry_speed * nomr, float(MINIMUM_PLANNER_SPEED) * nomr);
|
|
|
1110 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1111 |
if (next->use_advance_lead) {
|
|
|
1112 |
const float comp = next->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS];
|
|
|
1113 |
next->max_adv_steps = next_nominal_speed * comp;
|
|
|
1114 |
next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp;
|
|
|
1115 |
}
|
|
|
1116 |
#endif
|
|
|
1117 |
}
|
|
|
1118 |
|
|
|
1119 |
// Reset next only to ensure its trapezoid is computed - The stepper is free to use
|
|
|
1120 |
// the block from now on.
|
|
|
1121 |
CBI(next->flag, BLOCK_BIT_RECALCULATE);
|
|
|
1122 |
}
|
|
|
1123 |
}
|
|
|
1124 |
|
|
|
1125 |
void Planner::recalculate() {
|
|
|
1126 |
// Initialize block index to the last block in the planner buffer.
|
|
|
1127 |
const uint8_t block_index = prev_block_index(block_buffer_head);
|
|
|
1128 |
// If there is just one block, no planning can be done. Avoid it!
|
|
|
1129 |
if (block_index != block_buffer_planned) {
|
|
|
1130 |
reverse_pass();
|
|
|
1131 |
forward_pass();
|
|
|
1132 |
}
|
|
|
1133 |
recalculate_trapezoids();
|
|
|
1134 |
}
|
|
|
1135 |
|
|
|
1136 |
#if ENABLED(AUTOTEMP)
|
|
|
1137 |
|
|
|
1138 |
void Planner::getHighESpeed() {
|
|
|
1139 |
static float oldt = 0;
|
|
|
1140 |
|
|
|
1141 |
if (!autotemp_enabled) return;
|
|
|
1142 |
if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
|
|
|
1143 |
|
|
|
1144 |
float high = 0.0;
|
|
|
1145 |
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
|
|
1146 |
block_t* block = &block_buffer[b];
|
|
|
1147 |
if (
|
|
|
1148 |
#if ENABLED(HANGPRINTER)
|
|
|
1149 |
block->steps[A_AXIS] || block->steps[B_AXIS] || block->steps[C_AXIS] || block->steps[D_AXIS]
|
|
|
1150 |
#else
|
|
|
1151 |
block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]
|
|
|
1152 |
#endif
|
|
|
1153 |
) {
|
|
|
1154 |
const float se = (float)block->steps[E_AXIS] / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
|
|
|
1155 |
NOLESS(high, se);
|
|
|
1156 |
}
|
|
|
1157 |
}
|
|
|
1158 |
|
|
|
1159 |
float t = autotemp_min + high * autotemp_factor;
|
|
|
1160 |
t = constrain(t, autotemp_min, autotemp_max);
|
|
|
1161 |
if (t < oldt) t = t * (1 - float(AUTOTEMP_OLDWEIGHT)) + oldt * float(AUTOTEMP_OLDWEIGHT);
|
|
|
1162 |
oldt = t;
|
|
|
1163 |
thermalManager.setTargetHotend(t, 0);
|
|
|
1164 |
}
|
|
|
1165 |
|
|
|
1166 |
#endif // AUTOTEMP
|
|
|
1167 |
|
|
|
1168 |
/**
|
|
|
1169 |
* Maintain fans, paste extruder pressure,
|
|
|
1170 |
*/
|
|
|
1171 |
void Planner::check_axes_activity() {
|
|
|
1172 |
uint8_t axis_active[NUM_AXIS] = { 0 };
|
|
|
1173 |
|
|
|
1174 |
#if FAN_COUNT > 0
|
|
|
1175 |
uint8_t tail_fan_speed[FAN_COUNT] = { 0 };
|
|
|
1176 |
#endif
|
|
|
1177 |
|
|
|
1178 |
#if ENABLED(BARICUDA)
|
|
|
1179 |
#if HAS_HEATER_1
|
|
|
1180 |
uint8_t tail_valve_pressure;
|
|
|
1181 |
#endif
|
|
|
1182 |
#if HAS_HEATER_2
|
|
|
1183 |
uint8_t tail_e_to_p_pressure;
|
|
|
1184 |
#endif
|
|
|
1185 |
#endif
|
|
|
1186 |
|
|
|
1187 |
if (has_blocks_queued()) {
|
|
|
1188 |
|
|
|
1189 |
#if FAN_COUNT > 0
|
|
|
1190 |
for (uint8_t i = 0; i < FAN_COUNT; i++)
|
|
|
1191 |
tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
|
|
|
1192 |
#endif
|
|
|
1193 |
|
|
|
1194 |
block_t* block;
|
|
|
1195 |
|
|
|
1196 |
#if ENABLED(BARICUDA)
|
|
|
1197 |
block = &block_buffer[block_buffer_tail];
|
|
|
1198 |
#if HAS_HEATER_1
|
|
|
1199 |
tail_valve_pressure = block->valve_pressure;
|
|
|
1200 |
#endif
|
|
|
1201 |
#if HAS_HEATER_2
|
|
|
1202 |
tail_e_to_p_pressure = block->e_to_p_pressure;
|
|
|
1203 |
#endif
|
|
|
1204 |
#endif
|
|
|
1205 |
|
|
|
1206 |
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
|
|
1207 |
block = &block_buffer[b];
|
|
|
1208 |
LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
|
|
|
1209 |
}
|
|
|
1210 |
}
|
|
|
1211 |
else {
|
|
|
1212 |
#if FAN_COUNT > 0
|
|
|
1213 |
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
|
|
|
1214 |
#endif
|
|
|
1215 |
|
|
|
1216 |
#if ENABLED(BARICUDA)
|
|
|
1217 |
#if HAS_HEATER_1
|
|
|
1218 |
tail_valve_pressure = baricuda_valve_pressure;
|
|
|
1219 |
#endif
|
|
|
1220 |
#if HAS_HEATER_2
|
|
|
1221 |
tail_e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
|
1222 |
#endif
|
|
|
1223 |
#endif
|
|
|
1224 |
}
|
|
|
1225 |
|
|
|
1226 |
#if ENABLED(DISABLE_X)
|
|
|
1227 |
if (!axis_active[X_AXIS]) disable_X();
|
|
|
1228 |
#endif
|
|
|
1229 |
#if ENABLED(DISABLE_Y)
|
|
|
1230 |
if (!axis_active[Y_AXIS]) disable_Y();
|
|
|
1231 |
#endif
|
|
|
1232 |
#if ENABLED(DISABLE_Z)
|
|
|
1233 |
if (!axis_active[Z_AXIS]) disable_Z();
|
|
|
1234 |
#endif
|
|
|
1235 |
#if ENABLED(DISABLE_E)
|
|
|
1236 |
if (!axis_active[E_AXIS]) disable_e_steppers();
|
|
|
1237 |
#endif
|
|
|
1238 |
|
|
|
1239 |
#if FAN_COUNT > 0
|
|
|
1240 |
|
|
|
1241 |
#if FAN_KICKSTART_TIME > 0
|
|
|
1242 |
|
|
|
1243 |
static millis_t fan_kick_end[FAN_COUNT] = { 0 };
|
|
|
1244 |
|
|
|
1245 |
#define KICKSTART_FAN(f) \
|
|
|
1246 |
if (tail_fan_speed[f]) { \
|
|
|
1247 |
millis_t ms = millis(); \
|
|
|
1248 |
if (fan_kick_end[f] == 0) { \
|
|
|
1249 |
fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
|
|
|
1250 |
tail_fan_speed[f] = 255; \
|
|
|
1251 |
} else if (PENDING(ms, fan_kick_end[f])) \
|
|
|
1252 |
tail_fan_speed[f] = 255; \
|
|
|
1253 |
} else fan_kick_end[f] = 0
|
|
|
1254 |
|
|
|
1255 |
#if HAS_FAN0
|
|
|
1256 |
KICKSTART_FAN(0);
|
|
|
1257 |
#endif
|
|
|
1258 |
#if HAS_FAN1
|
|
|
1259 |
KICKSTART_FAN(1);
|
|
|
1260 |
#endif
|
|
|
1261 |
#if HAS_FAN2
|
|
|
1262 |
KICKSTART_FAN(2);
|
|
|
1263 |
#endif
|
|
|
1264 |
|
|
|
1265 |
#endif // FAN_KICKSTART_TIME > 0
|
|
|
1266 |
|
|
|
1267 |
#if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255
|
|
|
1268 |
#define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : 0)
|
|
|
1269 |
#else
|
|
|
1270 |
#define CALC_FAN_SPEED(f) tail_fan_speed[f]
|
|
|
1271 |
#endif
|
|
|
1272 |
|
|
|
1273 |
#if ENABLED(FAN_SOFT_PWM)
|
|
|
1274 |
#if HAS_FAN0
|
|
|
1275 |
thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
|
|
|
1276 |
#endif
|
|
|
1277 |
#if HAS_FAN1
|
|
|
1278 |
thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
|
|
|
1279 |
#endif
|
|
|
1280 |
#if HAS_FAN2
|
|
|
1281 |
thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
|
|
|
1282 |
#endif
|
|
|
1283 |
#else
|
|
|
1284 |
#if HAS_FAN0
|
|
|
1285 |
analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
|
|
|
1286 |
#endif
|
|
|
1287 |
#if HAS_FAN1
|
|
|
1288 |
analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
|
|
|
1289 |
#endif
|
|
|
1290 |
#if HAS_FAN2
|
|
|
1291 |
analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
|
|
|
1292 |
#endif
|
|
|
1293 |
#endif
|
|
|
1294 |
|
|
|
1295 |
#endif // FAN_COUNT > 0
|
|
|
1296 |
|
|
|
1297 |
#if ENABLED(AUTOTEMP)
|
|
|
1298 |
getHighESpeed();
|
|
|
1299 |
#endif
|
|
|
1300 |
|
|
|
1301 |
#if ENABLED(BARICUDA)
|
|
|
1302 |
#if HAS_HEATER_1
|
|
|
1303 |
analogWrite(HEATER_1_PIN, tail_valve_pressure);
|
|
|
1304 |
#endif
|
|
|
1305 |
#if HAS_HEATER_2
|
|
|
1306 |
analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
|
|
|
1307 |
#endif
|
|
|
1308 |
#endif
|
|
|
1309 |
}
|
|
|
1310 |
|
|
|
1311 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
1312 |
|
|
|
1313 |
/**
|
|
|
1314 |
* Get a volumetric multiplier from a filament diameter.
|
|
|
1315 |
* This is the reciprocal of the circular cross-section area.
|
|
|
1316 |
* Return 1.0 with volumetric off or a diameter of 0.0.
|
|
|
1317 |
*/
|
|
|
1318 |
inline float calculate_volumetric_multiplier(const float &diameter) {
|
|
|
1319 |
return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5) : 1.0;
|
|
|
1320 |
}
|
|
|
1321 |
|
|
|
1322 |
/**
|
|
|
1323 |
* Convert the filament sizes into volumetric multipliers.
|
|
|
1324 |
* The multiplier converts a given E value into a length.
|
|
|
1325 |
*/
|
|
|
1326 |
void Planner::calculate_volumetric_multipliers() {
|
|
|
1327 |
for (uint8_t i = 0; i < COUNT(filament_size); i++) {
|
|
|
1328 |
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
|
1329 |
refresh_e_factor(i);
|
|
|
1330 |
}
|
|
|
1331 |
}
|
|
|
1332 |
|
|
|
1333 |
#endif // !NO_VOLUMETRICS
|
|
|
1334 |
|
|
|
1335 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
1336 |
/**
|
|
|
1337 |
* Convert the ratio value given by the filament width sensor
|
|
|
1338 |
* into a volumetric multiplier. Conversion differs when using
|
|
|
1339 |
* linear extrusion vs volumetric extrusion.
|
|
|
1340 |
*/
|
|
|
1341 |
void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) {
|
|
|
1342 |
// Reconstitute the nominal/measured ratio
|
|
|
1343 |
const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
|
|
|
1344 |
ratio_2 = sq(nom_meas_ratio);
|
|
|
1345 |
|
|
|
1346 |
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
|
|
|
1347 |
? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5f) // Volumetric uses a true volumetric multiplier
|
|
|
1348 |
: ratio_2; // Linear squares the ratio, which scales the volume
|
|
|
1349 |
|
|
|
1350 |
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
|
|
1351 |
}
|
|
|
1352 |
#endif
|
|
|
1353 |
|
|
|
1354 |
#if PLANNER_LEVELING || HAS_UBL_AND_CURVES
|
|
|
1355 |
/**
|
|
|
1356 |
* rx, ry, rz - Cartesian positions in mm
|
|
|
1357 |
* Leveled XYZ on completion
|
|
|
1358 |
*/
|
|
|
1359 |
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
|
|
|
1360 |
|
|
|
1361 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
1362 |
skew(rx, ry, rz);
|
|
|
1363 |
#endif
|
|
|
1364 |
|
|
|
1365 |
if (!leveling_active) return;
|
|
|
1366 |
|
|
|
1367 |
#if ABL_PLANAR
|
|
|
1368 |
|
|
|
1369 |
float dx = rx - (X_TILT_FULCRUM),
|
|
|
1370 |
dy = ry - (Y_TILT_FULCRUM);
|
|
|
1371 |
|
|
|
1372 |
apply_rotation_xyz(bed_level_matrix, dx, dy, rz);
|
|
|
1373 |
|
|
|
1374 |
rx = dx + X_TILT_FULCRUM;
|
|
|
1375 |
ry = dy + Y_TILT_FULCRUM;
|
|
|
1376 |
|
|
|
1377 |
#elif HAS_MESH
|
|
|
1378 |
|
|
|
1379 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1380 |
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
|
|
1381 |
#else
|
|
|
1382 |
constexpr float fade_scaling_factor = 1.0;
|
|
|
1383 |
#endif
|
|
|
1384 |
|
|
|
1385 |
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
1386 |
const float raw[XYZ] = { rx, ry, 0 };
|
|
|
1387 |
#endif
|
|
|
1388 |
|
|
|
1389 |
rz += (
|
|
|
1390 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
1391 |
mbl.get_z(rx, ry
|
|
|
1392 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1393 |
, fade_scaling_factor
|
|
|
1394 |
#endif
|
|
|
1395 |
)
|
|
|
1396 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
1397 |
fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(rx, ry) : 0.0
|
|
|
1398 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
1399 |
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
|
|
|
1400 |
#endif
|
|
|
1401 |
);
|
|
|
1402 |
|
|
|
1403 |
#endif
|
|
|
1404 |
}
|
|
|
1405 |
|
|
|
1406 |
#endif
|
|
|
1407 |
|
|
|
1408 |
#if PLANNER_LEVELING
|
|
|
1409 |
|
|
|
1410 |
void Planner::unapply_leveling(float raw[XYZ]) {
|
|
|
1411 |
|
|
|
1412 |
if (leveling_active) {
|
|
|
1413 |
|
|
|
1414 |
#if ABL_PLANAR
|
|
|
1415 |
|
|
|
1416 |
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
|
|
1417 |
|
|
|
1418 |
float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
|
|
|
1419 |
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
|
|
|
1420 |
|
|
|
1421 |
apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
|
|
|
1422 |
|
|
|
1423 |
raw[X_AXIS] = dx + X_TILT_FULCRUM;
|
|
|
1424 |
raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
|
|
|
1425 |
|
|
|
1426 |
#elif HAS_MESH
|
|
|
1427 |
|
|
|
1428 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1429 |
const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
|
|
|
1430 |
#else
|
|
|
1431 |
constexpr float fade_scaling_factor = 1.0;
|
|
|
1432 |
#endif
|
|
|
1433 |
|
|
|
1434 |
raw[Z_AXIS] -= (
|
|
|
1435 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
1436 |
mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
|
|
|
1437 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1438 |
, fade_scaling_factor
|
|
|
1439 |
#endif
|
|
|
1440 |
)
|
|
|
1441 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
1442 |
fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) : 0.0
|
|
|
1443 |
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
1444 |
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
|
|
|
1445 |
#endif
|
|
|
1446 |
);
|
|
|
1447 |
|
|
|
1448 |
#endif
|
|
|
1449 |
}
|
|
|
1450 |
|
|
|
1451 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
1452 |
unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
|
|
|
1453 |
#endif
|
|
|
1454 |
}
|
|
|
1455 |
|
|
|
1456 |
#endif // PLANNER_LEVELING
|
|
|
1457 |
|
|
|
1458 |
void Planner::quick_stop() {
|
|
|
1459 |
|
|
|
1460 |
// Remove all the queued blocks. Note that this function is NOT
|
|
|
1461 |
// called from the Stepper ISR, so we must consider tail as readonly!
|
|
|
1462 |
// that is why we set head to tail - But there is a race condition that
|
|
|
1463 |
// must be handled: The tail could change between the read and the assignment
|
|
|
1464 |
// so this must be enclosed in a critical section
|
|
|
1465 |
|
|
|
1466 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
1467 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
1468 |
|
|
|
1469 |
// Drop all queue entries
|
|
|
1470 |
block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail;
|
|
|
1471 |
|
|
|
1472 |
// Restart the block delay for the first movement - As the queue was
|
|
|
1473 |
// forced to empty, there's no risk the ISR will touch this.
|
|
|
1474 |
delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
|
|
|
1475 |
|
|
|
1476 |
#if ENABLED(ULTRA_LCD)
|
|
|
1477 |
// Clear the accumulated runtime
|
|
|
1478 |
clear_block_buffer_runtime();
|
|
|
1479 |
#endif
|
|
|
1480 |
|
|
|
1481 |
// Make sure to drop any attempt of queuing moves for at least 1 second
|
|
|
1482 |
cleaning_buffer_counter = 1000;
|
|
|
1483 |
|
|
|
1484 |
// Reenable Stepper ISR
|
|
|
1485 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
1486 |
|
|
|
1487 |
// And stop the stepper ISR
|
|
|
1488 |
stepper.quick_stop();
|
|
|
1489 |
}
|
|
|
1490 |
|
|
|
1491 |
void Planner::endstop_triggered(const AxisEnum axis) {
|
|
|
1492 |
// Record stepper position and discard the current block
|
|
|
1493 |
stepper.endstop_triggered(axis);
|
|
|
1494 |
}
|
|
|
1495 |
|
|
|
1496 |
float Planner::triggered_position_mm(const AxisEnum axis) {
|
|
|
1497 |
return stepper.triggered_position(axis) * steps_to_mm[axis];
|
|
|
1498 |
}
|
|
|
1499 |
|
|
|
1500 |
void Planner::finish_and_disable() {
|
|
|
1501 |
while (has_blocks_queued() || cleaning_buffer_counter) idle();
|
|
|
1502 |
disable_all_steppers();
|
|
|
1503 |
}
|
|
|
1504 |
|
|
|
1505 |
/**
|
|
|
1506 |
* Get an axis position according to stepper position(s)
|
|
|
1507 |
* For CORE machines apply translation from ABC to XYZ.
|
|
|
1508 |
*/
|
|
|
1509 |
float Planner::get_axis_position_mm(const AxisEnum axis) {
|
|
|
1510 |
float axis_steps;
|
|
|
1511 |
#if IS_CORE
|
|
|
1512 |
// Requesting one of the "core" axes?
|
|
|
1513 |
if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
|
|
|
1514 |
|
|
|
1515 |
// Protect the access to the position.
|
|
|
1516 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
1517 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
1518 |
|
|
|
1519 |
// ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
|
|
|
1520 |
// ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
|
|
|
1521 |
axis_steps = 0.5f * (
|
|
|
1522 |
axis == CORE_AXIS_2 ? CORESIGN(stepper.position(CORE_AXIS_1) - stepper.position(CORE_AXIS_2))
|
|
|
1523 |
: stepper.position(CORE_AXIS_1) + stepper.position(CORE_AXIS_2)
|
|
|
1524 |
);
|
|
|
1525 |
|
|
|
1526 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
1527 |
}
|
|
|
1528 |
else
|
|
|
1529 |
axis_steps = stepper.position(axis);
|
|
|
1530 |
#else
|
|
|
1531 |
axis_steps = stepper.position(axis);
|
|
|
1532 |
#endif
|
|
|
1533 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
1534 |
if (axis != E_AXIS) return (sq(axis_steps / k0[axis] + sqrtk1[axis]) - k1[axis]) / k2[axis];
|
|
|
1535 |
#endif
|
|
|
1536 |
return axis_steps * steps_to_mm[axis];
|
|
|
1537 |
}
|
|
|
1538 |
|
|
|
1539 |
/**
|
|
|
1540 |
* Block until all buffered steps are executed / cleaned
|
|
|
1541 |
*/
|
|
|
1542 |
void Planner::synchronize() { while (has_blocks_queued() || cleaning_buffer_counter) idle(); }
|
|
|
1543 |
|
|
|
1544 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
1545 |
#define COUNT_MOVE count_it
|
|
|
1546 |
#else
|
|
|
1547 |
#define COUNT_MOVE true
|
|
|
1548 |
#endif
|
|
|
1549 |
|
|
|
1550 |
/**
|
|
|
1551 |
* Planner::_buffer_steps
|
|
|
1552 |
*
|
|
|
1553 |
* Add a new linear movement to the planner queue (in terms of steps).
|
|
|
1554 |
*
|
|
|
1555 |
* target - target position in steps units
|
|
|
1556 |
* target_float - target position in mm (HAS_POSITION_FLOAT)
|
|
|
1557 |
* fr_mm_s - (target) speed of the move
|
|
|
1558 |
* extruder - target extruder
|
|
|
1559 |
* millimeters - the length of the movement, if known
|
|
|
1560 |
* count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
|
|
|
1561 |
*
|
|
|
1562 |
* Returns true if movement was properly queued, false otherwise
|
|
|
1563 |
*/
|
|
|
1564 |
bool Planner::_buffer_steps(const int32_t (&target)[NUM_AXIS]
|
|
|
1565 |
#if HAS_POSITION_FLOAT
|
|
|
1566 |
, const float (&target_float)[NUM_AXIS]
|
|
|
1567 |
#endif
|
|
|
1568 |
, float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
|
|
|
1569 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
1570 |
, const bool count_it/*=true*/
|
|
|
1571 |
#endif
|
|
|
1572 |
) {
|
|
|
1573 |
|
|
|
1574 |
// If we are cleaning, do not accept queuing of movements
|
|
|
1575 |
if (cleaning_buffer_counter) return false;
|
|
|
1576 |
|
|
|
1577 |
// Wait for the next available block
|
|
|
1578 |
uint8_t next_buffer_head;
|
|
|
1579 |
block_t * const block = get_next_free_block(next_buffer_head);
|
|
|
1580 |
|
|
|
1581 |
// Fill the block with the specified movement
|
|
|
1582 |
if (!_populate_block(block, false, target
|
|
|
1583 |
#if HAS_POSITION_FLOAT
|
|
|
1584 |
, target_float
|
|
|
1585 |
#endif
|
|
|
1586 |
, fr_mm_s, extruder, millimeters
|
|
|
1587 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
1588 |
, count_it
|
|
|
1589 |
#endif
|
|
|
1590 |
)) {
|
|
|
1591 |
// Movement was not queued, probably because it was too short.
|
|
|
1592 |
// Simply accept that as movement queued and done
|
|
|
1593 |
return true;
|
|
|
1594 |
}
|
|
|
1595 |
|
|
|
1596 |
// If this is the first added movement, reload the delay, otherwise, cancel it.
|
|
|
1597 |
if (block_buffer_head == block_buffer_tail) {
|
|
|
1598 |
// If it was the first queued block, restart the 1st block delivery delay, to
|
|
|
1599 |
// give the planner an opportunity to queue more movements and plan them
|
|
|
1600 |
// As there are no queued movements, the Stepper ISR will not touch this
|
|
|
1601 |
// variable, so there is no risk setting this here (but it MUST be done
|
|
|
1602 |
// before the following line!!)
|
|
|
1603 |
delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
|
|
|
1604 |
}
|
|
|
1605 |
|
|
|
1606 |
// Move buffer head
|
|
|
1607 |
block_buffer_head = next_buffer_head;
|
|
|
1608 |
|
|
|
1609 |
// Recalculate and optimize trapezoidal speed profiles
|
|
|
1610 |
recalculate();
|
|
|
1611 |
|
|
|
1612 |
// Movement successfully queued!
|
|
|
1613 |
return true;
|
|
|
1614 |
}
|
|
|
1615 |
|
|
|
1616 |
/**
|
|
|
1617 |
* Planner::_populate_block
|
|
|
1618 |
*
|
|
|
1619 |
* Fills a new linear movement in the block (in terms of steps).
|
|
|
1620 |
*
|
|
|
1621 |
* target - target position in steps units
|
|
|
1622 |
* target_float - target position in mm (HAS_POSITION_FLOAT)
|
|
|
1623 |
* fr_mm_s - (target) speed of the move
|
|
|
1624 |
* extruder - target extruder
|
|
|
1625 |
* millimeters - the length of the movement, if known
|
|
|
1626 |
* count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
|
|
|
1627 |
*
|
|
|
1628 |
* Returns true is movement is acceptable, false otherwise
|
|
|
1629 |
*/
|
|
|
1630 |
bool Planner::_populate_block(block_t * const block, bool split_move,
|
|
|
1631 |
const int32_t (&target)[NUM_AXIS]
|
|
|
1632 |
#if HAS_POSITION_FLOAT
|
|
|
1633 |
, const float (&target_float)[NUM_AXIS]
|
|
|
1634 |
#endif
|
|
|
1635 |
, float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
|
|
|
1636 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
1637 |
, const bool count_it/*=true*/
|
|
|
1638 |
#endif
|
|
|
1639 |
) {
|
|
|
1640 |
|
|
|
1641 |
const int32_t da = target[A_AXIS] - position[A_AXIS],
|
|
|
1642 |
db = target[B_AXIS] - position[B_AXIS],
|
|
|
1643 |
dc = target[C_AXIS] - position[C_AXIS]
|
|
|
1644 |
#if ENABLED(HANGPRINTER)
|
|
|
1645 |
, dd = target[D_AXIS] - position[D_AXIS]
|
|
|
1646 |
#endif
|
|
|
1647 |
;
|
|
|
1648 |
int32_t de = target[E_AXIS] - position[E_AXIS];
|
|
|
1649 |
|
|
|
1650 |
/* <-- add a slash to enable
|
|
|
1651 |
SERIAL_ECHOPAIR(" _populate_block FR:", fr_mm_s);
|
|
|
1652 |
SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
|
|
|
1653 |
SERIAL_ECHOPAIR(" (", da);
|
|
|
1654 |
SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
|
|
|
1655 |
SERIAL_ECHOPAIR(" (", db);
|
|
|
1656 |
SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
|
|
|
1657 |
SERIAL_ECHOPAIR(" (", dc);
|
|
|
1658 |
SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
|
|
|
1659 |
SERIAL_ECHOPAIR(" (", de);
|
|
|
1660 |
SERIAL_ECHOLNPGM(" steps)");
|
|
|
1661 |
//*/
|
|
|
1662 |
|
|
|
1663 |
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
|
1664 |
if (de) {
|
|
|
1665 |
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
1666 |
if (thermalManager.tooColdToExtrude(extruder)) {
|
|
|
1667 |
if (COUNT_MOVE) {
|
|
|
1668 |
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
|
1669 |
#if HAS_POSITION_FLOAT
|
|
|
1670 |
position_float[E_AXIS] = target_float[E_AXIS];
|
|
|
1671 |
#endif
|
|
|
1672 |
}
|
|
|
1673 |
de = 0; // no difference
|
|
|
1674 |
SERIAL_ECHO_START();
|
|
|
1675 |
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
|
1676 |
}
|
|
|
1677 |
#endif // PREVENT_COLD_EXTRUSION
|
|
|
1678 |
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
|
1679 |
if (ABS(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
|
|
|
1680 |
if (COUNT_MOVE) {
|
|
|
1681 |
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
|
1682 |
#if HAS_POSITION_FLOAT
|
|
|
1683 |
position_float[E_AXIS] = target_float[E_AXIS];
|
|
|
1684 |
#endif
|
|
|
1685 |
}
|
|
|
1686 |
de = 0; // no difference
|
|
|
1687 |
SERIAL_ECHO_START();
|
|
|
1688 |
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
|
1689 |
}
|
|
|
1690 |
#endif // PREVENT_LENGTHY_EXTRUDE
|
|
|
1691 |
}
|
|
|
1692 |
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
|
|
|
1693 |
|
|
|
1694 |
// Compute direction bit-mask for this block
|
|
|
1695 |
uint8_t dm = 0;
|
|
|
1696 |
#if CORE_IS_XY
|
|
|
1697 |
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
1698 |
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
|
|
|
1699 |
if (dc < 0) SBI(dm, Z_AXIS);
|
|
|
1700 |
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
|
1701 |
if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
|
1702 |
#elif CORE_IS_XZ
|
|
|
1703 |
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
1704 |
if (db < 0) SBI(dm, Y_AXIS);
|
|
|
1705 |
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
|
1706 |
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
|
1707 |
if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
|
1708 |
#elif CORE_IS_YZ
|
|
|
1709 |
if (da < 0) SBI(dm, X_AXIS);
|
|
|
1710 |
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
|
|
|
1711 |
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
|
1712 |
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
|
1713 |
if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
|
1714 |
#elif ENABLED(HANGPRINTER)
|
|
|
1715 |
if (da < 0) SBI(dm, A_AXIS);
|
|
|
1716 |
if (db < 0) SBI(dm, B_AXIS);
|
|
|
1717 |
if (dc < 0) SBI(dm, C_AXIS);
|
|
|
1718 |
if (dd < 0) SBI(dm, D_AXIS);
|
|
|
1719 |
#else
|
|
|
1720 |
if (da < 0) SBI(dm, X_AXIS);
|
|
|
1721 |
if (db < 0) SBI(dm, Y_AXIS);
|
|
|
1722 |
if (dc < 0) SBI(dm, Z_AXIS);
|
|
|
1723 |
#endif
|
|
|
1724 |
if (de < 0) SBI(dm, E_AXIS);
|
|
|
1725 |
|
|
|
1726 |
const float esteps_float = de * e_factor[extruder];
|
|
|
1727 |
const uint32_t esteps = ABS(esteps_float) + 0.5f;
|
|
|
1728 |
|
|
|
1729 |
// Clear all flags, including the "busy" bit
|
|
|
1730 |
block->flag = 0x00;
|
|
|
1731 |
|
|
|
1732 |
// Set direction bits
|
|
|
1733 |
block->direction_bits = dm;
|
|
|
1734 |
|
|
|
1735 |
// Specify if block is to be counted or not
|
|
|
1736 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
1737 |
block->count_it = count_it;
|
|
|
1738 |
#endif
|
|
|
1739 |
|
|
|
1740 |
// Number of steps for each axis
|
|
|
1741 |
// See http://www.corexy.com/theory.html
|
|
|
1742 |
#if CORE_IS_XY
|
|
|
1743 |
block->steps[A_AXIS] = ABS(da + db);
|
|
|
1744 |
block->steps[B_AXIS] = ABS(da - db);
|
|
|
1745 |
block->steps[Z_AXIS] = ABS(dc);
|
|
|
1746 |
#elif CORE_IS_XZ
|
|
|
1747 |
block->steps[A_AXIS] = ABS(da + dc);
|
|
|
1748 |
block->steps[Y_AXIS] = ABS(db);
|
|
|
1749 |
block->steps[C_AXIS] = ABS(da - dc);
|
|
|
1750 |
#elif CORE_IS_YZ
|
|
|
1751 |
block->steps[X_AXIS] = ABS(da);
|
|
|
1752 |
block->steps[B_AXIS] = ABS(db + dc);
|
|
|
1753 |
block->steps[C_AXIS] = ABS(db - dc);
|
|
|
1754 |
#elif IS_SCARA
|
|
|
1755 |
block->steps[A_AXIS] = ABS(da);
|
|
|
1756 |
block->steps[B_AXIS] = ABS(db);
|
|
|
1757 |
block->steps[Z_AXIS] = ABS(dc);
|
|
|
1758 |
#elif ENABLED(HANGPRINTER)
|
|
|
1759 |
block->steps[A_AXIS] = ABS(da);
|
|
|
1760 |
block->steps[B_AXIS] = ABS(db);
|
|
|
1761 |
block->steps[C_AXIS] = ABS(dc);
|
|
|
1762 |
block->steps[D_AXIS] = ABS(dd);
|
|
|
1763 |
#else
|
|
|
1764 |
// default non-h-bot planning
|
|
|
1765 |
block->steps[A_AXIS] = ABS(da);
|
|
|
1766 |
block->steps[B_AXIS] = ABS(db);
|
|
|
1767 |
block->steps[C_AXIS] = ABS(dc);
|
|
|
1768 |
#endif
|
|
|
1769 |
|
|
|
1770 |
block->steps[E_AXIS] = esteps;
|
|
|
1771 |
|
|
|
1772 |
block->step_event_count = (
|
|
|
1773 |
#if ENABLED(HANGPRINTER)
|
|
|
1774 |
MAX5(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], block->steps[D_AXIS], esteps)
|
|
|
1775 |
#else
|
|
|
1776 |
MAX4(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], esteps)
|
|
|
1777 |
#endif
|
|
|
1778 |
);
|
|
|
1779 |
|
|
|
1780 |
// Bail if this is a zero-length block
|
|
|
1781 |
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;
|
|
|
1782 |
|
|
|
1783 |
// For a mixing extruder, get a magnified esteps for each
|
|
|
1784 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
1785 |
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
1786 |
block->mix_steps[i] = mixing_factor[i] * esteps;
|
|
|
1787 |
#endif
|
|
|
1788 |
|
|
|
1789 |
#if FAN_COUNT > 0
|
|
|
1790 |
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
|
|
|
1791 |
#endif
|
|
|
1792 |
|
|
|
1793 |
#if ENABLED(BARICUDA)
|
|
|
1794 |
block->valve_pressure = baricuda_valve_pressure;
|
|
|
1795 |
block->e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
|
1796 |
#endif
|
|
|
1797 |
|
|
|
1798 |
block->active_extruder = extruder;
|
|
|
1799 |
|
|
|
1800 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
1801 |
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS])
|
|
|
1802 |
powerManager.power_on();
|
|
|
1803 |
#endif
|
|
|
1804 |
|
|
|
1805 |
// Enable active axes
|
|
|
1806 |
#if CORE_IS_XY
|
|
|
1807 |
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
|
|
|
1808 |
enable_X();
|
|
|
1809 |
enable_Y();
|
|
|
1810 |
}
|
|
|
1811 |
#if DISABLED(Z_LATE_ENABLE)
|
|
|
1812 |
if (block->steps[Z_AXIS]) enable_Z();
|
|
|
1813 |
#endif
|
|
|
1814 |
#elif CORE_IS_XZ
|
|
|
1815 |
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
|
|
|
1816 |
enable_X();
|
|
|
1817 |
enable_Z();
|
|
|
1818 |
}
|
|
|
1819 |
if (block->steps[Y_AXIS]) enable_Y();
|
|
|
1820 |
#elif CORE_IS_YZ
|
|
|
1821 |
if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
|
|
|
1822 |
enable_Y();
|
|
|
1823 |
enable_Z();
|
|
|
1824 |
}
|
|
|
1825 |
if (block->steps[X_AXIS]) enable_X();
|
|
|
1826 |
#elif DISABLED(HANGPRINTER) // Hangprinters X, Y, Z, E0 axes should always be enabled anyways
|
|
|
1827 |
if (block->steps[X_AXIS]) enable_X();
|
|
|
1828 |
if (block->steps[Y_AXIS]) enable_Y();
|
|
|
1829 |
#if DISABLED(Z_LATE_ENABLE)
|
|
|
1830 |
if (block->steps[Z_AXIS]) enable_Z();
|
|
|
1831 |
#endif
|
|
|
1832 |
#endif
|
|
|
1833 |
|
|
|
1834 |
// Enable extruder(s)
|
|
|
1835 |
if (esteps) {
|
|
|
1836 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
1837 |
powerManager.power_on();
|
|
|
1838 |
#endif
|
|
|
1839 |
|
|
|
1840 |
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
|
|
|
1841 |
|
|
|
1842 |
#define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
|
|
|
1843 |
|
|
|
1844 |
for (uint8_t i = 0; i < EXTRUDERS; i++)
|
|
|
1845 |
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
|
|
|
1846 |
|
|
|
1847 |
switch (extruder) {
|
|
|
1848 |
case 0:
|
|
|
1849 |
#if EXTRUDERS > 1
|
|
|
1850 |
DISABLE_IDLE_E(1);
|
|
|
1851 |
#if EXTRUDERS > 2
|
|
|
1852 |
DISABLE_IDLE_E(2);
|
|
|
1853 |
#if EXTRUDERS > 3
|
|
|
1854 |
DISABLE_IDLE_E(3);
|
|
|
1855 |
#if EXTRUDERS > 4
|
|
|
1856 |
DISABLE_IDLE_E(4);
|
|
|
1857 |
#endif // EXTRUDERS > 4
|
|
|
1858 |
#endif // EXTRUDERS > 3
|
|
|
1859 |
#endif // EXTRUDERS > 2
|
|
|
1860 |
#endif // EXTRUDERS > 1
|
|
|
1861 |
enable_E0();
|
|
|
1862 |
g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
|
|
|
1863 |
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
1864 |
if (extruder_duplication_enabled) {
|
|
|
1865 |
enable_E1();
|
|
|
1866 |
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
|
|
|
1867 |
}
|
|
|
1868 |
#endif
|
|
|
1869 |
break;
|
|
|
1870 |
#if EXTRUDERS > 1
|
|
|
1871 |
case 1:
|
|
|
1872 |
DISABLE_IDLE_E(0);
|
|
|
1873 |
#if EXTRUDERS > 2
|
|
|
1874 |
DISABLE_IDLE_E(2);
|
|
|
1875 |
#if EXTRUDERS > 3
|
|
|
1876 |
DISABLE_IDLE_E(3);
|
|
|
1877 |
#if EXTRUDERS > 4
|
|
|
1878 |
DISABLE_IDLE_E(4);
|
|
|
1879 |
#endif // EXTRUDERS > 4
|
|
|
1880 |
#endif // EXTRUDERS > 3
|
|
|
1881 |
#endif // EXTRUDERS > 2
|
|
|
1882 |
enable_E1();
|
|
|
1883 |
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
|
|
|
1884 |
break;
|
|
|
1885 |
#if EXTRUDERS > 2
|
|
|
1886 |
case 2:
|
|
|
1887 |
DISABLE_IDLE_E(0);
|
|
|
1888 |
DISABLE_IDLE_E(1);
|
|
|
1889 |
#if EXTRUDERS > 3
|
|
|
1890 |
DISABLE_IDLE_E(3);
|
|
|
1891 |
#if EXTRUDERS > 4
|
|
|
1892 |
DISABLE_IDLE_E(4);
|
|
|
1893 |
#endif
|
|
|
1894 |
#endif
|
|
|
1895 |
enable_E2();
|
|
|
1896 |
g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
|
|
|
1897 |
break;
|
|
|
1898 |
#if EXTRUDERS > 3
|
|
|
1899 |
case 3:
|
|
|
1900 |
DISABLE_IDLE_E(0);
|
|
|
1901 |
DISABLE_IDLE_E(1);
|
|
|
1902 |
DISABLE_IDLE_E(2);
|
|
|
1903 |
#if EXTRUDERS > 4
|
|
|
1904 |
DISABLE_IDLE_E(4);
|
|
|
1905 |
#endif
|
|
|
1906 |
enable_E3();
|
|
|
1907 |
g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
|
|
|
1908 |
break;
|
|
|
1909 |
#if EXTRUDERS > 4
|
|
|
1910 |
case 4:
|
|
|
1911 |
DISABLE_IDLE_E(0);
|
|
|
1912 |
DISABLE_IDLE_E(1);
|
|
|
1913 |
DISABLE_IDLE_E(2);
|
|
|
1914 |
DISABLE_IDLE_E(3);
|
|
|
1915 |
enable_E4();
|
|
|
1916 |
g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
|
|
|
1917 |
break;
|
|
|
1918 |
#endif // EXTRUDERS > 4
|
|
|
1919 |
#endif // EXTRUDERS > 3
|
|
|
1920 |
#endif // EXTRUDERS > 2
|
|
|
1921 |
#endif // EXTRUDERS > 1
|
|
|
1922 |
}
|
|
|
1923 |
#else
|
|
|
1924 |
enable_E0();
|
|
|
1925 |
enable_E1();
|
|
|
1926 |
enable_E2();
|
|
|
1927 |
enable_E3();
|
|
|
1928 |
enable_E4();
|
|
|
1929 |
#endif
|
|
|
1930 |
}
|
|
|
1931 |
|
|
|
1932 |
if (esteps)
|
|
|
1933 |
NOLESS(fr_mm_s, min_feedrate_mm_s);
|
|
|
1934 |
else
|
|
|
1935 |
NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
|
|
|
1936 |
|
|
|
1937 |
/**
|
|
|
1938 |
* This part of the code calculates the total length of the movement.
|
|
|
1939 |
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
|
|
1940 |
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
|
|
1941 |
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
|
|
1942 |
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
|
|
1943 |
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
|
|
1944 |
*/
|
|
|
1945 |
#if IS_CORE
|
|
|
1946 |
float delta_mm[Z_HEAD + 1];
|
|
|
1947 |
#if CORE_IS_XY
|
|
|
1948 |
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
|
1949 |
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
|
1950 |
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
|
|
1951 |
delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
|
|
|
1952 |
delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
|
|
|
1953 |
#elif CORE_IS_XZ
|
|
|
1954 |
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
|
1955 |
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
|
|
1956 |
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
|
1957 |
delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
|
|
|
1958 |
delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
|
|
|
1959 |
#elif CORE_IS_YZ
|
|
|
1960 |
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
|
|
1961 |
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
|
1962 |
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
|
1963 |
delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
|
|
|
1964 |
delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
|
|
|
1965 |
#endif
|
|
|
1966 |
#else
|
|
|
1967 |
float delta_mm[NUM_AXIS];
|
|
|
1968 |
delta_mm[A_AXIS] = da * steps_to_mm[A_AXIS];
|
|
|
1969 |
delta_mm[B_AXIS] = db * steps_to_mm[B_AXIS];
|
|
|
1970 |
delta_mm[C_AXIS] = dc * steps_to_mm[C_AXIS];
|
|
|
1971 |
#if ENABLED(HANGPRINTER)
|
|
|
1972 |
delta_mm[D_AXIS] = dd * steps_to_mm[D_AXIS];
|
|
|
1973 |
#endif
|
|
|
1974 |
#endif
|
|
|
1975 |
delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
|
|
|
1976 |
|
|
|
1977 |
if (block->steps[A_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[B_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[C_AXIS] < MIN_STEPS_PER_SEGMENT
|
|
|
1978 |
#if ENABLED(HANGPRINTER)
|
|
|
1979 |
&& block->steps[D_AXIS] < MIN_STEPS_PER_SEGMENT
|
|
|
1980 |
#endif
|
|
|
1981 |
) {
|
|
|
1982 |
block->millimeters = ABS(delta_mm[E_AXIS]);
|
|
|
1983 |
}
|
|
|
1984 |
else if (!millimeters) {
|
|
|
1985 |
block->millimeters = SQRT(
|
|
|
1986 |
#if CORE_IS_XY
|
|
|
1987 |
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
|
|
|
1988 |
#elif CORE_IS_XZ
|
|
|
1989 |
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
|
|
|
1990 |
#elif CORE_IS_YZ
|
|
|
1991 |
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
|
|
|
1992 |
#elif ENABLED(HANGPRINTER)
|
|
|
1993 |
sq(delta_mm[A_AXIS]) + sq(delta_mm[B_AXIS]) + sq(delta_mm[C_AXIS]) + sq(delta_mm[D_AXIS])
|
|
|
1994 |
#else
|
|
|
1995 |
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
|
|
|
1996 |
#endif
|
|
|
1997 |
);
|
|
|
1998 |
}
|
|
|
1999 |
else
|
|
|
2000 |
block->millimeters = millimeters;
|
|
|
2001 |
|
|
|
2002 |
const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
2003 |
|
|
|
2004 |
// Calculate inverse time for this move. No divide by zero due to previous checks.
|
|
|
2005 |
// Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
|
|
|
2006 |
float inverse_secs = fr_mm_s * inverse_millimeters;
|
|
|
2007 |
|
|
|
2008 |
// Get the number of non busy movements in queue (non busy means that they can be altered)
|
|
|
2009 |
const uint8_t moves_queued = nonbusy_movesplanned();
|
|
|
2010 |
|
|
|
2011 |
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
|
2012 |
#if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
|
|
|
2013 |
// Segment time im micro seconds
|
|
|
2014 |
uint32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
|
|
|
2015 |
#endif
|
|
|
2016 |
|
|
|
2017 |
#if ENABLED(SLOWDOWN)
|
|
|
2018 |
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
|
|
|
2019 |
if (segment_time_us < min_segment_time_us) {
|
|
|
2020 |
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
|
2021 |
const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued);
|
|
|
2022 |
inverse_secs = 1000000.0f / nst;
|
|
|
2023 |
#if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
|
|
|
2024 |
segment_time_us = nst;
|
|
|
2025 |
#endif
|
|
|
2026 |
}
|
|
|
2027 |
}
|
|
|
2028 |
#endif
|
|
|
2029 |
|
|
|
2030 |
#if ENABLED(ULTRA_LCD)
|
|
|
2031 |
// Protect the access to the position.
|
|
|
2032 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
2033 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2034 |
|
|
|
2035 |
block_buffer_runtime_us += segment_time_us;
|
|
|
2036 |
|
|
|
2037 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2038 |
#endif
|
|
|
2039 |
|
|
|
2040 |
block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0
|
|
|
2041 |
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
|
2042 |
|
|
|
2043 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
2044 |
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
|
|
|
2045 |
|
|
|
2046 |
//FMM update ring buffer used for delay with filament measurements
|
|
|
2047 |
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
|
|
|
2048 |
|
|
|
2049 |
constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
|
|
|
2050 |
|
|
|
2051 |
// increment counters with next move in e axis
|
|
|
2052 |
filwidth_e_count += delta_mm[E_AXIS];
|
|
|
2053 |
filwidth_delay_dist += delta_mm[E_AXIS];
|
|
|
2054 |
|
|
|
2055 |
// Only get new measurements on forward E movement
|
|
|
2056 |
if (!UNEAR_ZERO(filwidth_e_count)) {
|
|
|
2057 |
|
|
|
2058 |
// Loop the delay distance counter (modulus by the mm length)
|
|
|
2059 |
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
|
|
|
2060 |
|
|
|
2061 |
// Convert into an index into the measurement array
|
|
|
2062 |
filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1f);
|
|
|
2063 |
|
|
|
2064 |
// If the index has changed (must have gone forward)...
|
|
|
2065 |
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
|
|
|
2066 |
filwidth_e_count = 0; // Reset the E movement counter
|
|
|
2067 |
const int8_t meas_sample = thermalManager.widthFil_to_size_ratio();
|
|
|
2068 |
do {
|
|
|
2069 |
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
|
|
|
2070 |
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
|
|
|
2071 |
} while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
|
|
|
2072 |
}
|
|
|
2073 |
}
|
|
|
2074 |
}
|
|
|
2075 |
#endif
|
|
|
2076 |
|
|
|
2077 |
// Calculate and limit speed in mm/sec for each axis
|
|
|
2078 |
float current_speed[NUM_AXIS], speed_factor = 1.0f; // factor <1 decreases speed
|
|
|
2079 |
LOOP_NUM_AXIS(i) {
|
|
|
2080 |
const float cs = ABS((current_speed[i] = delta_mm[i] * inverse_secs));
|
|
|
2081 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2082 |
if (i == E_AXIS) i += extruder;
|
|
|
2083 |
#endif
|
|
|
2084 |
if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
|
|
|
2085 |
}
|
|
|
2086 |
|
|
|
2087 |
// Max segment time in µs.
|
|
|
2088 |
#ifdef XY_FREQUENCY_LIMIT
|
|
|
2089 |
|
|
|
2090 |
// Check and limit the xy direction change frequency
|
|
|
2091 |
const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
|
|
2092 |
old_direction_bits = block->direction_bits;
|
|
|
2093 |
segment_time_us = LROUND((float)segment_time_us / speed_factor);
|
|
|
2094 |
|
|
|
2095 |
uint32_t xs0 = axis_segment_time_us[X_AXIS][0],
|
|
|
2096 |
xs1 = axis_segment_time_us[X_AXIS][1],
|
|
|
2097 |
xs2 = axis_segment_time_us[X_AXIS][2],
|
|
|
2098 |
ys0 = axis_segment_time_us[Y_AXIS][0],
|
|
|
2099 |
ys1 = axis_segment_time_us[Y_AXIS][1],
|
|
|
2100 |
ys2 = axis_segment_time_us[Y_AXIS][2];
|
|
|
2101 |
|
|
|
2102 |
if (TEST(direction_change, X_AXIS)) {
|
|
|
2103 |
xs2 = axis_segment_time_us[X_AXIS][2] = xs1;
|
|
|
2104 |
xs1 = axis_segment_time_us[X_AXIS][1] = xs0;
|
|
|
2105 |
xs0 = 0;
|
|
|
2106 |
}
|
|
|
2107 |
xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us;
|
|
|
2108 |
|
|
|
2109 |
if (TEST(direction_change, Y_AXIS)) {
|
|
|
2110 |
ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1];
|
|
|
2111 |
ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0];
|
|
|
2112 |
ys0 = 0;
|
|
|
2113 |
}
|
|
|
2114 |
ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us;
|
|
|
2115 |
|
|
|
2116 |
const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2),
|
|
|
2117 |
max_y_segment_time = MAX3(ys0, ys1, ys2),
|
|
|
2118 |
min_xy_segment_time = MIN(max_x_segment_time, max_y_segment_time);
|
|
|
2119 |
if (min_xy_segment_time < MAX_FREQ_TIME_US) {
|
|
|
2120 |
const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
|
|
|
2121 |
NOMORE(speed_factor, low_sf);
|
|
|
2122 |
}
|
|
|
2123 |
#endif // XY_FREQUENCY_LIMIT
|
|
|
2124 |
|
|
|
2125 |
// Correct the speed
|
|
|
2126 |
if (speed_factor < 1.0f) {
|
|
|
2127 |
LOOP_NUM_AXIS(i) current_speed[i] *= speed_factor;
|
|
|
2128 |
block->nominal_rate *= speed_factor;
|
|
|
2129 |
block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor);
|
|
|
2130 |
}
|
|
|
2131 |
|
|
|
2132 |
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
2133 |
const float steps_per_mm = block->step_event_count * inverse_millimeters;
|
|
|
2134 |
uint32_t accel;
|
|
|
2135 |
if (!block->steps[A_AXIS] && !block->steps[B_AXIS] && !block->steps[C_AXIS]
|
|
|
2136 |
#if ENABLED(HANGPRINTER)
|
|
|
2137 |
&& !block->steps[D_AXIS]
|
|
|
2138 |
#endif
|
|
|
2139 |
) {
|
|
|
2140 |
// convert to: acceleration steps/sec^2
|
|
|
2141 |
accel = CEIL(retract_acceleration * steps_per_mm);
|
|
|
2142 |
#if ENABLED(LIN_ADVANCE)
|
|
|
2143 |
block->use_advance_lead = false;
|
|
|
2144 |
#endif
|
|
|
2145 |
}
|
|
|
2146 |
else {
|
|
|
2147 |
#define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
|
|
|
2148 |
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
|
|
|
2149 |
const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
|
|
|
2150 |
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
|
|
|
2151 |
} \
|
|
|
2152 |
}while(0)
|
|
|
2153 |
|
|
|
2154 |
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
|
|
|
2155 |
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
|
|
|
2156 |
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
|
|
|
2157 |
if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
|
|
|
2158 |
} \
|
|
|
2159 |
}while(0)
|
|
|
2160 |
|
|
|
2161 |
// Start with print or travel acceleration
|
|
|
2162 |
accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
|
|
|
2163 |
|
|
|
2164 |
#if ENABLED(LIN_ADVANCE)
|
|
|
2165 |
|
|
|
2166 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
2167 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2168 |
#define MAX_E_JERK max_e_jerk[extruder]
|
|
|
2169 |
#else
|
|
|
2170 |
#define MAX_E_JERK max_e_jerk
|
|
|
2171 |
#endif
|
|
|
2172 |
#else
|
|
|
2173 |
#define MAX_E_JERK max_jerk[E_AXIS]
|
|
|
2174 |
#endif
|
|
|
2175 |
|
|
|
2176 |
/**
|
|
|
2177 |
*
|
|
|
2178 |
* Use LIN_ADVANCE for blocks if all these are true:
|
|
|
2179 |
*
|
|
|
2180 |
* esteps : This is a print move, because we checked for A, B, C steps before.
|
|
|
2181 |
*
|
|
|
2182 |
* extruder_advance_K : There is an advance factor set.
|
|
|
2183 |
*
|
|
|
2184 |
* de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
|
|
2185 |
*/
|
|
|
2186 |
block->use_advance_lead = esteps
|
|
|
2187 |
&& extruder_advance_K
|
|
|
2188 |
&& de > 0;
|
|
|
2189 |
|
|
|
2190 |
if (block->use_advance_lead) {
|
|
|
2191 |
block->e_D_ratio = (target_float[E_AXIS] - position_float[E_AXIS]) /
|
|
|
2192 |
#if IS_KINEMATIC
|
|
|
2193 |
block->millimeters
|
|
|
2194 |
#else
|
|
|
2195 |
SQRT(sq(target_float[X_AXIS] - position_float[X_AXIS])
|
|
|
2196 |
+ sq(target_float[Y_AXIS] - position_float[Y_AXIS])
|
|
|
2197 |
+ sq(target_float[Z_AXIS] - position_float[Z_AXIS]))
|
|
|
2198 |
#endif
|
|
|
2199 |
;
|
|
|
2200 |
|
|
|
2201 |
// Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
|
|
|
2202 |
// This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
|
|
|
2203 |
if (block->e_D_ratio > 3.0f)
|
|
|
2204 |
block->use_advance_lead = false;
|
|
|
2205 |
else {
|
|
|
2206 |
const uint32_t max_accel_steps_per_s2 = MAX_E_JERK / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
|
|
|
2207 |
#if ENABLED(LA_DEBUG)
|
|
|
2208 |
if (accel > max_accel_steps_per_s2) SERIAL_ECHOLNPGM("Acceleration limited.");
|
|
|
2209 |
#endif
|
|
|
2210 |
NOMORE(accel, max_accel_steps_per_s2);
|
|
|
2211 |
}
|
|
|
2212 |
}
|
|
|
2213 |
#endif
|
|
|
2214 |
|
|
|
2215 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2216 |
#define ACCEL_IDX extruder
|
|
|
2217 |
#else
|
|
|
2218 |
#define ACCEL_IDX 0
|
|
|
2219 |
#endif
|
|
|
2220 |
|
|
|
2221 |
// Limit acceleration per axis
|
|
|
2222 |
if (block->step_event_count <= cutoff_long) {
|
|
|
2223 |
LIMIT_ACCEL_LONG(A_AXIS, 0);
|
|
|
2224 |
LIMIT_ACCEL_LONG(B_AXIS, 0);
|
|
|
2225 |
LIMIT_ACCEL_LONG(C_AXIS, 0);
|
|
|
2226 |
#if ENABLED(HANGPRINTER)
|
|
|
2227 |
LIMIT_ACCEL_LONG(D_AXIS, 0);
|
|
|
2228 |
#endif
|
|
|
2229 |
LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
|
|
|
2230 |
}
|
|
|
2231 |
else {
|
|
|
2232 |
LIMIT_ACCEL_FLOAT(A_AXIS, 0);
|
|
|
2233 |
LIMIT_ACCEL_FLOAT(B_AXIS, 0);
|
|
|
2234 |
LIMIT_ACCEL_FLOAT(C_AXIS, 0);
|
|
|
2235 |
#if ENABLED(HANGPRINTER)
|
|
|
2236 |
LIMIT_ACCEL_FLOAT(D_AXIS, 0);
|
|
|
2237 |
#endif
|
|
|
2238 |
LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
|
|
|
2239 |
}
|
|
|
2240 |
}
|
|
|
2241 |
block->acceleration_steps_per_s2 = accel;
|
|
|
2242 |
block->acceleration = accel / steps_per_mm;
|
|
|
2243 |
#if DISABLED(S_CURVE_ACCELERATION)
|
|
|
2244 |
block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE)));
|
|
|
2245 |
#endif
|
|
|
2246 |
#if ENABLED(LIN_ADVANCE)
|
|
|
2247 |
if (block->use_advance_lead) {
|
|
|
2248 |
block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS_N]);
|
|
|
2249 |
#if ENABLED(LA_DEBUG)
|
|
|
2250 |
if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio)
|
|
|
2251 |
SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
|
|
|
2252 |
if (block->advance_speed < 200)
|
|
|
2253 |
SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
|
|
|
2254 |
#endif
|
|
|
2255 |
}
|
|
|
2256 |
#endif
|
|
|
2257 |
|
|
|
2258 |
float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2
|
|
|
2259 |
|
|
|
2260 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
2261 |
|
|
|
2262 |
/**
|
|
|
2263 |
* Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
|
|
2264 |
* Let a circle be tangent to both previous and current path line segments, where the junction
|
|
|
2265 |
* deviation is defined as the distance from the junction to the closest edge of the circle,
|
|
|
2266 |
* colinear with the circle center. The circular segment joining the two paths represents the
|
|
|
2267 |
* path of centripetal acceleration. Solve for max velocity based on max acceleration about the
|
|
|
2268 |
* radius of the circle, defined indirectly by junction deviation. This may be also viewed as
|
|
|
2269 |
* path width or max_jerk in the previous Grbl version. This approach does not actually deviate
|
|
|
2270 |
* from path, but used as a robust way to compute cornering speeds, as it takes into account the
|
|
|
2271 |
* nonlinearities of both the junction angle and junction velocity.
|
|
|
2272 |
*
|
|
|
2273 |
* NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
|
|
|
2274 |
* mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
|
|
|
2275 |
* stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
|
|
|
2276 |
* is exactly the same. Instead of motioning all the way to junction point, the machine will
|
|
|
2277 |
* just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
|
|
|
2278 |
* a continuous mode path, but ARM-based microcontrollers most certainly do.
|
|
|
2279 |
*
|
|
|
2280 |
* NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
|
|
|
2281 |
* changed dynamically during operation nor can the line move geometry. This must be kept in
|
|
|
2282 |
* memory in the event of a feedrate override changing the nominal speeds of blocks, which can
|
|
|
2283 |
* change the overall maximum entry speed conditions of all blocks.
|
|
|
2284 |
*
|
|
|
2285 |
* #######
|
|
|
2286 |
* https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
|
|
|
2287 |
*
|
|
|
2288 |
* hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
|
|
|
2289 |
Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
|
|
|
2290 |
on then on anything with less sides than an octagon. With this, and the
|
|
|
2291 |
reverse pass actually recalculating things, a corner acceleration value
|
|
|
2292 |
of 1000 junction deviation of .05 are pretty reasonable. If the cycles
|
|
|
2293 |
can be spared, a better acos could be used. For all I know, it may be
|
|
|
2294 |
already calculated in a different place. */
|
|
|
2295 |
|
|
|
2296 |
// Unit vector of previous path line segment
|
|
|
2297 |
static float previous_unit_vec[XYZE];
|
|
|
2298 |
|
|
|
2299 |
float unit_vec[] = {
|
|
|
2300 |
delta_mm[A_AXIS] * inverse_millimeters,
|
|
|
2301 |
delta_mm[B_AXIS] * inverse_millimeters,
|
|
|
2302 |
delta_mm[C_AXIS] * inverse_millimeters,
|
|
|
2303 |
delta_mm[E_AXIS] * inverse_millimeters
|
|
|
2304 |
};
|
|
|
2305 |
|
|
|
2306 |
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
|
|
2307 |
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
|
|
|
2308 |
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
|
|
2309 |
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
|
|
2310 |
float junction_cos_theta = -previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
|
|
2311 |
-previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
|
|
2312 |
-previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS]
|
|
|
2313 |
-previous_unit_vec[E_AXIS] * unit_vec[E_AXIS]
|
|
|
2314 |
;
|
|
|
2315 |
|
|
|
2316 |
// NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
|
|
|
2317 |
if (junction_cos_theta > 0.999999f) {
|
|
|
2318 |
// For a 0 degree acute junction, just set minimum junction speed.
|
|
|
2319 |
vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
|
|
|
2320 |
}
|
|
|
2321 |
else {
|
|
|
2322 |
NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
|
|
|
2323 |
|
|
|
2324 |
// Convert delta vector to unit vector
|
|
|
2325 |
float junction_unit_vec[XYZE] = {
|
|
|
2326 |
unit_vec[X_AXIS] - previous_unit_vec[X_AXIS],
|
|
|
2327 |
unit_vec[Y_AXIS] - previous_unit_vec[Y_AXIS],
|
|
|
2328 |
unit_vec[Z_AXIS] - previous_unit_vec[Z_AXIS],
|
|
|
2329 |
unit_vec[E_AXIS] - previous_unit_vec[E_AXIS]
|
|
|
2330 |
};
|
|
|
2331 |
normalize_junction_vector(junction_unit_vec);
|
|
|
2332 |
|
|
|
2333 |
const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec),
|
|
|
2334 |
sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
|
|
|
2335 |
|
|
|
2336 |
vmax_junction_sqr = (junction_acceleration * junction_deviation_mm * sin_theta_d2) / (1.0f - sin_theta_d2);
|
|
|
2337 |
if (block->millimeters < 1) {
|
|
|
2338 |
|
|
|
2339 |
// Fast acos approximation, minus the error bar to be safe
|
|
|
2340 |
const float junction_theta = (RADIANS(-40) * sq(junction_cos_theta) - RADIANS(50)) * junction_cos_theta + RADIANS(90) - 0.18f;
|
|
|
2341 |
|
|
|
2342 |
// If angle is greater than 135 degrees (octagon), find speed for approximate arc
|
|
|
2343 |
if (junction_theta > RADIANS(135)) {
|
|
|
2344 |
const float limit_sqr = block->millimeters / (RADIANS(180) - junction_theta) * junction_acceleration;
|
|
|
2345 |
NOMORE(vmax_junction_sqr, limit_sqr);
|
|
|
2346 |
}
|
|
|
2347 |
}
|
|
|
2348 |
}
|
|
|
2349 |
|
|
|
2350 |
// Get the lowest speed
|
|
|
2351 |
vmax_junction_sqr = MIN3(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr);
|
|
|
2352 |
}
|
|
|
2353 |
else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
|
|
|
2354 |
vmax_junction_sqr = 0;
|
|
|
2355 |
|
|
|
2356 |
COPY(previous_unit_vec, unit_vec);
|
|
|
2357 |
|
|
|
2358 |
#else // Classic Jerk Limiting
|
|
|
2359 |
|
|
|
2360 |
/**
|
|
|
2361 |
* Adapted from Průša MKS firmware
|
|
|
2362 |
* https://github.com/prusa3d/Prusa-Firmware
|
|
|
2363 |
*/
|
|
|
2364 |
const float nominal_speed = SQRT(block->nominal_speed_sqr);
|
|
|
2365 |
|
|
|
2366 |
// Exit speed limited by a jerk to full halt of a previous last segment
|
|
|
2367 |
static float previous_safe_speed;
|
|
|
2368 |
|
|
|
2369 |
// Start with a safe speed (from which the machine may halt to stop immediately).
|
|
|
2370 |
float safe_speed = nominal_speed;
|
|
|
2371 |
|
|
|
2372 |
uint8_t limited = 0;
|
|
|
2373 |
LOOP_NUM_AXIS(i) {
|
|
|
2374 |
const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis
|
|
|
2375 |
maxj = max_jerk[i]; // mj : The max jerk setting for this axis
|
|
|
2376 |
if (jerk > maxj) { // cs > mj : New current speed too fast?
|
|
|
2377 |
if (limited) { // limited already?
|
|
|
2378 |
const float mjerk = nominal_speed * maxj; // ns*mj
|
|
|
2379 |
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
|
|
|
2380 |
}
|
|
|
2381 |
else {
|
|
|
2382 |
safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs
|
|
|
2383 |
++limited; // Initially limited
|
|
|
2384 |
}
|
|
|
2385 |
}
|
|
|
2386 |
}
|
|
|
2387 |
|
|
|
2388 |
float vmax_junction;
|
|
|
2389 |
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
|
|
|
2390 |
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
|
2391 |
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
|
2392 |
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
|
|
|
2393 |
|
|
|
2394 |
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
|
2395 |
float v_factor = 1;
|
|
|
2396 |
limited = 0;
|
|
|
2397 |
|
|
|
2398 |
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
|
|
|
2399 |
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
|
|
|
2400 |
const float previous_nominal_speed = SQRT(previous_nominal_speed_sqr);
|
|
|
2401 |
vmax_junction = MIN(nominal_speed, previous_nominal_speed);
|
|
|
2402 |
|
|
|
2403 |
// Now limit the jerk in all axes.
|
|
|
2404 |
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
|
|
|
2405 |
LOOP_NUM_AXIS(axis) {
|
|
|
2406 |
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
|
|
|
2407 |
float v_exit = previous_speed[axis] * smaller_speed_factor,
|
|
|
2408 |
v_entry = current_speed[axis];
|
|
|
2409 |
if (limited) {
|
|
|
2410 |
v_exit *= v_factor;
|
|
|
2411 |
v_entry *= v_factor;
|
|
|
2412 |
}
|
|
|
2413 |
|
|
|
2414 |
// Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
|
|
|
2415 |
const float jerk = (v_exit > v_entry)
|
|
|
2416 |
? // coasting axis reversal
|
|
|
2417 |
( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : MAX(v_exit, -v_entry) )
|
|
|
2418 |
: // v_exit <= v_entry coasting axis reversal
|
|
|
2419 |
( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : MAX(-v_exit, v_entry) );
|
|
|
2420 |
|
|
|
2421 |
if (jerk > max_jerk[axis]) {
|
|
|
2422 |
v_factor *= max_jerk[axis] / jerk;
|
|
|
2423 |
++limited;
|
|
|
2424 |
}
|
|
|
2425 |
}
|
|
|
2426 |
if (limited) vmax_junction *= v_factor;
|
|
|
2427 |
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
|
|
|
2428 |
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
|
|
|
2429 |
const float vmax_junction_threshold = vmax_junction * 0.99f;
|
|
|
2430 |
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
|
|
|
2431 |
vmax_junction = safe_speed;
|
|
|
2432 |
}
|
|
|
2433 |
else
|
|
|
2434 |
vmax_junction = safe_speed;
|
|
|
2435 |
|
|
|
2436 |
previous_safe_speed = safe_speed;
|
|
|
2437 |
vmax_junction_sqr = sq(vmax_junction);
|
|
|
2438 |
|
|
|
2439 |
#endif // Classic Jerk Limiting
|
|
|
2440 |
|
|
|
2441 |
// Max entry speed of this block equals the max exit speed of the previous block.
|
|
|
2442 |
block->max_entry_speed_sqr = vmax_junction_sqr;
|
|
|
2443 |
|
|
|
2444 |
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
|
|
2445 |
const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters);
|
|
|
2446 |
|
|
|
2447 |
// If we are trying to add a split block, start with the
|
|
|
2448 |
// max. allowed speed to avoid an interrupted first move.
|
|
|
2449 |
block->entry_speed_sqr = !split_move ? sq(float(MINIMUM_PLANNER_SPEED)) : MIN(vmax_junction_sqr, v_allowable_sqr);
|
|
|
2450 |
|
|
|
2451 |
// Initialize planner efficiency flags
|
|
|
2452 |
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
|
|
|
2453 |
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
|
|
2454 |
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
|
|
2455 |
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
|
|
2456 |
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
|
2457 |
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
|
2458 |
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
|
2459 |
block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE;
|
|
|
2460 |
|
|
|
2461 |
// Update previous path unit_vector and nominal speed
|
|
|
2462 |
COPY(previous_speed, current_speed);
|
|
|
2463 |
previous_nominal_speed_sqr = block->nominal_speed_sqr;
|
|
|
2464 |
|
|
|
2465 |
// Update the position (only when a move was queued)
|
|
|
2466 |
static_assert(COUNT(target) > 1, "Parameter to _populate_block must be (&target)["
|
|
|
2467 |
#if ENABLED(HANGPRINTER)
|
|
|
2468 |
"ABCD"
|
|
|
2469 |
#else
|
|
|
2470 |
"XYZ"
|
|
|
2471 |
#endif
|
|
|
2472 |
"E]!"
|
|
|
2473 |
);
|
|
|
2474 |
|
|
|
2475 |
if (COUNT_MOVE) {
|
|
|
2476 |
COPY(position, target);
|
|
|
2477 |
#if HAS_POSITION_FLOAT
|
|
|
2478 |
COPY(position_float, target_float);
|
|
|
2479 |
#endif
|
|
|
2480 |
}
|
|
|
2481 |
|
|
|
2482 |
// Movement was accepted
|
|
|
2483 |
return true;
|
|
|
2484 |
} // _populate_block()
|
|
|
2485 |
|
|
|
2486 |
/**
|
|
|
2487 |
* Planner::buffer_sync_block
|
|
|
2488 |
* Add a block to the buffer that just updates the position
|
|
|
2489 |
*/
|
|
|
2490 |
void Planner::buffer_sync_block() {
|
|
|
2491 |
// Wait for the next available block
|
|
|
2492 |
uint8_t next_buffer_head;
|
|
|
2493 |
block_t * const block = get_next_free_block(next_buffer_head);
|
|
|
2494 |
|
|
|
2495 |
// Clear block
|
|
|
2496 |
memset(block, 0, sizeof(block_t));
|
|
|
2497 |
|
|
|
2498 |
block->flag = BLOCK_FLAG_SYNC_POSITION;
|
|
|
2499 |
|
|
|
2500 |
block->position[A_AXIS] = position[A_AXIS];
|
|
|
2501 |
block->position[B_AXIS] = position[B_AXIS];
|
|
|
2502 |
block->position[C_AXIS] = position[C_AXIS];
|
|
|
2503 |
#if ENABLED(HANGPRINTER)
|
|
|
2504 |
block->position[D_AXIS] = position[D_AXIS];
|
|
|
2505 |
#endif
|
|
|
2506 |
block->position[E_AXIS] = position[E_AXIS];
|
|
|
2507 |
|
|
|
2508 |
// If this is the first added movement, reload the delay, otherwise, cancel it.
|
|
|
2509 |
if (block_buffer_head == block_buffer_tail) {
|
|
|
2510 |
// If it was the first queued block, restart the 1st block delivery delay, to
|
|
|
2511 |
// give the planner an opportunity to queue more movements and plan them
|
|
|
2512 |
// As there are no queued movements, the Stepper ISR will not touch this
|
|
|
2513 |
// variable, so there is no risk setting this here (but it MUST be done
|
|
|
2514 |
// before the following line!!)
|
|
|
2515 |
delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
|
|
|
2516 |
}
|
|
|
2517 |
|
|
|
2518 |
block_buffer_head = next_buffer_head;
|
|
|
2519 |
|
|
|
2520 |
stepper.wake_up();
|
|
|
2521 |
} // buffer_sync_block()
|
|
|
2522 |
|
|
|
2523 |
/**
|
|
|
2524 |
* Planner::buffer_segment
|
|
|
2525 |
*
|
|
|
2526 |
* Add a new linear movement to the buffer in axis units.
|
|
|
2527 |
*
|
|
|
2528 |
* Leveling and kinematics should be applied ahead of calling this.
|
|
|
2529 |
*
|
|
|
2530 |
* a,b,c,e - target positions in mm and/or degrees
|
|
|
2531 |
* fr_mm_s - (target) speed of the move
|
|
|
2532 |
* extruder - target extruder
|
|
|
2533 |
* millimeters - the length of the movement, if known
|
|
|
2534 |
*/
|
|
|
2535 |
bool Planner::buffer_segment(const float &a, const float &b, const float &c
|
|
|
2536 |
#if ENABLED(HANGPRINTER)
|
|
|
2537 |
, const float &d
|
|
|
2538 |
#endif
|
|
|
2539 |
, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
|
|
|
2540 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
2541 |
, bool count_it /* = true */
|
|
|
2542 |
#endif
|
|
|
2543 |
) {
|
|
|
2544 |
|
|
|
2545 |
// If we are cleaning, do not accept queuing of movements
|
|
|
2546 |
if (cleaning_buffer_counter) return false;
|
|
|
2547 |
|
|
|
2548 |
// When changing extruders recalculate steps corresponding to the E position
|
|
|
2549 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2550 |
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
|
|
|
2551 |
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
|
|
|
2552 |
last_extruder = extruder;
|
|
|
2553 |
}
|
|
|
2554 |
#endif
|
|
|
2555 |
|
|
|
2556 |
// The target position of the tool in absolute steps
|
|
|
2557 |
// Calculate target position in absolute steps
|
|
|
2558 |
const int32_t target[NUM_AXIS] = {
|
|
|
2559 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
2560 |
LROUND(k0[A_AXIS] * (SQRT(k1[A_AXIS] + a * k2[A_AXIS]) - sqrtk1[A_AXIS])),
|
|
|
2561 |
LROUND(k0[B_AXIS] * (SQRT(k1[B_AXIS] + b * k2[B_AXIS]) - sqrtk1[B_AXIS])),
|
|
|
2562 |
LROUND(k0[C_AXIS] * (SQRT(k1[C_AXIS] + c * k2[C_AXIS]) - sqrtk1[C_AXIS])),
|
|
|
2563 |
LROUND(k0[D_AXIS] * (SQRT(k1[D_AXIS] + d * k2[D_AXIS]) - sqrtk1[D_AXIS])),
|
|
|
2564 |
#else
|
|
|
2565 |
LROUND(a * axis_steps_per_mm[A_AXIS]),
|
|
|
2566 |
LROUND(b * axis_steps_per_mm[B_AXIS]),
|
|
|
2567 |
LROUND(c * axis_steps_per_mm[C_AXIS]),
|
|
|
2568 |
#if ENABLED(HANGPRINTER)
|
|
|
2569 |
LROUND(d * axis_steps_per_mm[D_AXIS]),
|
|
|
2570 |
#endif
|
|
|
2571 |
#endif
|
|
|
2572 |
LROUND(e * axis_steps_per_mm[E_AXIS_N])
|
|
|
2573 |
};
|
|
|
2574 |
|
|
|
2575 |
#if HAS_POSITION_FLOAT
|
|
|
2576 |
const float target_float[NUM_AXIS] = { a, b, c
|
|
|
2577 |
#if ENABLED(HANGPRINTER)
|
|
|
2578 |
, d
|
|
|
2579 |
#endif
|
|
|
2580 |
, e
|
|
|
2581 |
};
|
|
|
2582 |
#endif
|
|
|
2583 |
|
|
|
2584 |
// DRYRUN prevents E moves from taking place
|
|
|
2585 |
if (DEBUGGING(DRYRUN)) {
|
|
|
2586 |
if (COUNT_MOVE) {
|
|
|
2587 |
position[E_AXIS] = target[E_AXIS];
|
|
|
2588 |
#if HAS_POSITION_FLOAT
|
|
|
2589 |
position_float[E_AXIS] = e;
|
|
|
2590 |
#endif
|
|
|
2591 |
}
|
|
|
2592 |
}
|
|
|
2593 |
|
|
|
2594 |
/* <-- add a slash to enable
|
|
|
2595 |
SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s);
|
|
|
2596 |
#if IS_KINEMATIC
|
|
|
2597 |
SERIAL_ECHOPAIR(" A:", a);
|
|
|
2598 |
SERIAL_ECHOPAIR(" (", position[A_AXIS]);
|
|
|
2599 |
SERIAL_ECHOPAIR("->", target[A_AXIS]);
|
|
|
2600 |
SERIAL_ECHOPAIR(") B:", b);
|
|
|
2601 |
#else
|
|
|
2602 |
SERIAL_ECHOPAIR(" X:", a);
|
|
|
2603 |
SERIAL_ECHOPAIR(" (", position[X_AXIS]);
|
|
|
2604 |
SERIAL_ECHOPAIR("->", target[X_AXIS]);
|
|
|
2605 |
SERIAL_ECHOPAIR(") Y:", b);
|
|
|
2606 |
#endif
|
|
|
2607 |
SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
|
|
|
2608 |
SERIAL_ECHOPAIR("->", target[Y_AXIS]);
|
|
|
2609 |
#if ENABLED(DELTA) || ENABLED(HANGPRINTER)
|
|
|
2610 |
SERIAL_ECHOPAIR(") C:", c);
|
|
|
2611 |
#else
|
|
|
2612 |
SERIAL_ECHOPAIR(") Z:", c);
|
|
|
2613 |
#endif
|
|
|
2614 |
SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
|
|
|
2615 |
SERIAL_ECHOPAIR("->", target[Z_AXIS]);
|
|
|
2616 |
#if ENABLED(HANGPRINTER)
|
|
|
2617 |
SERIAL_ECHOPAIR(") D:", d);
|
|
|
2618 |
SERIAL_ECHOPAIR(" (", position[D_AXIS]);
|
|
|
2619 |
SERIAL_ECHOPAIR("->", target[D_AXIS]);
|
|
|
2620 |
#endif
|
|
|
2621 |
SERIAL_ECHOPAIR(") E:", e);
|
|
|
2622 |
SERIAL_ECHOPAIR(" (", position[E_AXIS]);
|
|
|
2623 |
SERIAL_ECHOPAIR("->", target[E_AXIS]);
|
|
|
2624 |
SERIAL_ECHOLNPGM(")");
|
|
|
2625 |
//*/
|
|
|
2626 |
|
|
|
2627 |
// Queue the movement
|
|
|
2628 |
if (
|
|
|
2629 |
!_buffer_steps(target
|
|
|
2630 |
#if HAS_POSITION_FLOAT
|
|
|
2631 |
, target_float
|
|
|
2632 |
#endif
|
|
|
2633 |
, fr_mm_s, extruder, millimeters
|
|
|
2634 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
2635 |
, count_it
|
|
|
2636 |
#endif
|
|
|
2637 |
)
|
|
|
2638 |
) return false;
|
|
|
2639 |
|
|
|
2640 |
stepper.wake_up();
|
|
|
2641 |
return true;
|
|
|
2642 |
} // buffer_segment()
|
|
|
2643 |
|
|
|
2644 |
/**
|
|
|
2645 |
* Directly set the planner XYZ position (and stepper positions)
|
|
|
2646 |
* converting mm (or angles for SCARA) into steps.
|
|
|
2647 |
*
|
|
|
2648 |
* On CORE machines stepper ABC will be translated from the given XYZ.
|
|
|
2649 |
*/
|
|
|
2650 |
|
|
|
2651 |
void Planner::_set_position_mm(const float &a, const float &b, const float &c
|
|
|
2652 |
#if ENABLED(HANGPRINTER)
|
|
|
2653 |
, const float &d
|
|
|
2654 |
#endif
|
|
|
2655 |
, const float &e
|
|
|
2656 |
) {
|
|
|
2657 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2658 |
last_extruder = active_extruder;
|
|
|
2659 |
#endif
|
|
|
2660 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
2661 |
position[A_AXIS] = LROUND(k0[A_AXIS] * (SQRT(k1[A_AXIS] + a * k2[A_AXIS]) - sqrtk1[A_AXIS])),
|
|
|
2662 |
position[B_AXIS] = LROUND(k0[B_AXIS] * (SQRT(k1[B_AXIS] + b * k2[B_AXIS]) - sqrtk1[B_AXIS])),
|
|
|
2663 |
position[C_AXIS] = LROUND(k0[C_AXIS] * (SQRT(k1[C_AXIS] + c * k2[C_AXIS]) - sqrtk1[C_AXIS])),
|
|
|
2664 |
position[D_AXIS] = LROUND(k0[D_AXIS] * (SQRT(k1[D_AXIS] + d * k2[D_AXIS]) - sqrtk1[D_AXIS])),
|
|
|
2665 |
#else
|
|
|
2666 |
position[A_AXIS] = LROUND(a * axis_steps_per_mm[A_AXIS]);
|
|
|
2667 |
position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]);
|
|
|
2668 |
position[C_AXIS] = LROUND(axis_steps_per_mm[C_AXIS] * (c + (
|
|
|
2669 |
#if !IS_KINEMATIC && ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
2670 |
leveling_active ? ubl.get_z_correction(a, b) :
|
|
|
2671 |
#endif
|
|
|
2672 |
0)
|
|
|
2673 |
));
|
|
|
2674 |
#if ENABLED(HANGPRINTER)
|
|
|
2675 |
position[D_AXIS] = LROUND(d * axis_steps_per_mm[D_AXIS]),
|
|
|
2676 |
#endif
|
|
|
2677 |
#endif
|
|
|
2678 |
position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
|
|
|
2679 |
#if HAS_POSITION_FLOAT
|
|
|
2680 |
position_float[A_AXIS] = a;
|
|
|
2681 |
position_float[B_AXIS] = b;
|
|
|
2682 |
position_float[C_AXIS] = c;
|
|
|
2683 |
#if ENABLED(HANGPRINTER)
|
|
|
2684 |
position_float[D_AXIS] = d;
|
|
|
2685 |
#endif
|
|
|
2686 |
position_float[E_AXIS] = e;
|
|
|
2687 |
#endif
|
|
|
2688 |
if (has_blocks_queued()) {
|
|
|
2689 |
//previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
|
|
|
2690 |
//ZERO(previous_speed);
|
|
|
2691 |
buffer_sync_block();
|
|
|
2692 |
}
|
|
|
2693 |
else
|
|
|
2694 |
stepper.set_position(position[A_AXIS], position[B_AXIS], position[C_AXIS],
|
|
|
2695 |
#if ENABLED(HANGPRINTER)
|
|
|
2696 |
position[D_AXIS],
|
|
|
2697 |
#endif
|
|
|
2698 |
position[E_AXIS]
|
|
|
2699 |
);
|
|
|
2700 |
}
|
|
|
2701 |
|
|
|
2702 |
void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
|
|
|
2703 |
#if PLANNER_LEVELING
|
|
|
2704 |
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
|
|
2705 |
apply_leveling(raw);
|
|
|
2706 |
#elif ENABLED(HANGPRINTER)
|
|
|
2707 |
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
|
|
2708 |
#else
|
|
|
2709 |
const float (&raw)[XYZE] = cart;
|
|
|
2710 |
#endif
|
|
|
2711 |
#if IS_KINEMATIC
|
|
|
2712 |
inverse_kinematics(raw);
|
|
|
2713 |
#if ENABLED(HANGPRINTER)
|
|
|
2714 |
_set_position_mm(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], cart[E_CART]);
|
|
|
2715 |
#else
|
|
|
2716 |
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_CART]);
|
|
|
2717 |
#endif
|
|
|
2718 |
#else
|
|
|
2719 |
_set_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_CART]);
|
|
|
2720 |
#endif
|
|
|
2721 |
}
|
|
|
2722 |
|
|
|
2723 |
/**
|
|
|
2724 |
* Setters for planner position (also setting stepper position).
|
|
|
2725 |
*/
|
|
|
2726 |
void Planner::set_position_mm(const AxisEnum axis, const float &v) {
|
|
|
2727 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2728 |
const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
|
|
|
2729 |
last_extruder = active_extruder;
|
|
|
2730 |
#else
|
|
|
2731 |
const uint8_t axis_index = axis;
|
|
|
2732 |
#endif
|
|
|
2733 |
position[axis] = LROUND(axis_steps_per_mm[axis_index] * (v + (
|
|
|
2734 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
2735 |
axis == Z_AXIS && leveling_active ? ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS]) :
|
|
|
2736 |
#endif
|
|
|
2737 |
0)
|
|
|
2738 |
));
|
|
|
2739 |
#if HAS_POSITION_FLOAT
|
|
|
2740 |
position_float[axis] = v;
|
|
|
2741 |
#endif
|
|
|
2742 |
if (has_blocks_queued())
|
|
|
2743 |
buffer_sync_block();
|
|
|
2744 |
else
|
|
|
2745 |
stepper.set_position(axis, position[axis]);
|
|
|
2746 |
}
|
|
|
2747 |
|
|
|
2748 |
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
|
|
2749 |
void Planner::reset_acceleration_rates() {
|
|
|
2750 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
2751 |
#define AXIS_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
|
|
|
2752 |
#else
|
|
|
2753 |
#define AXIS_CONDITION true
|
|
|
2754 |
#endif
|
|
|
2755 |
uint32_t highest_rate = 1;
|
|
|
2756 |
LOOP_NUM_AXIS_N(i) {
|
|
|
2757 |
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
|
|
|
2758 |
if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
|
|
|
2759 |
}
|
|
|
2760 |
cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
|
|
|
2761 |
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
|
|
|
2762 |
recalculate_max_e_jerk();
|
|
|
2763 |
#endif
|
|
|
2764 |
}
|
|
|
2765 |
|
|
|
2766 |
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
|
|
|
2767 |
void Planner::refresh_positioning() {
|
|
|
2768 |
LOOP_NUM_AXIS_N(i) steps_to_mm[i] = 1.0f / axis_steps_per_mm[i];
|
|
|
2769 |
set_position_mm_kinematic(current_position);
|
|
|
2770 |
reset_acceleration_rates();
|
|
|
2771 |
}
|
|
|
2772 |
|
|
|
2773 |
#if ENABLED(AUTOTEMP)
|
|
|
2774 |
|
|
|
2775 |
void Planner::autotemp_M104_M109() {
|
|
|
2776 |
if ((autotemp_enabled = parser.seen('F'))) autotemp_factor = parser.value_float();
|
|
|
2777 |
if (parser.seen('S')) autotemp_min = parser.value_celsius();
|
|
|
2778 |
if (parser.seen('B')) autotemp_max = parser.value_celsius();
|
|
|
2779 |
}
|
|
|
2780 |
|
|
|
2781 |
#endif
|