1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* planner_bezier.cpp
|
|
|
25 |
*
|
|
|
26 |
* Compute and buffer movement commands for bezier curves
|
|
|
27 |
*
|
|
|
28 |
*/
|
|
|
29 |
|
|
|
30 |
#include "MarlinConfig.h"
|
|
|
31 |
|
|
|
32 |
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
33 |
|
|
|
34 |
#include "planner.h"
|
|
|
35 |
#include "language.h"
|
|
|
36 |
#include "temperature.h"
|
|
|
37 |
#include "Marlin.h"
|
|
|
38 |
|
|
|
39 |
// See the meaning in the documentation of cubic_b_spline().
|
|
|
40 |
#define MIN_STEP 0.002f
|
|
|
41 |
#define MAX_STEP 0.1f
|
|
|
42 |
#define SIGMA 0.1f
|
|
|
43 |
|
|
|
44 |
// Compute the linear interpolation between two real numbers.
|
|
|
45 |
inline static float interp(float a, float b, float t) { return (1.0f - t) * a + t * b; }
|
|
|
46 |
|
|
|
47 |
/**
|
|
|
48 |
* Compute a Bézier curve using the De Casteljau's algorithm (see
|
|
|
49 |
* https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm), which is
|
|
|
50 |
* easy to code and has good numerical stability (very important,
|
|
|
51 |
* since Arudino works with limited precision real numbers).
|
|
|
52 |
*/
|
|
|
53 |
inline static float eval_bezier(float a, float b, float c, float d, float t) {
|
|
|
54 |
float iab = interp(a, b, t);
|
|
|
55 |
float ibc = interp(b, c, t);
|
|
|
56 |
float icd = interp(c, d, t);
|
|
|
57 |
float iabc = interp(iab, ibc, t);
|
|
|
58 |
float ibcd = interp(ibc, icd, t);
|
|
|
59 |
float iabcd = interp(iabc, ibcd, t);
|
|
|
60 |
return iabcd;
|
|
|
61 |
}
|
|
|
62 |
|
|
|
63 |
/**
|
|
|
64 |
* We approximate Euclidean distance with the sum of the coordinates
|
|
|
65 |
* offset (so-called "norm 1"), which is quicker to compute.
|
|
|
66 |
*/
|
|
|
67 |
inline static float dist1(float x1, float y1, float x2, float y2) { return ABS(x1 - x2) + ABS(y1 - y2); }
|
|
|
68 |
|
|
|
69 |
/**
|
|
|
70 |
* The algorithm for computing the step is loosely based on the one in Kig
|
|
|
71 |
* (See https://sources.debian.net/src/kig/4:15.08.3-1/misc/kigpainter.cpp/#L759)
|
|
|
72 |
* However, we do not use the stack.
|
|
|
73 |
*
|
|
|
74 |
* The algorithm goes as it follows: the parameters t runs from 0.0 to
|
|
|
75 |
* 1.0 describing the curve, which is evaluated by eval_bezier(). At
|
|
|
76 |
* each iteration we have to choose a step, i.e., the increment of the
|
|
|
77 |
* t variable. By default the step of the previous iteration is taken,
|
|
|
78 |
* and then it is enlarged or reduced depending on how straight the
|
|
|
79 |
* curve locally is. The step is always clamped between MIN_STEP/2 and
|
|
|
80 |
* 2*MAX_STEP. MAX_STEP is taken at the first iteration.
|
|
|
81 |
*
|
|
|
82 |
* For some t, the step value is considered acceptable if the curve in
|
|
|
83 |
* the interval [t, t+step] is sufficiently straight, i.e.,
|
|
|
84 |
* sufficiently close to linear interpolation. In practice the
|
|
|
85 |
* following test is performed: the distance between eval_bezier(...,
|
|
|
86 |
* t+step/2) is evaluated and compared with 0.5*(eval_bezier(...,
|
|
|
87 |
* t)+eval_bezier(..., t+step)). If it is smaller than SIGMA, then the
|
|
|
88 |
* step value is considered acceptable, otherwise it is not. The code
|
|
|
89 |
* seeks to find the larger step value which is considered acceptable.
|
|
|
90 |
*
|
|
|
91 |
* At every iteration the recorded step value is considered and then
|
|
|
92 |
* iteratively halved until it becomes acceptable. If it was already
|
|
|
93 |
* acceptable in the beginning (i.e., no halving were done), then
|
|
|
94 |
* maybe it was necessary to enlarge it; then it is iteratively
|
|
|
95 |
* doubled while it remains acceptable. The last acceptable value
|
|
|
96 |
* found is taken, provided that it is between MIN_STEP and MAX_STEP
|
|
|
97 |
* and does not bring t over 1.0.
|
|
|
98 |
*
|
|
|
99 |
* Caveat: this algorithm is not perfect, since it can happen that a
|
|
|
100 |
* step is considered acceptable even when the curve is not linear at
|
|
|
101 |
* all in the interval [t, t+step] (but its mid point coincides "by
|
|
|
102 |
* chance" with the midpoint according to the parametrization). This
|
|
|
103 |
* kind of glitches can be eliminated with proper first derivative
|
|
|
104 |
* estimates; however, given the improbability of such configurations,
|
|
|
105 |
* the mitigation offered by MIN_STEP and the small computational
|
|
|
106 |
* power available on Arduino, I think it is not wise to implement it.
|
|
|
107 |
*/
|
|
|
108 |
void cubic_b_spline(const float pos[XYZE], const float cart_target[XYZE], const float offset[4], float fr_mm_s, uint8_t extruder) {
|
|
|
109 |
// Absolute first and second control points are recovered.
|
|
|
110 |
const float first0 = pos[X_AXIS] + offset[0],
|
|
|
111 |
first1 = pos[Y_AXIS] + offset[1],
|
|
|
112 |
second0 = cart_target[X_AXIS] + offset[2],
|
|
|
113 |
second1 = cart_target[Y_AXIS] + offset[3];
|
|
|
114 |
float t = 0;
|
|
|
115 |
|
|
|
116 |
float bez_target[XYZE];
|
|
|
117 |
bez_target[X_AXIS] = pos[X_AXIS];
|
|
|
118 |
bez_target[Y_AXIS] = pos[Y_AXIS];
|
|
|
119 |
float step = MAX_STEP;
|
|
|
120 |
|
|
|
121 |
millis_t next_idle_ms = millis() + 200UL;
|
|
|
122 |
|
|
|
123 |
while (t < 1) {
|
|
|
124 |
|
|
|
125 |
thermalManager.manage_heater();
|
|
|
126 |
millis_t now = millis();
|
|
|
127 |
if (ELAPSED(now, next_idle_ms)) {
|
|
|
128 |
next_idle_ms = now + 200UL;
|
|
|
129 |
idle();
|
|
|
130 |
}
|
|
|
131 |
|
|
|
132 |
// First try to reduce the step in order to make it sufficiently
|
|
|
133 |
// close to a linear interpolation.
|
|
|
134 |
bool did_reduce = false;
|
|
|
135 |
float new_t = t + step;
|
|
|
136 |
NOMORE(new_t, 1);
|
|
|
137 |
float new_pos0 = eval_bezier(pos[X_AXIS], first0, second0, cart_target[X_AXIS], new_t),
|
|
|
138 |
new_pos1 = eval_bezier(pos[Y_AXIS], first1, second1, cart_target[Y_AXIS], new_t);
|
|
|
139 |
for (;;) {
|
|
|
140 |
if (new_t - t < (MIN_STEP)) break;
|
|
|
141 |
const float candidate_t = 0.5f * (t + new_t),
|
|
|
142 |
candidate_pos0 = eval_bezier(pos[X_AXIS], first0, second0, cart_target[X_AXIS], candidate_t),
|
|
|
143 |
candidate_pos1 = eval_bezier(pos[Y_AXIS], first1, second1, cart_target[Y_AXIS], candidate_t),
|
|
|
144 |
interp_pos0 = 0.5f * (bez_target[X_AXIS] + new_pos0),
|
|
|
145 |
interp_pos1 = 0.5f * (bez_target[Y_AXIS] + new_pos1);
|
|
|
146 |
if (dist1(candidate_pos0, candidate_pos1, interp_pos0, interp_pos1) <= (SIGMA)) break;
|
|
|
147 |
new_t = candidate_t;
|
|
|
148 |
new_pos0 = candidate_pos0;
|
|
|
149 |
new_pos1 = candidate_pos1;
|
|
|
150 |
did_reduce = true;
|
|
|
151 |
}
|
|
|
152 |
|
|
|
153 |
// If we did not reduce the step, maybe we should enlarge it.
|
|
|
154 |
if (!did_reduce) for (;;) {
|
|
|
155 |
if (new_t - t > MAX_STEP) break;
|
|
|
156 |
const float candidate_t = t + 2 * (new_t - t);
|
|
|
157 |
if (candidate_t >= 1) break;
|
|
|
158 |
const float candidate_pos0 = eval_bezier(pos[X_AXIS], first0, second0, cart_target[X_AXIS], candidate_t),
|
|
|
159 |
candidate_pos1 = eval_bezier(pos[Y_AXIS], first1, second1, cart_target[Y_AXIS], candidate_t),
|
|
|
160 |
interp_pos0 = 0.5f * (bez_target[X_AXIS] + candidate_pos0),
|
|
|
161 |
interp_pos1 = 0.5f * (bez_target[Y_AXIS] + candidate_pos1);
|
|
|
162 |
if (dist1(new_pos0, new_pos1, interp_pos0, interp_pos1) > (SIGMA)) break;
|
|
|
163 |
new_t = candidate_t;
|
|
|
164 |
new_pos0 = candidate_pos0;
|
|
|
165 |
new_pos1 = candidate_pos1;
|
|
|
166 |
}
|
|
|
167 |
|
|
|
168 |
// Check some postcondition; they are disabled in the actual
|
|
|
169 |
// Marlin build, but if you test the same code on a computer you
|
|
|
170 |
// may want to check they are respect.
|
|
|
171 |
/*
|
|
|
172 |
assert(new_t <= 1.0);
|
|
|
173 |
if (new_t < 1.0) {
|
|
|
174 |
assert(new_t - t >= (MIN_STEP) / 2.0);
|
|
|
175 |
assert(new_t - t <= (MAX_STEP) * 2.0);
|
|
|
176 |
}
|
|
|
177 |
*/
|
|
|
178 |
|
|
|
179 |
step = new_t - t;
|
|
|
180 |
t = new_t;
|
|
|
181 |
|
|
|
182 |
// Compute and send new position
|
|
|
183 |
bez_target[X_AXIS] = new_pos0;
|
|
|
184 |
bez_target[Y_AXIS] = new_pos1;
|
|
|
185 |
// FIXME. The following two are wrong, since the parameter t is
|
|
|
186 |
// not linear in the distance.
|
|
|
187 |
bez_target[Z_AXIS] = interp(pos[Z_AXIS], cart_target[Z_AXIS], t);
|
|
|
188 |
bez_target[E_CART] = interp(pos[E_CART], cart_target[E_CART], t);
|
|
|
189 |
clamp_to_software_endstops(bez_target);
|
|
|
190 |
|
|
|
191 |
#if HAS_UBL_AND_CURVES
|
|
|
192 |
float bez_copy[XYZ] = { bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS] };
|
|
|
193 |
planner.apply_leveling(bez_copy);
|
|
|
194 |
if (!planner.buffer_segment(bez_copy[X_AXIS], bez_copy[Y_AXIS], bez_copy[Z_AXIS], bez_target[E_CART], fr_mm_s, active_extruder))
|
|
|
195 |
break;
|
|
|
196 |
#else
|
|
|
197 |
if (!planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder))
|
|
|
198 |
break;
|
|
|
199 |
#endif
|
|
|
200 |
}
|
|
|
201 |
}
|
|
|
202 |
|
|
|
203 |
#endif // BEZIER_CURVE_SUPPORT
|