1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* stepper.cpp - A singleton object to execute motion plans using stepper motors
|
|
|
25 |
* Marlin Firmware
|
|
|
26 |
*
|
|
|
27 |
* Derived from Grbl
|
|
|
28 |
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
29 |
*
|
|
|
30 |
* Grbl is free software: you can redistribute it and/or modify
|
|
|
31 |
* it under the terms of the GNU General Public License as published by
|
|
|
32 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
33 |
* (at your option) any later version.
|
|
|
34 |
*
|
|
|
35 |
* Grbl is distributed in the hope that it will be useful,
|
|
|
36 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
37 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
38 |
* GNU General Public License for more details.
|
|
|
39 |
*
|
|
|
40 |
* You should have received a copy of the GNU General Public License
|
|
|
41 |
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
42 |
*/
|
|
|
43 |
|
|
|
44 |
/**
|
|
|
45 |
* Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
|
|
|
46 |
* and Philipp Tiefenbacher.
|
|
|
47 |
*/
|
|
|
48 |
|
|
|
49 |
/**
|
|
|
50 |
* __________________________
|
|
|
51 |
* /| |\ _________________ ^
|
|
|
52 |
* / | | \ /| |\ |
|
|
|
53 |
* / | | \ / | | \ s
|
|
|
54 |
* / | | | | | \ p
|
|
|
55 |
* / | | | | | \ e
|
|
|
56 |
* +-----+------------------------+---+--+---------------+----+ e
|
|
|
57 |
* | BLOCK 1 | BLOCK 2 | d
|
|
|
58 |
*
|
|
|
59 |
* time ----->
|
|
|
60 |
*
|
|
|
61 |
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
|
|
62 |
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
|
|
63 |
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
|
|
64 |
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
|
|
65 |
*/
|
|
|
66 |
|
|
|
67 |
/**
|
|
|
68 |
* Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
|
|
|
69 |
* method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
|
|
|
70 |
*/
|
|
|
71 |
|
|
|
72 |
/**
|
|
|
73 |
* Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
|
|
|
74 |
* Equations based on Synthethos TinyG2 sources, but the fixed-point
|
|
|
75 |
* implementation is new, as we are running the ISR with a variable period.
|
|
|
76 |
* Also implemented the Bézier velocity curve evaluation in ARM assembler,
|
|
|
77 |
* to avoid impacting ISR speed.
|
|
|
78 |
*/
|
|
|
79 |
|
|
|
80 |
#include "Marlin.h"
|
|
|
81 |
#include "stepper.h"
|
|
|
82 |
#include "endstops.h"
|
|
|
83 |
#include "planner.h"
|
|
|
84 |
#include "temperature.h"
|
|
|
85 |
#include "ultralcd.h"
|
|
|
86 |
#include "language.h"
|
|
|
87 |
#include "cardreader.h"
|
|
|
88 |
#include "speed_lookuptable.h"
|
|
|
89 |
#include "delay.h"
|
|
|
90 |
|
|
|
91 |
#if HAS_DIGIPOTSS
|
|
|
92 |
#include <SPI.h>
|
|
|
93 |
#endif
|
|
|
94 |
|
|
|
95 |
Stepper stepper; // Singleton
|
|
|
96 |
|
|
|
97 |
// public:
|
|
|
98 |
|
|
|
99 |
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
100 |
bool Stepper::homing_dual_axis = false;
|
|
|
101 |
#endif
|
|
|
102 |
|
|
|
103 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
104 |
uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
|
|
|
105 |
#endif
|
|
|
106 |
|
|
|
107 |
// private:
|
|
|
108 |
|
|
|
109 |
block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
|
|
|
110 |
|
|
|
111 |
uint8_t Stepper::last_direction_bits = 0,
|
|
|
112 |
Stepper::axis_did_move;
|
|
|
113 |
|
|
|
114 |
bool Stepper::abort_current_block;
|
|
|
115 |
|
|
|
116 |
#if DISABLED(MIXING_EXTRUDER)
|
|
|
117 |
uint8_t Stepper::last_moved_extruder = 0xFF;
|
|
|
118 |
#endif
|
|
|
119 |
|
|
|
120 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
121 |
bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
|
|
|
122 |
#endif
|
|
|
123 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
124 |
bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
|
|
|
125 |
#endif
|
|
|
126 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
127 |
bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false;
|
|
|
128 |
#endif
|
|
|
129 |
|
|
|
130 |
uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
|
|
|
131 |
uint8_t Stepper::steps_per_isr;
|
|
|
132 |
|
|
|
133 |
#if DISABLED(ADAPTIVE_STEP_SMOOTHING)
|
|
|
134 |
constexpr
|
|
|
135 |
#endif
|
|
|
136 |
uint8_t Stepper::oversampling_factor;
|
|
|
137 |
|
|
|
138 |
int32_t Stepper::delta_error[NUM_AXIS] = { 0 };
|
|
|
139 |
uint32_t Stepper::advance_dividend[NUM_AXIS] = { 0 },
|
|
|
140 |
Stepper::advance_divisor = 0,
|
|
|
141 |
Stepper::step_events_completed = 0, // The number of step events executed in the current block
|
|
|
142 |
Stepper::accelerate_until, // The point from where we need to stop acceleration
|
|
|
143 |
Stepper::decelerate_after, // The point from where we need to start decelerating
|
|
|
144 |
Stepper::step_event_count; // The total event count for the current block
|
|
|
145 |
|
|
|
146 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
147 |
int32_t Stepper::delta_error_m[MIXING_STEPPERS];
|
|
|
148 |
uint32_t Stepper::advance_dividend_m[MIXING_STEPPERS],
|
|
|
149 |
Stepper::advance_divisor_m;
|
|
|
150 |
#else
|
|
|
151 |
int8_t Stepper::active_extruder; // Active extruder
|
|
|
152 |
#endif
|
|
|
153 |
|
|
|
154 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
155 |
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
|
|
|
156 |
int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
|
|
|
157 |
int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
|
|
|
158 |
uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
|
|
|
159 |
uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
|
|
|
160 |
bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
|
|
|
161 |
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
|
|
|
162 |
#endif
|
|
|
163 |
|
|
|
164 |
uint32_t Stepper::nextMainISR = 0;
|
|
|
165 |
|
|
|
166 |
#if ENABLED(LIN_ADVANCE)
|
|
|
167 |
|
|
|
168 |
constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;
|
|
|
169 |
uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
|
|
|
170 |
Stepper::LA_isr_rate = LA_ADV_NEVER;
|
|
|
171 |
uint16_t Stepper::LA_current_adv_steps = 0,
|
|
|
172 |
Stepper::LA_final_adv_steps,
|
|
|
173 |
Stepper::LA_max_adv_steps;
|
|
|
174 |
|
|
|
175 |
int8_t Stepper::LA_steps = 0;
|
|
|
176 |
|
|
|
177 |
bool Stepper::LA_use_advance_lead;
|
|
|
178 |
|
|
|
179 |
#endif // LIN_ADVANCE
|
|
|
180 |
|
|
|
181 |
int32_t Stepper::ticks_nominal = -1;
|
|
|
182 |
|
|
|
183 |
#if DISABLED(S_CURVE_ACCELERATION)
|
|
|
184 |
uint32_t Stepper::acc_step_rate; // needed for deceleration start point
|
|
|
185 |
#endif
|
|
|
186 |
|
|
|
187 |
volatile int32_t Stepper::endstops_trigsteps[XYZ],
|
|
|
188 |
Stepper::count_position[NUM_AXIS] = { 0 };
|
|
|
189 |
int8_t Stepper::count_direction[NUM_AXIS] = {
|
|
|
190 |
1, 1, 1, 1
|
|
|
191 |
#if ENABLED(HANGPRINTER)
|
|
|
192 |
, 1
|
|
|
193 |
#endif
|
|
|
194 |
};
|
|
|
195 |
|
|
|
196 |
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
197 |
#define DUAL_ENDSTOP_APPLY_STEP(A,V) \
|
|
|
198 |
if (homing_dual_axis) { \
|
|
|
199 |
if (A##_HOME_DIR < 0) { \
|
|
|
200 |
if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
|
|
|
201 |
if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
|
|
|
202 |
} \
|
|
|
203 |
else { \
|
|
|
204 |
if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
|
|
|
205 |
if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
|
|
|
206 |
} \
|
|
|
207 |
} \
|
|
|
208 |
else { \
|
|
|
209 |
A##_STEP_WRITE(V); \
|
|
|
210 |
A##2_STEP_WRITE(V); \
|
|
|
211 |
}
|
|
|
212 |
#endif
|
|
|
213 |
|
|
|
214 |
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
|
|
|
215 |
#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
|
|
|
216 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
217 |
#define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
|
|
|
218 |
#else
|
|
|
219 |
#define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
|
|
|
220 |
#endif
|
|
|
221 |
#elif ENABLED(DUAL_X_CARRIAGE)
|
|
|
222 |
#define X_APPLY_DIR(v,ALWAYS) \
|
|
|
223 |
if (extruder_duplication_enabled || ALWAYS) { \
|
|
|
224 |
X_DIR_WRITE(v); \
|
|
|
225 |
X2_DIR_WRITE(v); \
|
|
|
226 |
} \
|
|
|
227 |
else { \
|
|
|
228 |
if (movement_extruder()) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
|
|
|
229 |
}
|
|
|
230 |
#define X_APPLY_STEP(v,ALWAYS) \
|
|
|
231 |
if (extruder_duplication_enabled || ALWAYS) { \
|
|
|
232 |
X_STEP_WRITE(v); \
|
|
|
233 |
X2_STEP_WRITE(v); \
|
|
|
234 |
} \
|
|
|
235 |
else { \
|
|
|
236 |
if (movement_extruder()) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
|
|
|
237 |
}
|
|
|
238 |
#else
|
|
|
239 |
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
|
|
|
240 |
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
|
|
|
241 |
#endif
|
|
|
242 |
|
|
|
243 |
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
|
244 |
#define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
|
|
|
245 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
246 |
#define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
|
|
|
247 |
#else
|
|
|
248 |
#define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
|
|
|
249 |
#endif
|
|
|
250 |
#else
|
|
|
251 |
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
|
|
|
252 |
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
|
|
|
253 |
#endif
|
|
|
254 |
|
|
|
255 |
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
|
256 |
#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
|
|
|
257 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
258 |
#define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
|
|
|
259 |
#else
|
|
|
260 |
#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
|
|
|
261 |
#endif
|
|
|
262 |
#else
|
|
|
263 |
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
|
|
|
264 |
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
|
|
|
265 |
#endif
|
|
|
266 |
|
|
|
267 |
/**
|
|
|
268 |
* Hangprinter's mapping {A,B,C,D} <-> {X,Y,Z,E1} happens here.
|
|
|
269 |
* If you have two extruders: {A,B,C,D} <-> {X,Y,Z,E2}
|
|
|
270 |
* ... etc up to max 4 extruders.
|
|
|
271 |
* Place D connector on your first "free" extruder output.
|
|
|
272 |
*/
|
|
|
273 |
#if ENABLED(HANGPRINTER)
|
|
|
274 |
#define A_APPLY_DIR(v,Q) X_APPLY_DIR(v,Q)
|
|
|
275 |
#define A_APPLY_STEP(v,Q) X_APPLY_STEP(v,Q)
|
|
|
276 |
|
|
|
277 |
#define B_APPLY_DIR(v,Q) Y_APPLY_DIR(v,Q)
|
|
|
278 |
#define B_APPLY_STEP(v,Q) Y_APPLY_STEP(v,Q)
|
|
|
279 |
|
|
|
280 |
#define C_APPLY_DIR(v,Q) Z_APPLY_DIR(v,Q)
|
|
|
281 |
#define C_APPLY_STEP(v,Q) Z_APPLY_STEP(v,Q)
|
|
|
282 |
|
|
|
283 |
#define __D_APPLY(I,T,v) E##I##_##T##_WRITE(v)
|
|
|
284 |
#define _D_APPLY(I,T,v) __D_APPLY(I,T,v)
|
|
|
285 |
#define D_APPLY_DIR(v,Q) _D_APPLY(EXTRUDERS, DIR, v)
|
|
|
286 |
#define D_APPLY_STEP(v,Q) _D_APPLY(EXTRUDERS, STEP, v)
|
|
|
287 |
#endif
|
|
|
288 |
|
|
|
289 |
#if DISABLED(MIXING_EXTRUDER)
|
|
|
290 |
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(active_extruder, v)
|
|
|
291 |
#endif
|
|
|
292 |
|
|
|
293 |
// intRes = longIn1 * longIn2 >> 24
|
|
|
294 |
// uses:
|
|
|
295 |
// A[tmp] to store 0
|
|
|
296 |
// B[tmp] to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
|
|
|
297 |
// note that the lower two bytes and the upper byte of the 48bit result are not calculated.
|
|
|
298 |
// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
|
|
|
299 |
// B A are bits 24-39 and are the returned value
|
|
|
300 |
// C B A is longIn1
|
|
|
301 |
// D C B A is longIn2
|
|
|
302 |
//
|
|
|
303 |
static FORCE_INLINE uint16_t MultiU24X32toH16(uint32_t longIn1, uint32_t longIn2) {
|
|
|
304 |
register uint8_t tmp1;
|
|
|
305 |
register uint8_t tmp2;
|
|
|
306 |
register uint16_t intRes;
|
|
|
307 |
__asm__ __volatile__(
|
|
|
308 |
A("clr %[tmp1]")
|
|
|
309 |
A("mul %A[longIn1], %B[longIn2]")
|
|
|
310 |
A("mov %[tmp2], r1")
|
|
|
311 |
A("mul %B[longIn1], %C[longIn2]")
|
|
|
312 |
A("movw %A[intRes], r0")
|
|
|
313 |
A("mul %C[longIn1], %C[longIn2]")
|
|
|
314 |
A("add %B[intRes], r0")
|
|
|
315 |
A("mul %C[longIn1], %B[longIn2]")
|
|
|
316 |
A("add %A[intRes], r0")
|
|
|
317 |
A("adc %B[intRes], r1")
|
|
|
318 |
A("mul %A[longIn1], %C[longIn2]")
|
|
|
319 |
A("add %[tmp2], r0")
|
|
|
320 |
A("adc %A[intRes], r1")
|
|
|
321 |
A("adc %B[intRes], %[tmp1]")
|
|
|
322 |
A("mul %B[longIn1], %B[longIn2]")
|
|
|
323 |
A("add %[tmp2], r0")
|
|
|
324 |
A("adc %A[intRes], r1")
|
|
|
325 |
A("adc %B[intRes], %[tmp1]")
|
|
|
326 |
A("mul %C[longIn1], %A[longIn2]")
|
|
|
327 |
A("add %[tmp2], r0")
|
|
|
328 |
A("adc %A[intRes], r1")
|
|
|
329 |
A("adc %B[intRes], %[tmp1]")
|
|
|
330 |
A("mul %B[longIn1], %A[longIn2]")
|
|
|
331 |
A("add %[tmp2], r1")
|
|
|
332 |
A("adc %A[intRes], %[tmp1]")
|
|
|
333 |
A("adc %B[intRes], %[tmp1]")
|
|
|
334 |
A("lsr %[tmp2]")
|
|
|
335 |
A("adc %A[intRes], %[tmp1]")
|
|
|
336 |
A("adc %B[intRes], %[tmp1]")
|
|
|
337 |
A("mul %D[longIn2], %A[longIn1]")
|
|
|
338 |
A("add %A[intRes], r0")
|
|
|
339 |
A("adc %B[intRes], r1")
|
|
|
340 |
A("mul %D[longIn2], %B[longIn1]")
|
|
|
341 |
A("add %B[intRes], r0")
|
|
|
342 |
A("clr r1")
|
|
|
343 |
: [intRes] "=&r" (intRes),
|
|
|
344 |
[tmp1] "=&r" (tmp1),
|
|
|
345 |
[tmp2] "=&r" (tmp2)
|
|
|
346 |
: [longIn1] "d" (longIn1),
|
|
|
347 |
[longIn2] "d" (longIn2)
|
|
|
348 |
: "cc"
|
|
|
349 |
);
|
|
|
350 |
return intRes;
|
|
|
351 |
}
|
|
|
352 |
|
|
|
353 |
void Stepper::wake_up() {
|
|
|
354 |
// TCNT1 = 0;
|
|
|
355 |
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
356 |
}
|
|
|
357 |
|
|
|
358 |
/**
|
|
|
359 |
* Set the stepper direction of each axis
|
|
|
360 |
*
|
|
|
361 |
* COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
|
|
|
362 |
* COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
|
|
|
363 |
* COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
|
|
|
364 |
*/
|
|
|
365 |
void Stepper::set_directions() {
|
|
|
366 |
|
|
|
367 |
#define SET_STEP_DIR(A) \
|
|
|
368 |
if (motor_direction(_AXIS(A))) { \
|
|
|
369 |
A##_APPLY_DIR(INVERT_## A##_DIR, false); \
|
|
|
370 |
count_direction[_AXIS(A)] = -1; \
|
|
|
371 |
} \
|
|
|
372 |
else { \
|
|
|
373 |
A##_APPLY_DIR(!INVERT_## A##_DIR, false); \
|
|
|
374 |
count_direction[_AXIS(A)] = 1; \
|
|
|
375 |
}
|
|
|
376 |
|
|
|
377 |
#if HAS_X_DIR
|
|
|
378 |
SET_STEP_DIR(X); // A
|
|
|
379 |
#endif
|
|
|
380 |
#if HAS_Y_DIR
|
|
|
381 |
SET_STEP_DIR(Y); // B
|
|
|
382 |
#endif
|
|
|
383 |
#if HAS_Z_DIR
|
|
|
384 |
SET_STEP_DIR(Z); // C
|
|
|
385 |
#endif
|
|
|
386 |
#if ENABLED(HANGPRINTER)
|
|
|
387 |
SET_STEP_DIR(D);
|
|
|
388 |
#endif
|
|
|
389 |
|
|
|
390 |
#if DISABLED(LIN_ADVANCE)
|
|
|
391 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
392 |
if (motor_direction(E_AXIS)) {
|
|
|
393 |
MIXING_STEPPERS_LOOP(j) REV_E_DIR(j);
|
|
|
394 |
count_direction[E_AXIS] = -1;
|
|
|
395 |
}
|
|
|
396 |
else {
|
|
|
397 |
MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);
|
|
|
398 |
count_direction[E_AXIS] = 1;
|
|
|
399 |
}
|
|
|
400 |
#else
|
|
|
401 |
if (motor_direction(E_AXIS)) {
|
|
|
402 |
REV_E_DIR(active_extruder);
|
|
|
403 |
count_direction[E_AXIS] = -1;
|
|
|
404 |
}
|
|
|
405 |
else {
|
|
|
406 |
NORM_E_DIR(active_extruder);
|
|
|
407 |
count_direction[E_AXIS] = 1;
|
|
|
408 |
}
|
|
|
409 |
#endif
|
|
|
410 |
#endif // !LIN_ADVANCE
|
|
|
411 |
|
|
|
412 |
// A small delay may be needed after changing direction
|
|
|
413 |
#if MINIMUM_STEPPER_DIR_DELAY > 0
|
|
|
414 |
DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);
|
|
|
415 |
#endif
|
|
|
416 |
}
|
|
|
417 |
|
|
|
418 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
419 |
/**
|
|
|
420 |
* This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
|
|
|
421 |
* a "linear pop" velocity curve; with pop being the sixth derivative of position:
|
|
|
422 |
* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
|
|
|
423 |
*
|
|
|
424 |
* The Bézier curve takes the form:
|
|
|
425 |
*
|
|
|
426 |
* V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
|
|
|
427 |
*
|
|
|
428 |
* Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
|
|
|
429 |
* through B_5(t) are the Bernstein basis as follows:
|
|
|
430 |
*
|
|
|
431 |
* B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
|
|
|
432 |
* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
|
|
|
433 |
* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
|
|
|
434 |
* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
|
|
|
435 |
* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
|
|
|
436 |
* B_5(t) = t^5 = t^5
|
|
|
437 |
* ^ ^ ^ ^ ^ ^
|
|
|
438 |
* | | | | | |
|
|
|
439 |
* A B C D E F
|
|
|
440 |
*
|
|
|
441 |
* Unfortunately, we cannot use forward-differencing to calculate each position through
|
|
|
442 |
* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
|
|
|
443 |
*
|
|
|
444 |
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
|
|
|
445 |
*
|
|
|
446 |
* Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
|
|
|
447 |
* through t of the Bézier form of V(t), we can determine that:
|
|
|
448 |
*
|
|
|
449 |
* A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
|
|
|
450 |
* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
|
|
|
451 |
* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
|
|
|
452 |
* D = 10*P_0 - 20*P_1 + 10*P_2
|
|
|
453 |
* E = - 5*P_0 + 5*P_1
|
|
|
454 |
* F = P_0
|
|
|
455 |
*
|
|
|
456 |
* Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
|
|
|
457 |
* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
|
|
|
458 |
* which, after simplification, resolves to:
|
|
|
459 |
*
|
|
|
460 |
* A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
|
|
|
461 |
* B = 15*P_i - 15*P_t = 15*(P_i - P_t)
|
|
|
462 |
* C = -10*P_i + 10*P_t = 10*(P_t - P_i)
|
|
|
463 |
* D = 0
|
|
|
464 |
* E = 0
|
|
|
465 |
* F = P_i
|
|
|
466 |
*
|
|
|
467 |
* As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
|
|
|
468 |
* the Bézier curve at each point:
|
|
|
469 |
*
|
|
|
470 |
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
|
|
|
471 |
*
|
|
|
472 |
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
|
|
|
473 |
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
|
|
|
474 |
* per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
|
|
|
475 |
* overflows on the evaluation of the Bézier curve, means we can use
|
|
|
476 |
*
|
|
|
477 |
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
|
|
|
478 |
* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
|
|
|
479 |
* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
|
|
|
480 |
* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
|
|
|
481 |
* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
|
|
|
482 |
*
|
|
|
483 |
* The trapezoid generator state contains the following information, that we will use to create and evaluate
|
|
|
484 |
* the Bézier curve:
|
|
|
485 |
*
|
|
|
486 |
* blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
|
|
|
487 |
* blk->initial_rate [VI] = The initial steps per second (=velocity)
|
|
|
488 |
* blk->final_rate [VF] = The ending steps per second (=velocity)
|
|
|
489 |
* and the count of events completed (step_events_completed) [CS] (=distance until now)
|
|
|
490 |
*
|
|
|
491 |
* Note the abbreviations we use in the following formulae are between []s
|
|
|
492 |
*
|
|
|
493 |
* For Any 32bit CPU:
|
|
|
494 |
*
|
|
|
495 |
* At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
|
|
|
496 |
*
|
|
|
497 |
* A = 6*128*(VF - VI) = 768*(VF - VI)
|
|
|
498 |
* B = 15*128*(VI - VF) = 1920*(VI - VF)
|
|
|
499 |
* C = 10*128*(VF - VI) = 1280*(VF - VI)
|
|
|
500 |
* F = 128*VI = 128*VI
|
|
|
501 |
* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
|
|
|
502 |
*
|
|
|
503 |
* And for each point, evaluate the curve with the following sequence:
|
|
|
504 |
*
|
|
|
505 |
* void lsrs(uint32_t& d, uint32_t s, int cnt) {
|
|
|
506 |
* d = s >> cnt;
|
|
|
507 |
* }
|
|
|
508 |
* void lsls(uint32_t& d, uint32_t s, int cnt) {
|
|
|
509 |
* d = s << cnt;
|
|
|
510 |
* }
|
|
|
511 |
* void lsrs(int32_t& d, uint32_t s, int cnt) {
|
|
|
512 |
* d = uint32_t(s) >> cnt;
|
|
|
513 |
* }
|
|
|
514 |
* void lsls(int32_t& d, uint32_t s, int cnt) {
|
|
|
515 |
* d = uint32_t(s) << cnt;
|
|
|
516 |
* }
|
|
|
517 |
* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
|
|
|
518 |
* uint64_t res = uint64_t(op1) * op2;
|
|
|
519 |
* rlo = uint32_t(res & 0xFFFFFFFF);
|
|
|
520 |
* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
|
|
|
521 |
* }
|
|
|
522 |
* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
|
|
|
523 |
* int64_t mul = int64_t(op1) * op2;
|
|
|
524 |
* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
|
|
|
525 |
* mul += s;
|
|
|
526 |
* rlo = int32_t(mul & 0xFFFFFFFF);
|
|
|
527 |
* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
|
|
|
528 |
* }
|
|
|
529 |
* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
|
|
|
530 |
* register uint32_t flo = 0;
|
|
|
531 |
* register uint32_t fhi = bezier_AV * curr_step;
|
|
|
532 |
* register uint32_t t = fhi;
|
|
|
533 |
* register int32_t alo = bezier_F;
|
|
|
534 |
* register int32_t ahi = 0;
|
|
|
535 |
* register int32_t A = bezier_A;
|
|
|
536 |
* register int32_t B = bezier_B;
|
|
|
537 |
* register int32_t C = bezier_C;
|
|
|
538 |
*
|
|
|
539 |
* lsrs(ahi, alo, 1); // a = F << 31
|
|
|
540 |
* lsls(alo, alo, 31); //
|
|
|
541 |
* umull(flo, fhi, fhi, t); // f *= t
|
|
|
542 |
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
|
543 |
* lsrs(flo, fhi, 1); //
|
|
|
544 |
* smlal(alo, ahi, flo, C); // a+=(f>>33)*C
|
|
|
545 |
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
|
546 |
* lsrs(flo, fhi, 1); //
|
|
|
547 |
* smlal(alo, ahi, flo, B); // a+=(f>>33)*B
|
|
|
548 |
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
|
549 |
* lsrs(flo, fhi, 1); // f>>=33;
|
|
|
550 |
* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
|
|
|
551 |
* lsrs(alo, ahi, 6); // a>>=38
|
|
|
552 |
*
|
|
|
553 |
* return alo;
|
|
|
554 |
* }
|
|
|
555 |
*
|
|
|
556 |
* This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
|
|
|
557 |
*
|
|
|
558 |
* For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
|
|
|
559 |
* Let's reduce precision as much as possible. After some experimentation we found that:
|
|
|
560 |
*
|
|
|
561 |
* Assume t and AV with 24 bits is enough
|
|
|
562 |
* A = 6*(VF - VI)
|
|
|
563 |
* B = 15*(VI - VF)
|
|
|
564 |
* C = 10*(VF - VI)
|
|
|
565 |
* F = VI
|
|
|
566 |
* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
|
|
|
567 |
*
|
|
|
568 |
* Instead of storing sign for each coefficient, we will store its absolute value,
|
|
|
569 |
* and flag the sign of the A coefficient, so we can save to store the sign bit.
|
|
|
570 |
* It always holds that sign(A) = - sign(B) = sign(C)
|
|
|
571 |
*
|
|
|
572 |
* So, the resulting range of the coefficients are:
|
|
|
573 |
*
|
|
|
574 |
* t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
|
|
|
575 |
* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
|
|
|
576 |
* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
|
|
|
577 |
* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
|
|
|
578 |
* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
|
|
|
579 |
*
|
|
|
580 |
* And for each curve, estimate its coefficients with:
|
|
|
581 |
*
|
|
|
582 |
* void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
|
|
|
583 |
* // Calculate the Bézier coefficients
|
|
|
584 |
* if (v1 < v0) {
|
|
|
585 |
* A_negative = true;
|
|
|
586 |
* bezier_A = 6 * (v0 - v1);
|
|
|
587 |
* bezier_B = 15 * (v0 - v1);
|
|
|
588 |
* bezier_C = 10 * (v0 - v1);
|
|
|
589 |
* }
|
|
|
590 |
* else {
|
|
|
591 |
* A_negative = false;
|
|
|
592 |
* bezier_A = 6 * (v1 - v0);
|
|
|
593 |
* bezier_B = 15 * (v1 - v0);
|
|
|
594 |
* bezier_C = 10 * (v1 - v0);
|
|
|
595 |
* }
|
|
|
596 |
* bezier_F = v0;
|
|
|
597 |
* }
|
|
|
598 |
*
|
|
|
599 |
* And for each point, evaluate the curve with the following sequence:
|
|
|
600 |
*
|
|
|
601 |
* // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
|
|
|
602 |
* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
|
|
|
603 |
* r = (uint64_t(op1) * op2) >> 8;
|
|
|
604 |
* }
|
|
|
605 |
* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
|
|
|
606 |
* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
|
|
|
607 |
* r = (uint32_t(op1) * op2) >> 16;
|
|
|
608 |
* }
|
|
|
609 |
* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
|
|
|
610 |
* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
|
|
|
611 |
* r = uint24_t((uint64_t(op1) * op2) >> 16);
|
|
|
612 |
* }
|
|
|
613 |
*
|
|
|
614 |
* int32_t _eval_bezier_curve(uint32_t curr_step) {
|
|
|
615 |
* // To save computing, the first step is always the initial speed
|
|
|
616 |
* if (!curr_step)
|
|
|
617 |
* return bezier_F;
|
|
|
618 |
*
|
|
|
619 |
* uint16_t t;
|
|
|
620 |
* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
|
|
|
621 |
* uint16_t f = t;
|
|
|
622 |
* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
|
|
|
623 |
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
|
|
|
624 |
* uint24_t acc = bezier_F; // Range 20 bits (unsigned)
|
|
|
625 |
* if (A_negative) {
|
|
|
626 |
* uint24_t v;
|
|
|
627 |
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
|
|
628 |
* acc -= v;
|
|
|
629 |
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
|
|
630 |
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
|
|
631 |
* acc += v;
|
|
|
632 |
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
|
|
633 |
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
|
|
634 |
* acc -= v;
|
|
|
635 |
* }
|
|
|
636 |
* else {
|
|
|
637 |
* uint24_t v;
|
|
|
638 |
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
|
|
639 |
* acc += v;
|
|
|
640 |
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
|
|
641 |
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
|
|
642 |
* acc -= v;
|
|
|
643 |
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
|
|
644 |
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
|
|
645 |
* acc += v;
|
|
|
646 |
* }
|
|
|
647 |
* return acc;
|
|
|
648 |
* }
|
|
|
649 |
* These functions are translated to assembler for optimal performance.
|
|
|
650 |
* Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
|
|
|
651 |
*/
|
|
|
652 |
|
|
|
653 |
// For AVR we use assembly to maximize speed
|
|
|
654 |
void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
|
|
|
655 |
|
|
|
656 |
// Store advance
|
|
|
657 |
bezier_AV = av;
|
|
|
658 |
|
|
|
659 |
// Calculate the rest of the coefficients
|
|
|
660 |
register uint8_t r2 = v0 & 0xFF;
|
|
|
661 |
register uint8_t r3 = (v0 >> 8) & 0xFF;
|
|
|
662 |
register uint8_t r12 = (v0 >> 16) & 0xFF;
|
|
|
663 |
register uint8_t r5 = v1 & 0xFF;
|
|
|
664 |
register uint8_t r6 = (v1 >> 8) & 0xFF;
|
|
|
665 |
register uint8_t r7 = (v1 >> 16) & 0xFF;
|
|
|
666 |
register uint8_t r4,r8,r9,r10,r11;
|
|
|
667 |
|
|
|
668 |
__asm__ __volatile__(
|
|
|
669 |
/* Calculate the Bézier coefficients */
|
|
|
670 |
/* %10:%1:%0 = v0*/
|
|
|
671 |
/* %5:%4:%3 = v1*/
|
|
|
672 |
/* %7:%6:%10 = temporary*/
|
|
|
673 |
/* %9 = val (must be high register!)*/
|
|
|
674 |
/* %10 (must be high register!)*/
|
|
|
675 |
|
|
|
676 |
/* Store initial velocity*/
|
|
|
677 |
A("sts bezier_F, %0")
|
|
|
678 |
A("sts bezier_F+1, %1")
|
|
|
679 |
A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
|
|
|
680 |
|
|
|
681 |
/* Get delta speed */
|
|
|
682 |
A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
|
|
|
683 |
A("clr %8") /* %8 = 0 */
|
|
|
684 |
A("sub %0,%3")
|
|
|
685 |
A("sbc %1,%4")
|
|
|
686 |
A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
|
|
|
687 |
A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
|
|
|
688 |
|
|
|
689 |
/* Result was negative, get the absolute value*/
|
|
|
690 |
A("com %10")
|
|
|
691 |
A("com %1")
|
|
|
692 |
A("neg %0")
|
|
|
693 |
A("sbc %1,%2")
|
|
|
694 |
A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
|
|
|
695 |
A("clr %2") /* %2 = 0, means A_negative = false */
|
|
|
696 |
|
|
|
697 |
/* Store negative flag*/
|
|
|
698 |
L("1")
|
|
|
699 |
A("sts A_negative, %2") /* Store negative flag */
|
|
|
700 |
|
|
|
701 |
/* Compute coefficients A,B and C [20 cycles worst case]*/
|
|
|
702 |
A("ldi %9,6") /* %9 = 6 */
|
|
|
703 |
A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
|
|
|
704 |
A("sts bezier_A, r0")
|
|
|
705 |
A("mov %6,r1")
|
|
|
706 |
A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
|
|
|
707 |
A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
|
|
|
708 |
A("add %6,r0")
|
|
|
709 |
A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
|
|
|
710 |
A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
|
|
|
711 |
A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
|
|
|
712 |
A("sts bezier_A+1, %6")
|
|
|
713 |
A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
|
|
|
714 |
|
|
|
715 |
A("ldi %9,15") /* %9 = 15 */
|
|
|
716 |
A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
|
|
|
717 |
A("sts bezier_B, r0")
|
|
|
718 |
A("mov %6,r1")
|
|
|
719 |
A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
|
|
|
720 |
A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
|
|
|
721 |
A("add %6,r0")
|
|
|
722 |
A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
|
|
|
723 |
A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
|
|
|
724 |
A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
|
|
|
725 |
A("sts bezier_B+1, %6")
|
|
|
726 |
A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
|
|
|
727 |
|
|
|
728 |
A("ldi %9,10") /* %9 = 10 */
|
|
|
729 |
A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
|
|
|
730 |
A("sts bezier_C, r0")
|
|
|
731 |
A("mov %6,r1")
|
|
|
732 |
A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
|
|
|
733 |
A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
|
|
|
734 |
A("add %6,r0")
|
|
|
735 |
A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
|
|
|
736 |
A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
|
|
|
737 |
A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
|
|
|
738 |
A("sts bezier_C+1, %6")
|
|
|
739 |
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
|
|
|
740 |
: "+r" (r2),
|
|
|
741 |
"+d" (r3),
|
|
|
742 |
"=r" (r4),
|
|
|
743 |
"+r" (r5),
|
|
|
744 |
"+r" (r6),
|
|
|
745 |
"+r" (r7),
|
|
|
746 |
"=r" (r8),
|
|
|
747 |
"=r" (r9),
|
|
|
748 |
"=r" (r10),
|
|
|
749 |
"=d" (r11),
|
|
|
750 |
"+r" (r12)
|
|
|
751 |
:
|
|
|
752 |
: "r0", "r1", "cc", "memory"
|
|
|
753 |
);
|
|
|
754 |
}
|
|
|
755 |
|
|
|
756 |
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
|
|
|
757 |
|
|
|
758 |
// If dealing with the first step, save expensive computing and return the initial speed
|
|
|
759 |
if (!curr_step)
|
|
|
760 |
return bezier_F;
|
|
|
761 |
|
|
|
762 |
register uint8_t r0 = 0; /* Zero register */
|
|
|
763 |
register uint8_t r2 = (curr_step) & 0xFF;
|
|
|
764 |
register uint8_t r3 = (curr_step >> 8) & 0xFF;
|
|
|
765 |
register uint8_t r4 = (curr_step >> 16) & 0xFF;
|
|
|
766 |
register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
|
|
|
767 |
|
|
|
768 |
__asm__ __volatile(
|
|
|
769 |
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
|
|
|
770 |
A("lds %9,bezier_AV") /* %9 = LO(AV)*/
|
|
|
771 |
A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
|
|
|
772 |
A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
|
|
773 |
A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
|
|
774 |
A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
|
|
|
775 |
A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
|
|
|
776 |
A("add %7,r0")
|
|
|
777 |
A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
|
|
|
778 |
A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
|
|
|
779 |
A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
|
|
|
780 |
A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
|
|
|
781 |
A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
|
|
|
782 |
A("add %7,r0")
|
|
|
783 |
A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
|
|
|
784 |
A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
|
|
|
785 |
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
|
|
|
786 |
A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
|
|
|
787 |
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
|
|
|
788 |
/* %8:%7 = t*/
|
|
|
789 |
|
|
|
790 |
/* uint16_t f = t;*/
|
|
|
791 |
A("mov %5,%7") /* %6:%5 = f*/
|
|
|
792 |
A("mov %6,%8")
|
|
|
793 |
/* %6:%5 = f*/
|
|
|
794 |
|
|
|
795 |
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
|
|
|
796 |
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
|
797 |
A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
|
|
|
798 |
A("clr %10") /* %10 = 0*/
|
|
|
799 |
A("clr %11") /* %11 = 0*/
|
|
|
800 |
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
|
801 |
A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
|
|
|
802 |
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
|
803 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
804 |
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
|
805 |
A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
|
|
|
806 |
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
|
|
|
807 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
808 |
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
|
809 |
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
|
810 |
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
|
811 |
A("mov %5,%10") /* %6:%5 = */
|
|
|
812 |
A("mov %6,%11") /* f = %10:%11*/
|
|
|
813 |
|
|
|
814 |
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
|
815 |
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
|
816 |
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
|
817 |
A("clr %10") /* %10 = 0*/
|
|
|
818 |
A("clr %11") /* %11 = 0*/
|
|
|
819 |
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
|
820 |
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
|
821 |
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
|
822 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
823 |
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
|
824 |
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
|
825 |
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
|
826 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
827 |
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
|
828 |
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
|
829 |
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
|
830 |
A("mov %5,%10") /* %6:%5 =*/
|
|
|
831 |
A("mov %6,%11") /* f = %10:%11*/
|
|
|
832 |
/* [15 +17*2] = [49]*/
|
|
|
833 |
|
|
|
834 |
/* %4:%3:%2 will be acc from now on*/
|
|
|
835 |
|
|
|
836 |
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
|
|
|
837 |
A("clr %9") /* "decimal place we get for free"*/
|
|
|
838 |
A("lds %2,bezier_F")
|
|
|
839 |
A("lds %3,bezier_F+1")
|
|
|
840 |
A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
|
|
|
841 |
|
|
|
842 |
/* if (A_negative) {*/
|
|
|
843 |
A("lds r0,A_negative")
|
|
|
844 |
A("or r0,%0") /* Is flag signalling negative? */
|
|
|
845 |
A("brne 3f") /* If yes, Skip next instruction if A was negative*/
|
|
|
846 |
A("rjmp 1f") /* Otherwise, jump */
|
|
|
847 |
|
|
|
848 |
/* uint24_t v; */
|
|
|
849 |
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
|
|
|
850 |
/* acc -= v; */
|
|
|
851 |
L("3")
|
|
|
852 |
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
|
|
853 |
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
|
|
854 |
A("sub %9,r1")
|
|
|
855 |
A("sbc %2,%0")
|
|
|
856 |
A("sbc %3,%0")
|
|
|
857 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
|
|
|
858 |
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
|
|
859 |
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
|
860 |
A("sub %9,r0")
|
|
|
861 |
A("sbc %2,r1")
|
|
|
862 |
A("sbc %3,%0")
|
|
|
863 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
|
|
|
864 |
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
|
|
865 |
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
|
866 |
A("sub %2,r0")
|
|
|
867 |
A("sbc %3,r1")
|
|
|
868 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
|
|
|
869 |
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
|
|
870 |
A("sub %9,r0")
|
|
|
871 |
A("sbc %2,r1")
|
|
|
872 |
A("sbc %3,%0")
|
|
|
873 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
|
|
|
874 |
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
|
|
875 |
A("sub %2,r0")
|
|
|
876 |
A("sbc %3,r1")
|
|
|
877 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
|
|
|
878 |
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
|
|
879 |
A("sub %3,r0")
|
|
|
880 |
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
|
|
|
881 |
|
|
|
882 |
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
|
883 |
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
|
884 |
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
|
885 |
A("clr %10") /* %10 = 0*/
|
|
|
886 |
A("clr %11") /* %11 = 0*/
|
|
|
887 |
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
|
888 |
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
|
889 |
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
|
890 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
891 |
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
|
892 |
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
|
893 |
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
|
894 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
895 |
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
|
896 |
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
|
897 |
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
|
898 |
A("mov %5,%10") /* %6:%5 =*/
|
|
|
899 |
A("mov %6,%11") /* f = %10:%11*/
|
|
|
900 |
|
|
|
901 |
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
|
|
902 |
/* acc += v; */
|
|
|
903 |
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
|
|
904 |
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
|
|
905 |
A("add %9,r1")
|
|
|
906 |
A("adc %2,%0")
|
|
|
907 |
A("adc %3,%0")
|
|
|
908 |
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
|
|
|
909 |
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
|
|
910 |
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
|
911 |
A("add %9,r0")
|
|
|
912 |
A("adc %2,r1")
|
|
|
913 |
A("adc %3,%0")
|
|
|
914 |
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
|
|
|
915 |
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
|
|
916 |
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
|
917 |
A("add %2,r0")
|
|
|
918 |
A("adc %3,r1")
|
|
|
919 |
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
|
|
|
920 |
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
|
|
921 |
A("add %9,r0")
|
|
|
922 |
A("adc %2,r1")
|
|
|
923 |
A("adc %3,%0")
|
|
|
924 |
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
|
|
|
925 |
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
|
|
926 |
A("add %2,r0")
|
|
|
927 |
A("adc %3,r1")
|
|
|
928 |
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
|
|
|
929 |
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
|
|
930 |
A("add %3,r0")
|
|
|
931 |
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
|
|
|
932 |
|
|
|
933 |
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
|
|
934 |
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
|
935 |
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
|
936 |
A("clr %10") /* %10 = 0*/
|
|
|
937 |
A("clr %11") /* %11 = 0*/
|
|
|
938 |
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
|
939 |
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
|
940 |
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
|
941 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
942 |
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
|
943 |
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
|
944 |
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
|
945 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
946 |
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
|
947 |
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
|
948 |
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
|
949 |
A("mov %5,%10") /* %6:%5 =*/
|
|
|
950 |
A("mov %6,%11") /* f = %10:%11*/
|
|
|
951 |
|
|
|
952 |
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
|
|
953 |
/* acc -= v; */
|
|
|
954 |
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
|
|
955 |
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
|
|
956 |
A("sub %9,r1")
|
|
|
957 |
A("sbc %2,%0")
|
|
|
958 |
A("sbc %3,%0")
|
|
|
959 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
|
|
|
960 |
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
|
|
961 |
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
|
962 |
A("sub %9,r0")
|
|
|
963 |
A("sbc %2,r1")
|
|
|
964 |
A("sbc %3,%0")
|
|
|
965 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
|
|
|
966 |
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
|
|
967 |
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
|
968 |
A("sub %2,r0")
|
|
|
969 |
A("sbc %3,r1")
|
|
|
970 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
|
|
|
971 |
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
|
|
972 |
A("sub %9,r0")
|
|
|
973 |
A("sbc %2,r1")
|
|
|
974 |
A("sbc %3,%0")
|
|
|
975 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
|
|
|
976 |
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
|
|
977 |
A("sub %2,r0")
|
|
|
978 |
A("sbc %3,r1")
|
|
|
979 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
|
|
|
980 |
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
|
|
981 |
A("sub %3,r0")
|
|
|
982 |
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
|
|
|
983 |
A("jmp 2f") /* Done!*/
|
|
|
984 |
|
|
|
985 |
L("1")
|
|
|
986 |
|
|
|
987 |
/* uint24_t v; */
|
|
|
988 |
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
|
|
|
989 |
/* acc += v; */
|
|
|
990 |
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
|
|
991 |
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
|
|
992 |
A("add %9,r1")
|
|
|
993 |
A("adc %2,%0")
|
|
|
994 |
A("adc %3,%0")
|
|
|
995 |
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
|
|
|
996 |
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
|
|
997 |
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
|
998 |
A("add %9,r0")
|
|
|
999 |
A("adc %2,r1")
|
|
|
1000 |
A("adc %3,%0")
|
|
|
1001 |
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
|
|
|
1002 |
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
|
|
1003 |
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
|
1004 |
A("add %2,r0")
|
|
|
1005 |
A("adc %3,r1")
|
|
|
1006 |
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
|
|
|
1007 |
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
|
|
1008 |
A("add %9,r0")
|
|
|
1009 |
A("adc %2,r1")
|
|
|
1010 |
A("adc %3,%0")
|
|
|
1011 |
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
|
|
|
1012 |
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
|
|
1013 |
A("add %2,r0")
|
|
|
1014 |
A("adc %3,r1")
|
|
|
1015 |
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
|
|
|
1016 |
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
|
|
1017 |
A("add %3,r0")
|
|
|
1018 |
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
|
|
|
1019 |
|
|
|
1020 |
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
|
1021 |
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
|
1022 |
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
|
1023 |
A("clr %10") /* %10 = 0*/
|
|
|
1024 |
A("clr %11") /* %11 = 0*/
|
|
|
1025 |
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
|
1026 |
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
|
1027 |
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
|
1028 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
1029 |
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
|
1030 |
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
|
1031 |
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
|
1032 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
1033 |
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
|
1034 |
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
|
1035 |
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
|
1036 |
A("mov %5,%10") /* %6:%5 =*/
|
|
|
1037 |
A("mov %6,%11") /* f = %10:%11*/
|
|
|
1038 |
|
|
|
1039 |
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
|
|
1040 |
/* acc -= v;*/
|
|
|
1041 |
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
|
|
1042 |
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
|
|
1043 |
A("sub %9,r1")
|
|
|
1044 |
A("sbc %2,%0")
|
|
|
1045 |
A("sbc %3,%0")
|
|
|
1046 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
|
|
|
1047 |
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
|
|
1048 |
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
|
1049 |
A("sub %9,r0")
|
|
|
1050 |
A("sbc %2,r1")
|
|
|
1051 |
A("sbc %3,%0")
|
|
|
1052 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
|
|
|
1053 |
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
|
|
1054 |
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
|
1055 |
A("sub %2,r0")
|
|
|
1056 |
A("sbc %3,r1")
|
|
|
1057 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
|
|
|
1058 |
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
|
|
1059 |
A("sub %9,r0")
|
|
|
1060 |
A("sbc %2,r1")
|
|
|
1061 |
A("sbc %3,%0")
|
|
|
1062 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
|
|
|
1063 |
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
|
|
1064 |
A("sub %2,r0")
|
|
|
1065 |
A("sbc %3,r1")
|
|
|
1066 |
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
|
|
|
1067 |
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
|
|
1068 |
A("sub %3,r0")
|
|
|
1069 |
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
|
|
|
1070 |
|
|
|
1071 |
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
|
|
1072 |
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
|
1073 |
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
|
1074 |
A("clr %10") /* %10 = 0*/
|
|
|
1075 |
A("clr %11") /* %11 = 0*/
|
|
|
1076 |
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
|
1077 |
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
|
1078 |
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
|
1079 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
1080 |
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
|
1081 |
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
|
1082 |
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
|
1083 |
A("adc %11,%0") /* %11 += carry*/
|
|
|
1084 |
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
|
1085 |
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
|
1086 |
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
|
1087 |
A("mov %5,%10") /* %6:%5 =*/
|
|
|
1088 |
A("mov %6,%11") /* f = %10:%11*/
|
|
|
1089 |
|
|
|
1090 |
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
|
|
1091 |
/* acc += v; */
|
|
|
1092 |
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
|
|
1093 |
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
|
|
1094 |
A("add %9,r1")
|
|
|
1095 |
A("adc %2,%0")
|
|
|
1096 |
A("adc %3,%0")
|
|
|
1097 |
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
|
|
|
1098 |
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
|
|
1099 |
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
|
1100 |
A("add %9,r0")
|
|
|
1101 |
A("adc %2,r1")
|
|
|
1102 |
A("adc %3,%0")
|
|
|
1103 |
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
|
|
|
1104 |
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
|
|
1105 |
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
|
1106 |
A("add %2,r0")
|
|
|
1107 |
A("adc %3,r1")
|
|
|
1108 |
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
|
|
|
1109 |
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
|
|
1110 |
A("add %9,r0")
|
|
|
1111 |
A("adc %2,r1")
|
|
|
1112 |
A("adc %3,%0")
|
|
|
1113 |
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
|
|
|
1114 |
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
|
|
1115 |
A("add %2,r0")
|
|
|
1116 |
A("adc %3,r1")
|
|
|
1117 |
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
|
|
|
1118 |
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
|
|
1119 |
A("add %3,r0")
|
|
|
1120 |
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
|
|
|
1121 |
L("2")
|
|
|
1122 |
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
|
|
|
1123 |
: "+r"(r0),
|
|
|
1124 |
"+r"(r1),
|
|
|
1125 |
"+r"(r2),
|
|
|
1126 |
"+r"(r3),
|
|
|
1127 |
"+r"(r4),
|
|
|
1128 |
"+r"(r5),
|
|
|
1129 |
"+r"(r6),
|
|
|
1130 |
"+r"(r7),
|
|
|
1131 |
"+r"(r8),
|
|
|
1132 |
"+r"(r9),
|
|
|
1133 |
"+r"(r10),
|
|
|
1134 |
"+r"(r11)
|
|
|
1135 |
:
|
|
|
1136 |
:"cc","r0","r1"
|
|
|
1137 |
);
|
|
|
1138 |
return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
|
|
|
1139 |
}
|
|
|
1140 |
|
|
|
1141 |
#endif // S_CURVE_ACCELERATION
|
|
|
1142 |
|
|
|
1143 |
/**
|
|
|
1144 |
* Stepper Driver Interrupt
|
|
|
1145 |
*
|
|
|
1146 |
* Directly pulses the stepper motors at high frequency.
|
|
|
1147 |
*/
|
|
|
1148 |
|
|
|
1149 |
HAL_STEP_TIMER_ISR {
|
|
|
1150 |
HAL_timer_isr_prologue(STEP_TIMER_NUM);
|
|
|
1151 |
|
|
|
1152 |
Stepper::isr();
|
|
|
1153 |
|
|
|
1154 |
HAL_timer_isr_epilogue(STEP_TIMER_NUM);
|
|
|
1155 |
}
|
|
|
1156 |
|
|
|
1157 |
#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
|
|
|
1158 |
|
|
|
1159 |
void Stepper::isr() {
|
|
|
1160 |
DISABLE_ISRS();
|
|
|
1161 |
|
|
|
1162 |
// Program timer compare for the maximum period, so it does NOT
|
|
|
1163 |
// flag an interrupt while this ISR is running - So changes from small
|
|
|
1164 |
// periods to big periods are respected and the timer does not reset to 0
|
|
|
1165 |
HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX);
|
|
|
1166 |
|
|
|
1167 |
// Count of ticks for the next ISR
|
|
|
1168 |
hal_timer_t next_isr_ticks = 0;
|
|
|
1169 |
|
|
|
1170 |
// Limit the amount of iterations
|
|
|
1171 |
uint8_t max_loops = 10;
|
|
|
1172 |
|
|
|
1173 |
// We need this variable here to be able to use it in the following loop
|
|
|
1174 |
hal_timer_t min_ticks;
|
|
|
1175 |
do {
|
|
|
1176 |
// Enable ISRs to reduce USART processing latency
|
|
|
1177 |
ENABLE_ISRS();
|
|
|
1178 |
|
|
|
1179 |
// Run main stepping pulse phase ISR if we have to
|
|
|
1180 |
if (!nextMainISR) Stepper::stepper_pulse_phase_isr();
|
|
|
1181 |
|
|
|
1182 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1183 |
// Run linear advance stepper ISR if we have to
|
|
|
1184 |
if (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr();
|
|
|
1185 |
#endif
|
|
|
1186 |
|
|
|
1187 |
// ^== Time critical. NOTHING besides pulse generation should be above here!!!
|
|
|
1188 |
|
|
|
1189 |
// Run main stepping block processing ISR if we have to
|
|
|
1190 |
if (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr();
|
|
|
1191 |
|
|
|
1192 |
uint32_t interval =
|
|
|
1193 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1194 |
MIN(nextAdvanceISR, nextMainISR) // Nearest time interval
|
|
|
1195 |
#else
|
|
|
1196 |
nextMainISR // Remaining stepper ISR time
|
|
|
1197 |
#endif
|
|
|
1198 |
;
|
|
|
1199 |
|
|
|
1200 |
// Limit the value to the maximum possible value of the timer
|
|
|
1201 |
NOMORE(interval, HAL_TIMER_TYPE_MAX);
|
|
|
1202 |
|
|
|
1203 |
// Compute the time remaining for the main isr
|
|
|
1204 |
nextMainISR -= interval;
|
|
|
1205 |
|
|
|
1206 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1207 |
// Compute the time remaining for the advance isr
|
|
|
1208 |
if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
|
|
|
1209 |
#endif
|
|
|
1210 |
|
|
|
1211 |
/**
|
|
|
1212 |
* This needs to avoid a race-condition caused by interleaving
|
|
|
1213 |
* of interrupts required by both the LA and Stepper algorithms.
|
|
|
1214 |
*
|
|
|
1215 |
* Assume the following tick times for stepper pulses:
|
|
|
1216 |
* Stepper ISR (S): 1 1000 2000 3000 4000
|
|
|
1217 |
* Linear Adv. (E): 10 1010 2010 3010 4010
|
|
|
1218 |
*
|
|
|
1219 |
* The current algorithm tries to interleave them, giving:
|
|
|
1220 |
* 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
|
|
|
1221 |
*
|
|
|
1222 |
* Ideal timing would yield these delta periods:
|
|
|
1223 |
* 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
|
|
|
1224 |
*
|
|
|
1225 |
* But, since each event must fire an ISR with a minimum duration, the
|
|
|
1226 |
* minimum delta might be 900, so deltas under 900 get rounded up:
|
|
|
1227 |
* 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
|
|
|
1228 |
*
|
|
|
1229 |
* It works, but divides the speed of all motors by half, leading to a sudden
|
|
|
1230 |
* reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
|
|
|
1231 |
* accounting for double/quad stepping, which makes it even worse).
|
|
|
1232 |
*/
|
|
|
1233 |
|
|
|
1234 |
// Compute the tick count for the next ISR
|
|
|
1235 |
next_isr_ticks += interval;
|
|
|
1236 |
|
|
|
1237 |
/**
|
|
|
1238 |
* The following section must be done with global interrupts disabled.
|
|
|
1239 |
* We want nothing to interrupt it, as that could mess the calculations
|
|
|
1240 |
* we do for the next value to program in the period register of the
|
|
|
1241 |
* stepper timer and lead to skipped ISRs (if the value we happen to program
|
|
|
1242 |
* is less than the current count due to something preempting between the
|
|
|
1243 |
* read and the write of the new period value).
|
|
|
1244 |
*/
|
|
|
1245 |
DISABLE_ISRS();
|
|
|
1246 |
|
|
|
1247 |
/**
|
|
|
1248 |
* Get the current tick value + margin
|
|
|
1249 |
* Assuming at least 6µs between calls to this ISR...
|
|
|
1250 |
* On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
|
|
|
1251 |
* On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
|
|
|
1252 |
*/
|
|
|
1253 |
min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((STEPPER_TIMER_TICKS_PER_US) * 8);
|
|
|
1254 |
|
|
|
1255 |
/**
|
|
|
1256 |
* NB: If for some reason the stepper monopolizes the MPU, eventually the
|
|
|
1257 |
* timer will wrap around (and so will 'next_isr_ticks'). So, limit the
|
|
|
1258 |
* loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
|
|
|
1259 |
* timing, since the MCU isn't fast enough.
|
|
|
1260 |
*/
|
|
|
1261 |
if (!--max_loops) next_isr_ticks = min_ticks;
|
|
|
1262 |
|
|
|
1263 |
// Advance pulses if not enough time to wait for the next ISR
|
|
|
1264 |
} while (next_isr_ticks < min_ticks);
|
|
|
1265 |
|
|
|
1266 |
// Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
|
|
|
1267 |
// sure that the time has not arrived yet - Warrantied by the scheduler
|
|
|
1268 |
|
|
|
1269 |
// Set the next ISR to fire at the proper time
|
|
|
1270 |
HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks));
|
|
|
1271 |
|
|
|
1272 |
// Don't forget to finally reenable interrupts
|
|
|
1273 |
ENABLE_ISRS();
|
|
|
1274 |
}
|
|
|
1275 |
|
|
|
1276 |
/**
|
|
|
1277 |
* This phase of the ISR should ONLY create the pulses for the steppers.
|
|
|
1278 |
* This prevents jitter caused by the interval between the start of the
|
|
|
1279 |
* interrupt and the start of the pulses. DON'T add any logic ahead of the
|
|
|
1280 |
* call to this method that might cause variation in the timing. The aim
|
|
|
1281 |
* is to keep pulse timing as regular as possible.
|
|
|
1282 |
*/
|
|
|
1283 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
1284 |
#define COUNT_IT current_block->count_it
|
|
|
1285 |
#else
|
|
|
1286 |
#define COUNT_IT true
|
|
|
1287 |
#endif
|
|
|
1288 |
|
|
|
1289 |
void Stepper::stepper_pulse_phase_isr() {
|
|
|
1290 |
|
|
|
1291 |
// If we must abort the current block, do so!
|
|
|
1292 |
if (abort_current_block) {
|
|
|
1293 |
abort_current_block = false;
|
|
|
1294 |
if (current_block) {
|
|
|
1295 |
axis_did_move = 0;
|
|
|
1296 |
current_block = NULL;
|
|
|
1297 |
planner.discard_current_block();
|
|
|
1298 |
}
|
|
|
1299 |
}
|
|
|
1300 |
|
|
|
1301 |
// If there is no current block, do nothing
|
|
|
1302 |
if (!current_block) return;
|
|
|
1303 |
|
|
|
1304 |
// Count of pending loops and events for this iteration
|
|
|
1305 |
const uint32_t pending_events = step_event_count - step_events_completed;
|
|
|
1306 |
uint8_t events_to_do = MIN(pending_events, steps_per_isr);
|
|
|
1307 |
|
|
|
1308 |
// Just update the value we will get at the end of the loop
|
|
|
1309 |
step_events_completed += events_to_do;
|
|
|
1310 |
|
|
|
1311 |
// Get the timer count and estimate the end of the pulse
|
|
|
1312 |
hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);
|
|
|
1313 |
|
|
|
1314 |
const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
|
|
|
1315 |
|
|
|
1316 |
// Take multiple steps per interrupt (For high speed moves)
|
|
|
1317 |
do {
|
|
|
1318 |
|
|
|
1319 |
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
|
|
1320 |
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
|
|
1321 |
|
|
|
1322 |
// Start an active pulse, if Bresenham says so, and update position
|
|
|
1323 |
#define PULSE_START(AXIS) do{ \
|
|
|
1324 |
delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
|
|
|
1325 |
if (delta_error[_AXIS(AXIS)] >= 0) { \
|
|
|
1326 |
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); \
|
|
|
1327 |
if (COUNT_IT) count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
|
1328 |
} \
|
|
|
1329 |
}while(0)
|
|
|
1330 |
|
|
|
1331 |
// Stop an active pulse, if any, and adjust error term
|
|
|
1332 |
#define PULSE_STOP(AXIS) do { \
|
|
|
1333 |
if (delta_error[_AXIS(AXIS)] >= 0) { \
|
|
|
1334 |
delta_error[_AXIS(AXIS)] -= advance_divisor; \
|
|
|
1335 |
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0); \
|
|
|
1336 |
} \
|
|
|
1337 |
}while(0)
|
|
|
1338 |
|
|
|
1339 |
// Pulse start
|
|
|
1340 |
#if ENABLED(HANGPRINTER)
|
|
|
1341 |
#if HAS_A_STEP
|
|
|
1342 |
PULSE_START(A);
|
|
|
1343 |
#endif
|
|
|
1344 |
#if HAS_B_STEP
|
|
|
1345 |
PULSE_START(B);
|
|
|
1346 |
#endif
|
|
|
1347 |
#if HAS_C_STEP
|
|
|
1348 |
PULSE_START(C);
|
|
|
1349 |
#endif
|
|
|
1350 |
#if HAS_D_STEP
|
|
|
1351 |
PULSE_START(D);
|
|
|
1352 |
#endif
|
|
|
1353 |
#else
|
|
|
1354 |
#if HAS_X_STEP
|
|
|
1355 |
PULSE_START(X);
|
|
|
1356 |
#endif
|
|
|
1357 |
#if HAS_Y_STEP
|
|
|
1358 |
PULSE_START(Y);
|
|
|
1359 |
#endif
|
|
|
1360 |
#if HAS_Z_STEP
|
|
|
1361 |
PULSE_START(Z);
|
|
|
1362 |
#endif
|
|
|
1363 |
#endif // HANGPRINTER
|
|
|
1364 |
|
|
|
1365 |
// Pulse E/Mixing extruders
|
|
|
1366 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1367 |
// Tick the E axis, correct error term and update position
|
|
|
1368 |
delta_error[E_AXIS] += advance_dividend[E_AXIS];
|
|
|
1369 |
if (delta_error[E_AXIS] >= 0) {
|
|
|
1370 |
if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
1371 |
delta_error[E_AXIS] -= advance_divisor;
|
|
|
1372 |
|
|
|
1373 |
// Don't step E here - But remember the number of steps to perform
|
|
|
1374 |
motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
|
|
|
1375 |
}
|
|
|
1376 |
#else // !LIN_ADVANCE - use linear interpolation for E also
|
|
|
1377 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
1378 |
|
|
|
1379 |
// Tick the E axis
|
|
|
1380 |
delta_error[E_AXIS] += advance_dividend[E_AXIS];
|
|
|
1381 |
if (delta_error[E_AXIS] >= 0) {
|
|
|
1382 |
if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
1383 |
delta_error[E_AXIS] -= advance_divisor;
|
|
|
1384 |
}
|
|
|
1385 |
|
|
|
1386 |
// Tick the counters used for this mix in proper proportion
|
|
|
1387 |
MIXING_STEPPERS_LOOP(j) {
|
|
|
1388 |
// Step mixing steppers (proportionally)
|
|
|
1389 |
delta_error_m[j] += advance_dividend_m[j];
|
|
|
1390 |
// Step when the counter goes over zero
|
|
|
1391 |
if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
|
|
1392 |
}
|
|
|
1393 |
|
|
|
1394 |
#else // !MIXING_EXTRUDER
|
|
|
1395 |
PULSE_START(E);
|
|
|
1396 |
#endif
|
|
|
1397 |
#endif // !LIN_ADVANCE
|
|
|
1398 |
|
|
|
1399 |
#if MINIMUM_STEPPER_PULSE
|
|
|
1400 |
// Just wait for the requested pulse duration
|
|
|
1401 |
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
|
1402 |
#endif
|
|
|
1403 |
|
|
|
1404 |
// Add the delay needed to ensure the maximum driver rate is enforced
|
|
|
1405 |
if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);
|
|
|
1406 |
|
|
|
1407 |
#if ENABLED(HANGPRINTER)
|
|
|
1408 |
#if HAS_A_STEP
|
|
|
1409 |
PULSE_STOP(A);
|
|
|
1410 |
#endif
|
|
|
1411 |
#if HAS_B_STEP
|
|
|
1412 |
PULSE_STOP(B);
|
|
|
1413 |
#endif
|
|
|
1414 |
#if HAS_C_STEP
|
|
|
1415 |
PULSE_STOP(C);
|
|
|
1416 |
#endif
|
|
|
1417 |
#if HAS_D_STEP
|
|
|
1418 |
PULSE_STOP(D);
|
|
|
1419 |
#endif
|
|
|
1420 |
#else
|
|
|
1421 |
#if HAS_X_STEP
|
|
|
1422 |
PULSE_STOP(X);
|
|
|
1423 |
#endif
|
|
|
1424 |
#if HAS_Y_STEP
|
|
|
1425 |
PULSE_STOP(Y);
|
|
|
1426 |
#endif
|
|
|
1427 |
#if HAS_Z_STEP
|
|
|
1428 |
PULSE_STOP(Z);
|
|
|
1429 |
#endif
|
|
|
1430 |
#endif
|
|
|
1431 |
|
|
|
1432 |
#if DISABLED(LIN_ADVANCE)
|
|
|
1433 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
1434 |
MIXING_STEPPERS_LOOP(j) {
|
|
|
1435 |
if (delta_error_m[j] >= 0) {
|
|
|
1436 |
delta_error_m[j] -= advance_divisor_m;
|
|
|
1437 |
E_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
|
|
1438 |
}
|
|
|
1439 |
}
|
|
|
1440 |
#else // !MIXING_EXTRUDER
|
|
|
1441 |
PULSE_STOP(E);
|
|
|
1442 |
#endif
|
|
|
1443 |
#endif // !LIN_ADVANCE
|
|
|
1444 |
|
|
|
1445 |
// Decrement the count of pending pulses to do
|
|
|
1446 |
--events_to_do;
|
|
|
1447 |
|
|
|
1448 |
// For minimum pulse time wait after stopping pulses also
|
|
|
1449 |
if (events_to_do) {
|
|
|
1450 |
// Just wait for the requested pulse duration
|
|
|
1451 |
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
|
1452 |
#if MINIMUM_STEPPER_PULSE
|
|
|
1453 |
// Add to the value, the time that the pulse must be active (to be used on the next loop)
|
|
|
1454 |
pulse_end += hal_timer_t(MIN_PULSE_TICKS);
|
|
|
1455 |
#endif
|
|
|
1456 |
}
|
|
|
1457 |
|
|
|
1458 |
} while (events_to_do);
|
|
|
1459 |
}
|
|
|
1460 |
|
|
|
1461 |
// This is the last half of the stepper interrupt: This one processes and
|
|
|
1462 |
// properly schedules blocks from the planner. This is executed after creating
|
|
|
1463 |
// the step pulses, so it is not time critical, as pulses are already done.
|
|
|
1464 |
|
|
|
1465 |
uint32_t Stepper::stepper_block_phase_isr() {
|
|
|
1466 |
|
|
|
1467 |
// If no queued movements, just wait 1ms for the next move
|
|
|
1468 |
uint32_t interval = (STEPPER_TIMER_RATE / 1000);
|
|
|
1469 |
|
|
|
1470 |
// If there is a current block
|
|
|
1471 |
if (current_block) {
|
|
|
1472 |
|
|
|
1473 |
// If current block is finished, reset pointer
|
|
|
1474 |
if (step_events_completed >= step_event_count) {
|
|
|
1475 |
axis_did_move = 0;
|
|
|
1476 |
current_block = NULL;
|
|
|
1477 |
planner.discard_current_block();
|
|
|
1478 |
}
|
|
|
1479 |
else {
|
|
|
1480 |
// Step events not completed yet...
|
|
|
1481 |
|
|
|
1482 |
// Are we in acceleration phase ?
|
|
|
1483 |
if (step_events_completed <= accelerate_until) { // Calculate new timer value
|
|
|
1484 |
|
|
|
1485 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
1486 |
// Get the next speed to use (Jerk limited!)
|
|
|
1487 |
uint32_t acc_step_rate =
|
|
|
1488 |
acceleration_time < current_block->acceleration_time
|
|
|
1489 |
? _eval_bezier_curve(acceleration_time)
|
|
|
1490 |
: current_block->cruise_rate;
|
|
|
1491 |
#else
|
|
|
1492 |
acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
|
|
|
1493 |
NOMORE(acc_step_rate, current_block->nominal_rate);
|
|
|
1494 |
#endif
|
|
|
1495 |
|
|
|
1496 |
// acc_step_rate is in steps/second
|
|
|
1497 |
|
|
|
1498 |
// step_rate to timer interval and steps per stepper isr
|
|
|
1499 |
interval = calc_timer_interval(acc_step_rate, oversampling_factor, &steps_per_isr);
|
|
|
1500 |
acceleration_time += interval;
|
|
|
1501 |
|
|
|
1502 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1503 |
if (LA_use_advance_lead) {
|
|
|
1504 |
// Fire ISR if final adv_rate is reached
|
|
|
1505 |
if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
|
|
|
1506 |
}
|
|
|
1507 |
else if (LA_steps) nextAdvanceISR = 0;
|
|
|
1508 |
#endif // LIN_ADVANCE
|
|
|
1509 |
}
|
|
|
1510 |
// Are we in Deceleration phase ?
|
|
|
1511 |
else if (step_events_completed > decelerate_after) {
|
|
|
1512 |
uint32_t step_rate;
|
|
|
1513 |
|
|
|
1514 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
1515 |
// If this is the 1st time we process the 2nd half of the trapezoid...
|
|
|
1516 |
if (!bezier_2nd_half) {
|
|
|
1517 |
// Initialize the Bézier speed curve
|
|
|
1518 |
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
|
|
|
1519 |
bezier_2nd_half = true;
|
|
|
1520 |
// The first point starts at cruise rate. Just save evaluation of the Bézier curve
|
|
|
1521 |
step_rate = current_block->cruise_rate;
|
|
|
1522 |
}
|
|
|
1523 |
else {
|
|
|
1524 |
// Calculate the next speed to use
|
|
|
1525 |
step_rate = deceleration_time < current_block->deceleration_time
|
|
|
1526 |
? _eval_bezier_curve(deceleration_time)
|
|
|
1527 |
: current_block->final_rate;
|
|
|
1528 |
}
|
|
|
1529 |
#else
|
|
|
1530 |
|
|
|
1531 |
// Using the old trapezoidal control
|
|
|
1532 |
step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
|
|
|
1533 |
if (step_rate < acc_step_rate) { // Still decelerating?
|
|
|
1534 |
step_rate = acc_step_rate - step_rate;
|
|
|
1535 |
NOLESS(step_rate, current_block->final_rate);
|
|
|
1536 |
}
|
|
|
1537 |
else
|
|
|
1538 |
step_rate = current_block->final_rate;
|
|
|
1539 |
#endif
|
|
|
1540 |
|
|
|
1541 |
// step_rate is in steps/second
|
|
|
1542 |
|
|
|
1543 |
// step_rate to timer interval and steps per stepper isr
|
|
|
1544 |
interval = calc_timer_interval(step_rate, oversampling_factor, &steps_per_isr);
|
|
|
1545 |
deceleration_time += interval;
|
|
|
1546 |
|
|
|
1547 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1548 |
if (LA_use_advance_lead) {
|
|
|
1549 |
// Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
|
|
|
1550 |
if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
|
|
|
1551 |
nextAdvanceISR = 0;
|
|
|
1552 |
LA_isr_rate = current_block->advance_speed;
|
|
|
1553 |
}
|
|
|
1554 |
}
|
|
|
1555 |
else if (LA_steps) nextAdvanceISR = 0;
|
|
|
1556 |
#endif // LIN_ADVANCE
|
|
|
1557 |
}
|
|
|
1558 |
// We must be in cruise phase otherwise
|
|
|
1559 |
else {
|
|
|
1560 |
|
|
|
1561 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1562 |
// If there are any esteps, fire the next advance_isr "now"
|
|
|
1563 |
if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
|
|
|
1564 |
#endif
|
|
|
1565 |
|
|
|
1566 |
// Calculate the ticks_nominal for this nominal speed, if not done yet
|
|
|
1567 |
if (ticks_nominal < 0) {
|
|
|
1568 |
// step_rate to timer interval and loops for the nominal speed
|
|
|
1569 |
ticks_nominal = calc_timer_interval(current_block->nominal_rate, oversampling_factor, &steps_per_isr);
|
|
|
1570 |
}
|
|
|
1571 |
|
|
|
1572 |
// The timer interval is just the nominal value for the nominal speed
|
|
|
1573 |
interval = ticks_nominal;
|
|
|
1574 |
}
|
|
|
1575 |
}
|
|
|
1576 |
}
|
|
|
1577 |
|
|
|
1578 |
// If there is no current block at this point, attempt to pop one from the buffer
|
|
|
1579 |
// and prepare its movement
|
|
|
1580 |
if (!current_block) {
|
|
|
1581 |
|
|
|
1582 |
// Anything in the buffer?
|
|
|
1583 |
if ((current_block = planner.get_current_block())) {
|
|
|
1584 |
|
|
|
1585 |
// Sync block? Sync the stepper counts and return
|
|
|
1586 |
while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
|
1587 |
_set_position(
|
|
|
1588 |
current_block->position[A_AXIS], current_block->position[B_AXIS], current_block->position[C_AXIS],
|
|
|
1589 |
#if ENABLED(HANGPRINTER)
|
|
|
1590 |
current_block->position[D_AXIS],
|
|
|
1591 |
#endif
|
|
|
1592 |
current_block->position[E_AXIS]
|
|
|
1593 |
);
|
|
|
1594 |
planner.discard_current_block();
|
|
|
1595 |
|
|
|
1596 |
// Try to get a new block
|
|
|
1597 |
if (!(current_block = planner.get_current_block()))
|
|
|
1598 |
return interval; // No more queued movements!
|
|
|
1599 |
}
|
|
|
1600 |
|
|
|
1601 |
// Flag all moving axes for proper endstop handling
|
|
|
1602 |
|
|
|
1603 |
#if IS_CORE
|
|
|
1604 |
// Define conditions for checking endstops
|
|
|
1605 |
#define S_(N) current_block->steps[CORE_AXIS_##N]
|
|
|
1606 |
#define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
|
|
|
1607 |
#endif
|
|
|
1608 |
|
|
|
1609 |
#if CORE_IS_XY || CORE_IS_XZ
|
|
|
1610 |
/**
|
|
|
1611 |
* Head direction in -X axis for CoreXY and CoreXZ bots.
|
|
|
1612 |
*
|
|
|
1613 |
* If steps differ, both axes are moving.
|
|
|
1614 |
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
|
|
|
1615 |
* If DeltaA == DeltaB, the movement is only in the 1st axis (X)
|
|
|
1616 |
*/
|
|
|
1617 |
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
|
|
1618 |
#define X_CMP ==
|
|
|
1619 |
#else
|
|
|
1620 |
#define X_CMP !=
|
|
|
1621 |
#endif
|
|
|
1622 |
#define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) X_CMP D_(2)) )
|
|
|
1623 |
#else
|
|
|
1624 |
#define X_MOVE_TEST !!current_block->steps[A_AXIS]
|
|
|
1625 |
#endif
|
|
|
1626 |
|
|
|
1627 |
#if CORE_IS_XY || CORE_IS_YZ
|
|
|
1628 |
/**
|
|
|
1629 |
* Head direction in -Y axis for CoreXY / CoreYZ bots.
|
|
|
1630 |
*
|
|
|
1631 |
* If steps differ, both axes are moving
|
|
|
1632 |
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
|
|
|
1633 |
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
|
|
|
1634 |
*/
|
|
|
1635 |
#if ENABLED(COREYX) || ENABLED(COREYZ)
|
|
|
1636 |
#define Y_CMP ==
|
|
|
1637 |
#else
|
|
|
1638 |
#define Y_CMP !=
|
|
|
1639 |
#endif
|
|
|
1640 |
#define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Y_CMP D_(2)) )
|
|
|
1641 |
#else
|
|
|
1642 |
#define Y_MOVE_TEST !!current_block->steps[B_AXIS]
|
|
|
1643 |
#endif
|
|
|
1644 |
|
|
|
1645 |
#if CORE_IS_XZ || CORE_IS_YZ
|
|
|
1646 |
/**
|
|
|
1647 |
* Head direction in -Z axis for CoreXZ or CoreYZ bots.
|
|
|
1648 |
*
|
|
|
1649 |
* If steps differ, both axes are moving
|
|
|
1650 |
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
|
|
|
1651 |
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
|
|
|
1652 |
*/
|
|
|
1653 |
#if ENABLED(COREZX) || ENABLED(COREZY)
|
|
|
1654 |
#define Z_CMP ==
|
|
|
1655 |
#else
|
|
|
1656 |
#define Z_CMP !=
|
|
|
1657 |
#endif
|
|
|
1658 |
#define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Z_CMP D_(2)) )
|
|
|
1659 |
#else
|
|
|
1660 |
#define Z_MOVE_TEST !!current_block->steps[C_AXIS]
|
|
|
1661 |
#endif
|
|
|
1662 |
|
|
|
1663 |
uint8_t axis_bits = 0;
|
|
|
1664 |
if (X_MOVE_TEST) SBI(axis_bits, A_AXIS);
|
|
|
1665 |
if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS);
|
|
|
1666 |
if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS);
|
|
|
1667 |
//if (!!current_block->steps[E_AXIS]) SBI(axis_bits, E_AXIS);
|
|
|
1668 |
//if (!!current_block->steps[A_AXIS]) SBI(axis_bits, X_HEAD);
|
|
|
1669 |
//if (!!current_block->steps[B_AXIS]) SBI(axis_bits, Y_HEAD);
|
|
|
1670 |
//if (!!current_block->steps[C_AXIS]) SBI(axis_bits, Z_HEAD);
|
|
|
1671 |
axis_did_move = axis_bits;
|
|
|
1672 |
|
|
|
1673 |
// No acceleration / deceleration time elapsed so far
|
|
|
1674 |
acceleration_time = deceleration_time = 0;
|
|
|
1675 |
|
|
|
1676 |
uint8_t oversampling = 0; // Assume we won't use it
|
|
|
1677 |
|
|
|
1678 |
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
|
|
|
1679 |
// At this point, we must decide if we can use Stepper movement axis smoothing.
|
|
|
1680 |
uint32_t max_rate = current_block->nominal_rate; // Get the maximum rate (maximum event speed)
|
|
|
1681 |
while (max_rate < MIN_STEP_ISR_FREQUENCY) {
|
|
|
1682 |
max_rate <<= 1;
|
|
|
1683 |
if (max_rate >= MAX_STEP_ISR_FREQUENCY_1X) break;
|
|
|
1684 |
++oversampling;
|
|
|
1685 |
}
|
|
|
1686 |
oversampling_factor = oversampling;
|
|
|
1687 |
#endif
|
|
|
1688 |
|
|
|
1689 |
// Based on the oversampling factor, do the calculations
|
|
|
1690 |
step_event_count = current_block->step_event_count << oversampling;
|
|
|
1691 |
|
|
|
1692 |
// Initialize Bresenham delta errors to 1/2
|
|
|
1693 |
#if ENABLED(HANGPRINTER)
|
|
|
1694 |
delta_error[A_AXIS] = delta_error[B_AXIS] = delta_error[C_AXIS] = delta_error[D_AXIS] = delta_error[E_AXIS] = -int32_t(step_event_count);
|
|
|
1695 |
#else
|
|
|
1696 |
delta_error[X_AXIS] = delta_error[Y_AXIS] = delta_error[Z_AXIS] = delta_error[E_AXIS] = -int32_t(step_event_count);
|
|
|
1697 |
#endif
|
|
|
1698 |
|
|
|
1699 |
// Calculate Bresenham dividends
|
|
|
1700 |
#if ENABLED(HANGPRINTER)
|
|
|
1701 |
advance_dividend[A_AXIS] = current_block->steps[A_AXIS] << 1;
|
|
|
1702 |
advance_dividend[B_AXIS] = current_block->steps[B_AXIS] << 1;
|
|
|
1703 |
advance_dividend[C_AXIS] = current_block->steps[C_AXIS] << 1;
|
|
|
1704 |
advance_dividend[D_AXIS] = current_block->steps[D_AXIS] << 1;
|
|
|
1705 |
#else
|
|
|
1706 |
advance_dividend[X_AXIS] = current_block->steps[X_AXIS] << 1;
|
|
|
1707 |
advance_dividend[Y_AXIS] = current_block->steps[Y_AXIS] << 1;
|
|
|
1708 |
advance_dividend[Z_AXIS] = current_block->steps[Z_AXIS] << 1;
|
|
|
1709 |
#endif
|
|
|
1710 |
advance_dividend[E_AXIS] = current_block->steps[E_AXIS] << 1;
|
|
|
1711 |
|
|
|
1712 |
// Calculate Bresenham divisor
|
|
|
1713 |
advance_divisor = step_event_count << 1;
|
|
|
1714 |
|
|
|
1715 |
// No step events completed so far
|
|
|
1716 |
step_events_completed = 0;
|
|
|
1717 |
|
|
|
1718 |
// Compute the acceleration and deceleration points
|
|
|
1719 |
accelerate_until = current_block->accelerate_until << oversampling;
|
|
|
1720 |
decelerate_after = current_block->decelerate_after << oversampling;
|
|
|
1721 |
|
|
|
1722 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
1723 |
const uint32_t e_steps = (
|
|
|
1724 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1725 |
current_block->steps[E_AXIS]
|
|
|
1726 |
#else
|
|
|
1727 |
step_event_count
|
|
|
1728 |
#endif
|
|
|
1729 |
);
|
|
|
1730 |
MIXING_STEPPERS_LOOP(i) {
|
|
|
1731 |
delta_error_m[i] = -int32_t(e_steps);
|
|
|
1732 |
advance_dividend_m[i] = current_block->mix_steps[i] << 1;
|
|
|
1733 |
}
|
|
|
1734 |
advance_divisor_m = e_steps << 1;
|
|
|
1735 |
#else
|
|
|
1736 |
active_extruder = current_block->active_extruder;
|
|
|
1737 |
#endif
|
|
|
1738 |
|
|
|
1739 |
// Initialize the trapezoid generator from the current block.
|
|
|
1740 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1741 |
#if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
|
|
|
1742 |
// If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
|
|
|
1743 |
if (active_extruder != last_moved_extruder) LA_current_adv_steps = 0;
|
|
|
1744 |
#endif
|
|
|
1745 |
|
|
|
1746 |
if ((LA_use_advance_lead = current_block->use_advance_lead)) {
|
|
|
1747 |
LA_final_adv_steps = current_block->final_adv_steps;
|
|
|
1748 |
LA_max_adv_steps = current_block->max_adv_steps;
|
|
|
1749 |
//Start the ISR
|
|
|
1750 |
nextAdvanceISR = 0;
|
|
|
1751 |
LA_isr_rate = current_block->advance_speed;
|
|
|
1752 |
}
|
|
|
1753 |
else LA_isr_rate = LA_ADV_NEVER;
|
|
|
1754 |
#endif
|
|
|
1755 |
|
|
|
1756 |
if (current_block->direction_bits != last_direction_bits
|
|
|
1757 |
#if DISABLED(MIXING_EXTRUDER)
|
|
|
1758 |
|| active_extruder != last_moved_extruder
|
|
|
1759 |
#endif
|
|
|
1760 |
) {
|
|
|
1761 |
last_direction_bits = current_block->direction_bits;
|
|
|
1762 |
#if DISABLED(MIXING_EXTRUDER)
|
|
|
1763 |
last_moved_extruder = active_extruder;
|
|
|
1764 |
#endif
|
|
|
1765 |
set_directions();
|
|
|
1766 |
}
|
|
|
1767 |
|
|
|
1768 |
// At this point, we must ensure the movement about to execute isn't
|
|
|
1769 |
// trying to force the head against a limit switch. If using interrupt-
|
|
|
1770 |
// driven change detection, and already against a limit then no call to
|
|
|
1771 |
// the endstop_triggered method will be done and the movement will be
|
|
|
1772 |
// done against the endstop. So, check the limits here: If the movement
|
|
|
1773 |
// is against the limits, the block will be marked as to be killed, and
|
|
|
1774 |
// on the next call to this ISR, will be discarded.
|
|
|
1775 |
endstops.update();
|
|
|
1776 |
|
|
|
1777 |
#if ENABLED(Z_LATE_ENABLE)
|
|
|
1778 |
// If delayed Z enable, enable it now. This option will severely interfere with
|
|
|
1779 |
// timing between pulses when chaining motion between blocks, and it could lead
|
|
|
1780 |
// to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
|
|
|
1781 |
if (current_block->steps[Z_AXIS]) enable_Z();
|
|
|
1782 |
#endif
|
|
|
1783 |
|
|
|
1784 |
// Mark the time_nominal as not calculated yet
|
|
|
1785 |
ticks_nominal = -1;
|
|
|
1786 |
|
|
|
1787 |
#if DISABLED(S_CURVE_ACCELERATION)
|
|
|
1788 |
// Set as deceleration point the initial rate of the block
|
|
|
1789 |
acc_step_rate = current_block->initial_rate;
|
|
|
1790 |
#endif
|
|
|
1791 |
|
|
|
1792 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
1793 |
// Initialize the Bézier speed curve
|
|
|
1794 |
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
|
|
|
1795 |
// We haven't started the 2nd half of the trapezoid
|
|
|
1796 |
bezier_2nd_half = false;
|
|
|
1797 |
#endif
|
|
|
1798 |
|
|
|
1799 |
// Calculate the initial timer interval
|
|
|
1800 |
interval = calc_timer_interval(current_block->initial_rate, oversampling_factor, &steps_per_isr);
|
|
|
1801 |
}
|
|
|
1802 |
}
|
|
|
1803 |
|
|
|
1804 |
// Return the interval to wait
|
|
|
1805 |
return interval;
|
|
|
1806 |
}
|
|
|
1807 |
|
|
|
1808 |
#if ENABLED(LIN_ADVANCE)
|
|
|
1809 |
|
|
|
1810 |
// Timer interrupt for E. LA_steps is set in the main routine
|
|
|
1811 |
uint32_t Stepper::advance_isr() {
|
|
|
1812 |
uint32_t interval;
|
|
|
1813 |
|
|
|
1814 |
if (LA_use_advance_lead) {
|
|
|
1815 |
if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
|
|
|
1816 |
LA_steps--;
|
|
|
1817 |
LA_current_adv_steps--;
|
|
|
1818 |
interval = LA_isr_rate;
|
|
|
1819 |
}
|
|
|
1820 |
else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
|
|
|
1821 |
//step_events_completed <= (uint32_t)accelerate_until) {
|
|
|
1822 |
LA_steps++;
|
|
|
1823 |
LA_current_adv_steps++;
|
|
|
1824 |
interval = LA_isr_rate;
|
|
|
1825 |
}
|
|
|
1826 |
else
|
|
|
1827 |
interval = LA_isr_rate = LA_ADV_NEVER;
|
|
|
1828 |
}
|
|
|
1829 |
else
|
|
|
1830 |
interval = LA_ADV_NEVER;
|
|
|
1831 |
|
|
|
1832 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
1833 |
if (LA_steps >= 0)
|
|
|
1834 |
MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);
|
|
|
1835 |
else
|
|
|
1836 |
MIXING_STEPPERS_LOOP(j) REV_E_DIR(j);
|
|
|
1837 |
#else
|
|
|
1838 |
if (LA_steps >= 0)
|
|
|
1839 |
NORM_E_DIR(active_extruder);
|
|
|
1840 |
else
|
|
|
1841 |
REV_E_DIR(active_extruder);
|
|
|
1842 |
#endif
|
|
|
1843 |
|
|
|
1844 |
// Get the timer count and estimate the end of the pulse
|
|
|
1845 |
hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);
|
|
|
1846 |
|
|
|
1847 |
const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
|
|
|
1848 |
|
|
|
1849 |
// Step E stepper if we have steps
|
|
|
1850 |
while (LA_steps) {
|
|
|
1851 |
|
|
|
1852 |
// Set the STEP pulse ON
|
|
|
1853 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
1854 |
MIXING_STEPPERS_LOOP(j) {
|
|
|
1855 |
// Step mixing steppers (proportionally)
|
|
|
1856 |
delta_error_m[j] += advance_dividend_m[j];
|
|
|
1857 |
// Step when the counter goes over zero
|
|
|
1858 |
if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
|
|
1859 |
}
|
|
|
1860 |
#else
|
|
|
1861 |
E_STEP_WRITE(active_extruder, !INVERT_E_STEP_PIN);
|
|
|
1862 |
#endif
|
|
|
1863 |
|
|
|
1864 |
// Enforce a minimum duration for STEP pulse ON
|
|
|
1865 |
#if MINIMUM_STEPPER_PULSE
|
|
|
1866 |
// Just wait for the requested pulse duration
|
|
|
1867 |
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
|
1868 |
#endif
|
|
|
1869 |
|
|
|
1870 |
// Add the delay needed to ensure the maximum driver rate is enforced
|
|
|
1871 |
if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);
|
|
|
1872 |
|
|
|
1873 |
LA_steps < 0 ? ++LA_steps : --LA_steps;
|
|
|
1874 |
|
|
|
1875 |
// Set the STEP pulse OFF
|
|
|
1876 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
1877 |
MIXING_STEPPERS_LOOP(j) {
|
|
|
1878 |
if (delta_error_m[j] >= 0) {
|
|
|
1879 |
delta_error_m[j] -= advance_divisor_m;
|
|
|
1880 |
E_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
|
|
1881 |
}
|
|
|
1882 |
}
|
|
|
1883 |
#else
|
|
|
1884 |
E_STEP_WRITE(active_extruder, INVERT_E_STEP_PIN);
|
|
|
1885 |
#endif
|
|
|
1886 |
|
|
|
1887 |
// For minimum pulse time wait before looping
|
|
|
1888 |
// Just wait for the requested pulse duration
|
|
|
1889 |
if (LA_steps) {
|
|
|
1890 |
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
|
1891 |
#if MINIMUM_STEPPER_PULSE
|
|
|
1892 |
// Add to the value, the time that the pulse must be active (to be used on the next loop)
|
|
|
1893 |
pulse_end += hal_timer_t(MIN_PULSE_TICKS);
|
|
|
1894 |
#endif
|
|
|
1895 |
}
|
|
|
1896 |
} // LA_steps
|
|
|
1897 |
|
|
|
1898 |
return interval;
|
|
|
1899 |
}
|
|
|
1900 |
#endif // LIN_ADVANCE
|
|
|
1901 |
|
|
|
1902 |
// Check if the given block is busy or not - Must not be called from ISR contexts
|
|
|
1903 |
// The current_block could change in the middle of the read by an Stepper ISR, so
|
|
|
1904 |
// we must explicitly prevent that!
|
|
|
1905 |
bool Stepper::is_block_busy(const block_t* const block) {
|
|
|
1906 |
#define sw_barrier() asm volatile("": : :"memory");
|
|
|
1907 |
|
|
|
1908 |
// Keep reading until 2 consecutive reads return the same value,
|
|
|
1909 |
// meaning there was no update in-between caused by an interrupt.
|
|
|
1910 |
// This works because stepper ISRs happen at a slower rate than
|
|
|
1911 |
// successive reads of a variable, so 2 consecutive reads with
|
|
|
1912 |
// the same value means no interrupt updated it.
|
|
|
1913 |
block_t* vold, *vnew = current_block;
|
|
|
1914 |
sw_barrier();
|
|
|
1915 |
do {
|
|
|
1916 |
vold = vnew;
|
|
|
1917 |
vnew = current_block;
|
|
|
1918 |
sw_barrier();
|
|
|
1919 |
} while (vold != vnew);
|
|
|
1920 |
|
|
|
1921 |
// Return if the block is busy or not
|
|
|
1922 |
return block == vnew;
|
|
|
1923 |
}
|
|
|
1924 |
|
|
|
1925 |
void Stepper::init() {
|
|
|
1926 |
|
|
|
1927 |
// Init Digipot Motor Current
|
|
|
1928 |
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
|
|
1929 |
digipot_init();
|
|
|
1930 |
#endif
|
|
|
1931 |
|
|
|
1932 |
// Init Microstepping Pins
|
|
|
1933 |
#if HAS_MICROSTEPS
|
|
|
1934 |
microstep_init();
|
|
|
1935 |
#endif
|
|
|
1936 |
|
|
|
1937 |
// Init Dir Pins
|
|
|
1938 |
#if HAS_X_DIR
|
|
|
1939 |
X_DIR_INIT;
|
|
|
1940 |
#endif
|
|
|
1941 |
#if HAS_X2_DIR
|
|
|
1942 |
X2_DIR_INIT;
|
|
|
1943 |
#endif
|
|
|
1944 |
#if HAS_Y_DIR
|
|
|
1945 |
Y_DIR_INIT;
|
|
|
1946 |
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
|
|
|
1947 |
Y2_DIR_INIT;
|
|
|
1948 |
#endif
|
|
|
1949 |
#endif
|
|
|
1950 |
#if HAS_Z_DIR
|
|
|
1951 |
Z_DIR_INIT;
|
|
|
1952 |
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
|
|
|
1953 |
Z2_DIR_INIT;
|
|
|
1954 |
#endif
|
|
|
1955 |
#endif
|
|
|
1956 |
#if HAS_E0_DIR
|
|
|
1957 |
E0_DIR_INIT;
|
|
|
1958 |
#endif
|
|
|
1959 |
#if HAS_E1_DIR
|
|
|
1960 |
E1_DIR_INIT;
|
|
|
1961 |
#endif
|
|
|
1962 |
#if HAS_E2_DIR
|
|
|
1963 |
E2_DIR_INIT;
|
|
|
1964 |
#endif
|
|
|
1965 |
#if HAS_E3_DIR
|
|
|
1966 |
E3_DIR_INIT;
|
|
|
1967 |
#endif
|
|
|
1968 |
#if HAS_E4_DIR
|
|
|
1969 |
E4_DIR_INIT;
|
|
|
1970 |
#endif
|
|
|
1971 |
|
|
|
1972 |
// Init Enable Pins - steppers default to disabled.
|
|
|
1973 |
#if HAS_X_ENABLE
|
|
|
1974 |
X_ENABLE_INIT;
|
|
|
1975 |
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
|
|
|
1976 |
#if (ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)) && HAS_X2_ENABLE
|
|
|
1977 |
X2_ENABLE_INIT;
|
|
|
1978 |
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
|
|
|
1979 |
#endif
|
|
|
1980 |
#endif
|
|
|
1981 |
#if HAS_Y_ENABLE
|
|
|
1982 |
Y_ENABLE_INIT;
|
|
|
1983 |
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
|
|
|
1984 |
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
|
|
|
1985 |
Y2_ENABLE_INIT;
|
|
|
1986 |
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
|
|
|
1987 |
#endif
|
|
|
1988 |
#endif
|
|
|
1989 |
#if HAS_Z_ENABLE
|
|
|
1990 |
Z_ENABLE_INIT;
|
|
|
1991 |
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
|
|
|
1992 |
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
|
|
|
1993 |
Z2_ENABLE_INIT;
|
|
|
1994 |
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
|
|
|
1995 |
#endif
|
|
|
1996 |
#endif
|
|
|
1997 |
#if HAS_E0_ENABLE
|
|
|
1998 |
E0_ENABLE_INIT;
|
|
|
1999 |
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
|
|
|
2000 |
#endif
|
|
|
2001 |
#if HAS_E1_ENABLE
|
|
|
2002 |
E1_ENABLE_INIT;
|
|
|
2003 |
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
|
|
|
2004 |
#endif
|
|
|
2005 |
#if HAS_E2_ENABLE
|
|
|
2006 |
E2_ENABLE_INIT;
|
|
|
2007 |
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
|
|
|
2008 |
#endif
|
|
|
2009 |
#if HAS_E3_ENABLE
|
|
|
2010 |
E3_ENABLE_INIT;
|
|
|
2011 |
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
|
|
2012 |
#endif
|
|
|
2013 |
#if HAS_E4_ENABLE
|
|
|
2014 |
E4_ENABLE_INIT;
|
|
|
2015 |
if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
|
|
|
2016 |
#endif
|
|
|
2017 |
|
|
|
2018 |
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
|
|
|
2019 |
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
|
|
2020 |
#define _DISABLE(AXIS) disable_## AXIS()
|
|
|
2021 |
|
|
|
2022 |
#define AXIS_INIT(AXIS, PIN) \
|
|
|
2023 |
_STEP_INIT(AXIS); \
|
|
|
2024 |
_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
|
|
|
2025 |
_DISABLE(AXIS)
|
|
|
2026 |
|
|
|
2027 |
#define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
|
|
|
2028 |
|
|
|
2029 |
// Init Step Pins
|
|
|
2030 |
#if HAS_X_STEP
|
|
|
2031 |
#if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
|
|
|
2032 |
X2_STEP_INIT;
|
|
|
2033 |
X2_STEP_WRITE(INVERT_X_STEP_PIN);
|
|
|
2034 |
#endif
|
|
|
2035 |
AXIS_INIT(X, X);
|
|
|
2036 |
#endif
|
|
|
2037 |
|
|
|
2038 |
#if HAS_Y_STEP
|
|
|
2039 |
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
|
2040 |
Y2_STEP_INIT;
|
|
|
2041 |
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
|
2042 |
#endif
|
|
|
2043 |
AXIS_INIT(Y, Y);
|
|
|
2044 |
#endif
|
|
|
2045 |
|
|
|
2046 |
#if HAS_Z_STEP
|
|
|
2047 |
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
|
2048 |
Z2_STEP_INIT;
|
|
|
2049 |
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
|
2050 |
#endif
|
|
|
2051 |
AXIS_INIT(Z, Z);
|
|
|
2052 |
#endif
|
|
|
2053 |
|
|
|
2054 |
#if E_STEPPERS > 0 && HAS_E0_STEP
|
|
|
2055 |
E_AXIS_INIT(0);
|
|
|
2056 |
#endif
|
|
|
2057 |
#if (E_STEPPERS > 1 || (E_STEPPERS == 1 && ENABLED(HANGPRINTER))) && HAS_E1_STEP
|
|
|
2058 |
E_AXIS_INIT(1);
|
|
|
2059 |
#endif
|
|
|
2060 |
#if (E_STEPPERS > 2 || (E_STEPPERS == 2 && ENABLED(HANGPRINTER))) && HAS_E2_STEP
|
|
|
2061 |
E_AXIS_INIT(2);
|
|
|
2062 |
#endif
|
|
|
2063 |
#if (E_STEPPERS > 3 || (E_STEPPERS == 3 && ENABLED(HANGPRINTER))) && HAS_E3_STEP
|
|
|
2064 |
E_AXIS_INIT(3);
|
|
|
2065 |
#endif
|
|
|
2066 |
#if (E_STEPPERS > 4 || (E_STEPPERS == 4 && ENABLED(HANGPRINTER))) && HAS_E4_STEP
|
|
|
2067 |
E_AXIS_INIT(4);
|
|
|
2068 |
#endif
|
|
|
2069 |
|
|
|
2070 |
// Init Stepper ISR to 122 Hz for quick starting
|
|
|
2071 |
HAL_timer_start(STEP_TIMER_NUM, 122); // OCR1A = 0x4000
|
|
|
2072 |
|
|
|
2073 |
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2074 |
|
|
|
2075 |
endstops.enable(true); // Start with endstops active. After homing they can be disabled
|
|
|
2076 |
sei();
|
|
|
2077 |
|
|
|
2078 |
set_directions(); // Init directions to last_direction_bits = 0
|
|
|
2079 |
}
|
|
|
2080 |
|
|
|
2081 |
/**
|
|
|
2082 |
* Set the stepper positions directly in steps
|
|
|
2083 |
*
|
|
|
2084 |
* The input is based on the typical per-axis XYZ steps.
|
|
|
2085 |
* For CORE machines XYZ needs to be translated to ABC.
|
|
|
2086 |
*
|
|
|
2087 |
* This allows get_axis_position_mm to correctly
|
|
|
2088 |
* derive the current XYZ position later on.
|
|
|
2089 |
*/
|
|
|
2090 |
void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c,
|
|
|
2091 |
#if ENABLED(HANGPRINTER)
|
|
|
2092 |
const int32_t &d,
|
|
|
2093 |
#endif
|
|
|
2094 |
const int32_t &e
|
|
|
2095 |
) {
|
|
|
2096 |
#if CORE_IS_XY
|
|
|
2097 |
// corexy positioning
|
|
|
2098 |
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
2099 |
count_position[A_AXIS] = a + b;
|
|
|
2100 |
count_position[B_AXIS] = CORESIGN(a - b);
|
|
|
2101 |
count_position[Z_AXIS] = c;
|
|
|
2102 |
#elif CORE_IS_XZ
|
|
|
2103 |
// corexz planning
|
|
|
2104 |
count_position[A_AXIS] = a + c;
|
|
|
2105 |
count_position[Y_AXIS] = b;
|
|
|
2106 |
count_position[C_AXIS] = CORESIGN(a - c);
|
|
|
2107 |
#elif CORE_IS_YZ
|
|
|
2108 |
// coreyz planning
|
|
|
2109 |
count_position[X_AXIS] = a;
|
|
|
2110 |
count_position[B_AXIS] = b + c;
|
|
|
2111 |
count_position[C_AXIS] = CORESIGN(b - c);
|
|
|
2112 |
#else
|
|
|
2113 |
// default non-h-bot planning
|
|
|
2114 |
count_position[X_AXIS] = a;
|
|
|
2115 |
count_position[Y_AXIS] = b;
|
|
|
2116 |
count_position[Z_AXIS] = c;
|
|
|
2117 |
#if ENABLED(HANGPRINTER)
|
|
|
2118 |
count_position[D_AXIS] = d;
|
|
|
2119 |
#endif
|
|
|
2120 |
#endif
|
|
|
2121 |
count_position[E_AXIS] = e;
|
|
|
2122 |
}
|
|
|
2123 |
|
|
|
2124 |
/**
|
|
|
2125 |
* Get a stepper's position in steps.
|
|
|
2126 |
*/
|
|
|
2127 |
int32_t Stepper::position(const AxisEnum axis) {
|
|
|
2128 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
2129 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2130 |
|
|
|
2131 |
const int32_t v = count_position[axis];
|
|
|
2132 |
|
|
|
2133 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2134 |
return v;
|
|
|
2135 |
}
|
|
|
2136 |
|
|
|
2137 |
// Signal endstops were triggered - This function can be called from
|
|
|
2138 |
// an ISR context (Temperature, Stepper or limits ISR), so we must
|
|
|
2139 |
// be very careful here. If the interrupt being preempted was the
|
|
|
2140 |
// Stepper ISR (this CAN happen with the endstop limits ISR) then
|
|
|
2141 |
// when the stepper ISR resumes, we must be very sure that the movement
|
|
|
2142 |
// is properly cancelled
|
|
|
2143 |
void Stepper::endstop_triggered(const AxisEnum axis) {
|
|
|
2144 |
|
|
|
2145 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
2146 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2147 |
|
|
|
2148 |
#if IS_CORE
|
|
|
2149 |
|
|
|
2150 |
endstops_trigsteps[axis] = 0.5f * (
|
|
|
2151 |
axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
|
|
|
2152 |
: count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
|
|
|
2153 |
);
|
|
|
2154 |
|
|
|
2155 |
#else // !COREXY && !COREXZ && !COREYZ
|
|
|
2156 |
|
|
|
2157 |
endstops_trigsteps[axis] = count_position[axis];
|
|
|
2158 |
|
|
|
2159 |
#endif // !COREXY && !COREXZ && !COREYZ
|
|
|
2160 |
|
|
|
2161 |
// Discard the rest of the move if there is a current block
|
|
|
2162 |
quick_stop();
|
|
|
2163 |
|
|
|
2164 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2165 |
}
|
|
|
2166 |
|
|
|
2167 |
int32_t Stepper::triggered_position(const AxisEnum axis) {
|
|
|
2168 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
2169 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2170 |
|
|
|
2171 |
const int32_t v = endstops_trigsteps[axis];
|
|
|
2172 |
|
|
|
2173 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2174 |
|
|
|
2175 |
return v;
|
|
|
2176 |
}
|
|
|
2177 |
|
|
|
2178 |
void Stepper::report_positions() {
|
|
|
2179 |
|
|
|
2180 |
// Protect the access to the position.
|
|
|
2181 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
2182 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2183 |
|
|
|
2184 |
const int32_t xpos = count_position[X_AXIS],
|
|
|
2185 |
ypos = count_position[Y_AXIS],
|
|
|
2186 |
#if ENABLED(HANGPRINTER)
|
|
|
2187 |
dpos = count_position[D_AXIS],
|
|
|
2188 |
#endif
|
|
|
2189 |
zpos = count_position[Z_AXIS];
|
|
|
2190 |
|
|
|
2191 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
2192 |
|
|
|
2193 |
#if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)
|
|
|
2194 |
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
|
|
2195 |
#else
|
|
|
2196 |
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
|
|
2197 |
#endif
|
|
|
2198 |
SERIAL_PROTOCOL(xpos);
|
|
|
2199 |
|
|
|
2200 |
#if CORE_IS_XY || CORE_IS_YZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)
|
|
|
2201 |
SERIAL_PROTOCOLPGM(" B:");
|
|
|
2202 |
#else
|
|
|
2203 |
SERIAL_PROTOCOLPGM(" Y:");
|
|
|
2204 |
#endif
|
|
|
2205 |
SERIAL_PROTOCOL(ypos);
|
|
|
2206 |
|
|
|
2207 |
#if CORE_IS_XZ || CORE_IS_YZ || IS_DELTA || ENABLED(HANGPRINTER)
|
|
|
2208 |
SERIAL_PROTOCOLPGM(" C:");
|
|
|
2209 |
#else
|
|
|
2210 |
SERIAL_PROTOCOLPGM(" Z:");
|
|
|
2211 |
#endif
|
|
|
2212 |
SERIAL_PROTOCOL(zpos);
|
|
|
2213 |
|
|
|
2214 |
#if ENABLED(HANGPRINTER)
|
|
|
2215 |
SERIAL_PROTOCOLPAIR(" D:", dpos);
|
|
|
2216 |
#endif
|
|
|
2217 |
|
|
|
2218 |
SERIAL_EOL();
|
|
|
2219 |
}
|
|
|
2220 |
|
|
|
2221 |
#if ENABLED(BABYSTEPPING)
|
|
|
2222 |
|
|
|
2223 |
#if MINIMUM_STEPPER_PULSE
|
|
|
2224 |
#define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
|
|
|
2225 |
#else
|
|
|
2226 |
#define STEP_PULSE_CYCLES 0
|
|
|
2227 |
#endif
|
|
|
2228 |
|
|
|
2229 |
#if ENABLED(DELTA)
|
|
|
2230 |
#define CYCLES_EATEN_BABYSTEP (2 * 15)
|
|
|
2231 |
#else
|
|
|
2232 |
#define CYCLES_EATEN_BABYSTEP 0
|
|
|
2233 |
#endif
|
|
|
2234 |
#define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
|
|
|
2235 |
|
|
|
2236 |
#define _ENABLE(AXIS) enable_## AXIS()
|
|
|
2237 |
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
|
|
|
2238 |
#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
|
|
|
2239 |
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
|
|
|
2240 |
|
|
|
2241 |
#if EXTRA_CYCLES_BABYSTEP > 20
|
|
|
2242 |
#define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM)
|
|
|
2243 |
#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
|
|
2244 |
#else
|
|
|
2245 |
#define _SAVE_START NOOP
|
|
|
2246 |
#if EXTRA_CYCLES_BABYSTEP > 0
|
|
|
2247 |
#define _PULSE_WAIT DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
|
|
|
2248 |
#elif STEP_PULSE_CYCLES > 0
|
|
|
2249 |
#define _PULSE_WAIT NOOP
|
|
|
2250 |
#elif ENABLED(DELTA)
|
|
|
2251 |
#define _PULSE_WAIT DELAY_US(2);
|
|
|
2252 |
#else
|
|
|
2253 |
#define _PULSE_WAIT DELAY_US(4);
|
|
|
2254 |
#endif
|
|
|
2255 |
#endif
|
|
|
2256 |
|
|
|
2257 |
#define BABYSTEP_AXIS(AXIS, INVERT, DIR) { \
|
|
|
2258 |
const uint8_t old_dir = _READ_DIR(AXIS); \
|
|
|
2259 |
_ENABLE(AXIS); \
|
|
|
2260 |
_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INVERT); \
|
|
|
2261 |
DELAY_NS(MINIMUM_STEPPER_DIR_DELAY); \
|
|
|
2262 |
_SAVE_START; \
|
|
|
2263 |
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
|
|
|
2264 |
_PULSE_WAIT; \
|
|
|
2265 |
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
|
|
|
2266 |
_APPLY_DIR(AXIS, old_dir); \
|
|
|
2267 |
}
|
|
|
2268 |
|
|
|
2269 |
// MUST ONLY BE CALLED BY AN ISR,
|
|
|
2270 |
// No other ISR should ever interrupt this!
|
|
|
2271 |
void Stepper::babystep(const AxisEnum axis, const bool direction) {
|
|
|
2272 |
cli();
|
|
|
2273 |
|
|
|
2274 |
switch (axis) {
|
|
|
2275 |
|
|
|
2276 |
#if ENABLED(BABYSTEP_XY)
|
|
|
2277 |
|
|
|
2278 |
case X_AXIS:
|
|
|
2279 |
#if CORE_IS_XY
|
|
|
2280 |
BABYSTEP_AXIS(X, false, direction);
|
|
|
2281 |
BABYSTEP_AXIS(Y, false, direction);
|
|
|
2282 |
#elif CORE_IS_XZ
|
|
|
2283 |
BABYSTEP_AXIS(X, false, direction);
|
|
|
2284 |
BABYSTEP_AXIS(Z, false, direction);
|
|
|
2285 |
#else
|
|
|
2286 |
BABYSTEP_AXIS(X, false, direction);
|
|
|
2287 |
#endif
|
|
|
2288 |
break;
|
|
|
2289 |
|
|
|
2290 |
case Y_AXIS:
|
|
|
2291 |
#if CORE_IS_XY
|
|
|
2292 |
BABYSTEP_AXIS(X, false, direction);
|
|
|
2293 |
BABYSTEP_AXIS(Y, false, direction^(CORESIGN(1)<0));
|
|
|
2294 |
#elif CORE_IS_YZ
|
|
|
2295 |
BABYSTEP_AXIS(Y, false, direction);
|
|
|
2296 |
BABYSTEP_AXIS(Z, false, direction^(CORESIGN(1)<0));
|
|
|
2297 |
#else
|
|
|
2298 |
BABYSTEP_AXIS(Y, false, direction);
|
|
|
2299 |
#endif
|
|
|
2300 |
break;
|
|
|
2301 |
|
|
|
2302 |
#endif
|
|
|
2303 |
|
|
|
2304 |
case Z_AXIS: {
|
|
|
2305 |
|
|
|
2306 |
#if CORE_IS_XZ
|
|
|
2307 |
BABYSTEP_AXIS(X, BABYSTEP_INVERT_Z, direction);
|
|
|
2308 |
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
|
|
|
2309 |
|
|
|
2310 |
#elif CORE_IS_YZ
|
|
|
2311 |
BABYSTEP_AXIS(Y, BABYSTEP_INVERT_Z, direction);
|
|
|
2312 |
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
|
|
|
2313 |
|
|
|
2314 |
#elif DISABLED(DELTA)
|
|
|
2315 |
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
|
|
|
2316 |
|
|
|
2317 |
#else // DELTA
|
|
|
2318 |
|
|
|
2319 |
const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
|
|
|
2320 |
|
|
|
2321 |
enable_X();
|
|
|
2322 |
enable_Y();
|
|
|
2323 |
enable_Z();
|
|
|
2324 |
|
|
|
2325 |
const uint8_t old_x_dir_pin = X_DIR_READ,
|
|
|
2326 |
old_y_dir_pin = Y_DIR_READ,
|
|
|
2327 |
old_z_dir_pin = Z_DIR_READ;
|
|
|
2328 |
|
|
|
2329 |
X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
|
|
|
2330 |
Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
|
|
|
2331 |
Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
|
|
|
2332 |
|
|
|
2333 |
#if MINIMUM_STEPPER_DIR_DELAY > 0
|
|
|
2334 |
DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);
|
|
|
2335 |
#endif
|
|
|
2336 |
|
|
|
2337 |
_SAVE_START;
|
|
|
2338 |
|
|
|
2339 |
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
|
|
2340 |
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
|
|
|
2341 |
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
|
|
2342 |
|
|
|
2343 |
_PULSE_WAIT;
|
|
|
2344 |
|
|
|
2345 |
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
|
|
2346 |
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
|
2347 |
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
|
2348 |
|
|
|
2349 |
// Restore direction bits
|
|
|
2350 |
X_DIR_WRITE(old_x_dir_pin);
|
|
|
2351 |
Y_DIR_WRITE(old_y_dir_pin);
|
|
|
2352 |
Z_DIR_WRITE(old_z_dir_pin);
|
|
|
2353 |
|
|
|
2354 |
#endif
|
|
|
2355 |
|
|
|
2356 |
} break;
|
|
|
2357 |
|
|
|
2358 |
default: break;
|
|
|
2359 |
}
|
|
|
2360 |
sei();
|
|
|
2361 |
}
|
|
|
2362 |
|
|
|
2363 |
#endif // BABYSTEPPING
|
|
|
2364 |
|
|
|
2365 |
/**
|
|
|
2366 |
* Software-controlled Stepper Motor Current
|
|
|
2367 |
*/
|
|
|
2368 |
|
|
|
2369 |
#if HAS_DIGIPOTSS
|
|
|
2370 |
|
|
|
2371 |
// From Arduino DigitalPotControl example
|
|
|
2372 |
void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
|
|
|
2373 |
WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
|
|
|
2374 |
SPI.transfer(address); // Send the address and value via SPI
|
|
|
2375 |
SPI.transfer(value);
|
|
|
2376 |
WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
|
|
|
2377 |
//delay(10);
|
|
|
2378 |
}
|
|
|
2379 |
|
|
|
2380 |
#endif // HAS_DIGIPOTSS
|
|
|
2381 |
|
|
|
2382 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
2383 |
|
|
|
2384 |
void Stepper::refresh_motor_power() {
|
|
|
2385 |
for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
|
|
|
2386 |
switch (i) {
|
|
|
2387 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
|
2388 |
case 0:
|
|
|
2389 |
#endif
|
|
|
2390 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
|
2391 |
case 1:
|
|
|
2392 |
#endif
|
|
|
2393 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
|
2394 |
case 2:
|
|
|
2395 |
#endif
|
|
|
2396 |
digipot_current(i, motor_current_setting[i]);
|
|
|
2397 |
default: break;
|
|
|
2398 |
}
|
|
|
2399 |
}
|
|
|
2400 |
}
|
|
|
2401 |
|
|
|
2402 |
#endif // HAS_MOTOR_CURRENT_PWM
|
|
|
2403 |
|
|
|
2404 |
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
|
|
2405 |
|
|
|
2406 |
void Stepper::digipot_current(const uint8_t driver, const int current) {
|
|
|
2407 |
|
|
|
2408 |
#if HAS_DIGIPOTSS
|
|
|
2409 |
|
|
|
2410 |
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
|
|
2411 |
digitalPotWrite(digipot_ch[driver], current);
|
|
|
2412 |
|
|
|
2413 |
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
2414 |
|
|
|
2415 |
if (WITHIN(driver, 0, 2))
|
|
|
2416 |
motor_current_setting[driver] = current; // update motor_current_setting
|
|
|
2417 |
|
|
|
2418 |
#define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
|
|
|
2419 |
switch (driver) {
|
|
|
2420 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
|
2421 |
case 0: _WRITE_CURRENT_PWM(XY); break;
|
|
|
2422 |
#endif
|
|
|
2423 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
|
2424 |
case 1: _WRITE_CURRENT_PWM(Z); break;
|
|
|
2425 |
#endif
|
|
|
2426 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
|
2427 |
case 2: _WRITE_CURRENT_PWM(E); break;
|
|
|
2428 |
#endif
|
|
|
2429 |
}
|
|
|
2430 |
#endif
|
|
|
2431 |
}
|
|
|
2432 |
|
|
|
2433 |
void Stepper::digipot_init() {
|
|
|
2434 |
|
|
|
2435 |
#if HAS_DIGIPOTSS
|
|
|
2436 |
|
|
|
2437 |
static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
|
|
2438 |
|
|
|
2439 |
SPI.begin();
|
|
|
2440 |
SET_OUTPUT(DIGIPOTSS_PIN);
|
|
|
2441 |
|
|
|
2442 |
for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
|
|
|
2443 |
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
|
|
|
2444 |
digipot_current(i, digipot_motor_current[i]);
|
|
|
2445 |
}
|
|
|
2446 |
|
|
|
2447 |
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
2448 |
|
|
|
2449 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
|
2450 |
SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
|
|
|
2451 |
#endif
|
|
|
2452 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
|
2453 |
SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
|
|
|
2454 |
#endif
|
|
|
2455 |
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
|
2456 |
SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
|
|
|
2457 |
#endif
|
|
|
2458 |
|
|
|
2459 |
refresh_motor_power();
|
|
|
2460 |
|
|
|
2461 |
// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
|
|
|
2462 |
SET_CS5(PRESCALER_1);
|
|
|
2463 |
|
|
|
2464 |
#endif
|
|
|
2465 |
}
|
|
|
2466 |
|
|
|
2467 |
#endif
|
|
|
2468 |
|
|
|
2469 |
#if HAS_MICROSTEPS
|
|
|
2470 |
|
|
|
2471 |
/**
|
|
|
2472 |
* Software-controlled Microstepping
|
|
|
2473 |
*/
|
|
|
2474 |
|
|
|
2475 |
void Stepper::microstep_init() {
|
|
|
2476 |
SET_OUTPUT(X_MS1_PIN);
|
|
|
2477 |
SET_OUTPUT(X_MS2_PIN);
|
|
|
2478 |
#if HAS_Y_MICROSTEPS
|
|
|
2479 |
SET_OUTPUT(Y_MS1_PIN);
|
|
|
2480 |
SET_OUTPUT(Y_MS2_PIN);
|
|
|
2481 |
#endif
|
|
|
2482 |
#if HAS_Z_MICROSTEPS
|
|
|
2483 |
SET_OUTPUT(Z_MS1_PIN);
|
|
|
2484 |
SET_OUTPUT(Z_MS2_PIN);
|
|
|
2485 |
#endif
|
|
|
2486 |
#if HAS_E0_MICROSTEPS
|
|
|
2487 |
SET_OUTPUT(E0_MS1_PIN);
|
|
|
2488 |
SET_OUTPUT(E0_MS2_PIN);
|
|
|
2489 |
#endif
|
|
|
2490 |
#if HAS_E1_MICROSTEPS
|
|
|
2491 |
SET_OUTPUT(E1_MS1_PIN);
|
|
|
2492 |
SET_OUTPUT(E1_MS2_PIN);
|
|
|
2493 |
#endif
|
|
|
2494 |
#if HAS_E2_MICROSTEPS
|
|
|
2495 |
SET_OUTPUT(E2_MS1_PIN);
|
|
|
2496 |
SET_OUTPUT(E2_MS2_PIN);
|
|
|
2497 |
#endif
|
|
|
2498 |
#if HAS_E3_MICROSTEPS
|
|
|
2499 |
SET_OUTPUT(E3_MS1_PIN);
|
|
|
2500 |
SET_OUTPUT(E3_MS2_PIN);
|
|
|
2501 |
#endif
|
|
|
2502 |
#if HAS_E4_MICROSTEPS
|
|
|
2503 |
SET_OUTPUT(E4_MS1_PIN);
|
|
|
2504 |
SET_OUTPUT(E4_MS2_PIN);
|
|
|
2505 |
#endif
|
|
|
2506 |
static const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
|
|
2507 |
for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
|
|
|
2508 |
microstep_mode(i, microstep_modes[i]);
|
|
|
2509 |
}
|
|
|
2510 |
|
|
|
2511 |
void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
|
|
|
2512 |
if (ms1 >= 0) switch (driver) {
|
|
|
2513 |
case 0: WRITE(X_MS1_PIN, ms1); break;
|
|
|
2514 |
#if HAS_Y_MICROSTEPS
|
|
|
2515 |
case 1: WRITE(Y_MS1_PIN, ms1); break;
|
|
|
2516 |
#endif
|
|
|
2517 |
#if HAS_Z_MICROSTEPS
|
|
|
2518 |
case 2: WRITE(Z_MS1_PIN, ms1); break;
|
|
|
2519 |
#endif
|
|
|
2520 |
#if HAS_E0_MICROSTEPS
|
|
|
2521 |
case 3: WRITE(E0_MS1_PIN, ms1); break;
|
|
|
2522 |
#endif
|
|
|
2523 |
#if HAS_E1_MICROSTEPS
|
|
|
2524 |
case 4: WRITE(E1_MS1_PIN, ms1); break;
|
|
|
2525 |
#endif
|
|
|
2526 |
#if HAS_E2_MICROSTEPS
|
|
|
2527 |
case 5: WRITE(E2_MS1_PIN, ms1); break;
|
|
|
2528 |
#endif
|
|
|
2529 |
#if HAS_E3_MICROSTEPS
|
|
|
2530 |
case 6: WRITE(E3_MS1_PIN, ms1); break;
|
|
|
2531 |
#endif
|
|
|
2532 |
#if HAS_E4_MICROSTEPS
|
|
|
2533 |
case 7: WRITE(E4_MS1_PIN, ms1); break;
|
|
|
2534 |
#endif
|
|
|
2535 |
}
|
|
|
2536 |
if (ms2 >= 0) switch (driver) {
|
|
|
2537 |
case 0: WRITE(X_MS2_PIN, ms2); break;
|
|
|
2538 |
#if HAS_Y_MICROSTEPS
|
|
|
2539 |
case 1: WRITE(Y_MS2_PIN, ms2); break;
|
|
|
2540 |
#endif
|
|
|
2541 |
#if HAS_Z_MICROSTEPS
|
|
|
2542 |
case 2: WRITE(Z_MS2_PIN, ms2); break;
|
|
|
2543 |
#endif
|
|
|
2544 |
#if HAS_E0_MICROSTEPS
|
|
|
2545 |
case 3: WRITE(E0_MS2_PIN, ms2); break;
|
|
|
2546 |
#endif
|
|
|
2547 |
#if HAS_E1_MICROSTEPS
|
|
|
2548 |
case 4: WRITE(E1_MS2_PIN, ms2); break;
|
|
|
2549 |
#endif
|
|
|
2550 |
#if HAS_E2_MICROSTEPS
|
|
|
2551 |
case 5: WRITE(E2_MS2_PIN, ms2); break;
|
|
|
2552 |
#endif
|
|
|
2553 |
#if HAS_E3_MICROSTEPS
|
|
|
2554 |
case 6: WRITE(E3_MS2_PIN, ms2); break;
|
|
|
2555 |
#endif
|
|
|
2556 |
#if HAS_E4_MICROSTEPS
|
|
|
2557 |
case 7: WRITE(E4_MS2_PIN, ms2); break;
|
|
|
2558 |
#endif
|
|
|
2559 |
}
|
|
|
2560 |
}
|
|
|
2561 |
|
|
|
2562 |
void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
|
|
|
2563 |
switch (stepping_mode) {
|
|
|
2564 |
case 1: microstep_ms(driver, MICROSTEP1); break;
|
|
|
2565 |
#if ENABLED(HEROIC_STEPPER_DRIVERS)
|
|
|
2566 |
case 128: microstep_ms(driver, MICROSTEP128); break;
|
|
|
2567 |
#else
|
|
|
2568 |
case 2: microstep_ms(driver, MICROSTEP2); break;
|
|
|
2569 |
case 4: microstep_ms(driver, MICROSTEP4); break;
|
|
|
2570 |
#endif
|
|
|
2571 |
case 8: microstep_ms(driver, MICROSTEP8); break;
|
|
|
2572 |
case 16: microstep_ms(driver, MICROSTEP16); break;
|
|
|
2573 |
default: SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Microsteps unavailable"); break;
|
|
|
2574 |
}
|
|
|
2575 |
}
|
|
|
2576 |
|
|
|
2577 |
void Stepper::microstep_readings() {
|
|
|
2578 |
SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
|
|
|
2579 |
SERIAL_PROTOCOLPGM("X: ");
|
|
|
2580 |
SERIAL_PROTOCOL(READ(X_MS1_PIN));
|
|
|
2581 |
SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
|
|
|
2582 |
#if HAS_Y_MICROSTEPS
|
|
|
2583 |
SERIAL_PROTOCOLPGM("Y: ");
|
|
|
2584 |
SERIAL_PROTOCOL(READ(Y_MS1_PIN));
|
|
|
2585 |
SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
|
|
|
2586 |
#endif
|
|
|
2587 |
#if HAS_Z_MICROSTEPS
|
|
|
2588 |
SERIAL_PROTOCOLPGM("Z: ");
|
|
|
2589 |
SERIAL_PROTOCOL(READ(Z_MS1_PIN));
|
|
|
2590 |
SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
|
|
|
2591 |
#endif
|
|
|
2592 |
#if HAS_E0_MICROSTEPS
|
|
|
2593 |
SERIAL_PROTOCOLPGM("E0: ");
|
|
|
2594 |
SERIAL_PROTOCOL(READ(E0_MS1_PIN));
|
|
|
2595 |
SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
|
|
|
2596 |
#endif
|
|
|
2597 |
#if HAS_E1_MICROSTEPS
|
|
|
2598 |
SERIAL_PROTOCOLPGM("E1: ");
|
|
|
2599 |
SERIAL_PROTOCOL(READ(E1_MS1_PIN));
|
|
|
2600 |
SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
|
|
|
2601 |
#endif
|
|
|
2602 |
#if HAS_E2_MICROSTEPS
|
|
|
2603 |
SERIAL_PROTOCOLPGM("E2: ");
|
|
|
2604 |
SERIAL_PROTOCOL(READ(E2_MS1_PIN));
|
|
|
2605 |
SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
|
|
|
2606 |
#endif
|
|
|
2607 |
#if HAS_E3_MICROSTEPS
|
|
|
2608 |
SERIAL_PROTOCOLPGM("E3: ");
|
|
|
2609 |
SERIAL_PROTOCOL(READ(E3_MS1_PIN));
|
|
|
2610 |
SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
|
|
|
2611 |
#endif
|
|
|
2612 |
#if HAS_E4_MICROSTEPS
|
|
|
2613 |
SERIAL_PROTOCOLPGM("E4: ");
|
|
|
2614 |
SERIAL_PROTOCOL(READ(E4_MS1_PIN));
|
|
|
2615 |
SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
|
|
|
2616 |
#endif
|
|
|
2617 |
}
|
|
|
2618 |
|
|
|
2619 |
#endif // HAS_MICROSTEPS
|