1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
|
|
|
25 |
* Derived from Grbl
|
|
|
26 |
*
|
|
|
27 |
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
28 |
*
|
|
|
29 |
* Grbl is free software: you can redistribute it and/or modify
|
|
|
30 |
* it under the terms of the GNU General Public License as published by
|
|
|
31 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
32 |
* (at your option) any later version.
|
|
|
33 |
*
|
|
|
34 |
* Grbl is distributed in the hope that it will be useful,
|
|
|
35 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
36 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
37 |
* GNU General Public License for more details.
|
|
|
38 |
*
|
|
|
39 |
* You should have received a copy of the GNU General Public License
|
|
|
40 |
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
41 |
*/
|
|
|
42 |
|
|
|
43 |
#ifndef STEPPER_H
|
|
|
44 |
#define STEPPER_H
|
|
|
45 |
|
|
|
46 |
#include "MarlinConfig.h"
|
|
|
47 |
|
|
|
48 |
// Disable multiple steps per ISR
|
|
|
49 |
//#define DISABLE_MULTI_STEPPING
|
|
|
50 |
|
|
|
51 |
//
|
|
|
52 |
// Estimate the amount of time the Stepper ISR will take to execute
|
|
|
53 |
//
|
|
|
54 |
|
|
|
55 |
#ifndef MINIMUM_STEPPER_PULSE
|
|
|
56 |
#define MINIMUM_STEPPER_PULSE 0UL
|
|
|
57 |
#endif
|
|
|
58 |
|
|
|
59 |
#ifndef MAXIMUM_STEPPER_RATE
|
|
|
60 |
#if MINIMUM_STEPPER_PULSE
|
|
|
61 |
#define MAXIMUM_STEPPER_RATE (1000000UL / (2UL * (unsigned long)(MINIMUM_STEPPER_PULSE)))
|
|
|
62 |
#else
|
|
|
63 |
#define MAXIMUM_STEPPER_RATE 500000UL
|
|
|
64 |
#endif
|
|
|
65 |
#endif
|
|
|
66 |
|
|
|
67 |
// The base ISR takes 752 cycles
|
|
|
68 |
#define ISR_BASE_CYCLES 752UL
|
|
|
69 |
|
|
|
70 |
// Linear advance base time is 32 cycles
|
|
|
71 |
#if ENABLED(LIN_ADVANCE)
|
|
|
72 |
#define ISR_LA_BASE_CYCLES 32UL
|
|
|
73 |
#else
|
|
|
74 |
#define ISR_LA_BASE_CYCLES 0UL
|
|
|
75 |
#endif
|
|
|
76 |
|
|
|
77 |
// S curve interpolation adds 160 cycles
|
|
|
78 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
79 |
#define ISR_S_CURVE_CYCLES 160UL
|
|
|
80 |
#else
|
|
|
81 |
#define ISR_S_CURVE_CYCLES 0UL
|
|
|
82 |
#endif
|
|
|
83 |
|
|
|
84 |
// Stepper Loop base cycles
|
|
|
85 |
#define ISR_LOOP_BASE_CYCLES 32UL
|
|
|
86 |
|
|
|
87 |
// To start the step pulse, in the worst case takes
|
|
|
88 |
#define ISR_START_STEPPER_CYCLES 57UL
|
|
|
89 |
|
|
|
90 |
// And each stepper (start + stop pulse) takes in worst case
|
|
|
91 |
#define ISR_STEPPER_CYCLES 88UL
|
|
|
92 |
|
|
|
93 |
// Add time for each stepper
|
|
|
94 |
#ifdef HAS_X_STEP
|
|
|
95 |
#define ISR_START_X_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
|
|
|
96 |
#define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
|
|
97 |
#else
|
|
|
98 |
#define ISR_START_X_STEPPER_CYCLES 0UL
|
|
|
99 |
#define ISR_X_STEPPER_CYCLES 0UL
|
|
|
100 |
#endif
|
|
|
101 |
#ifdef HAS_Y_STEP
|
|
|
102 |
#define ISR_START_Y_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
|
|
|
103 |
#define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
|
|
104 |
#else
|
|
|
105 |
#define ISR_START_Y_STEPPER_CYCLES 0UL
|
|
|
106 |
#define ISR_Y_STEPPER_CYCLES 0UL
|
|
|
107 |
#endif
|
|
|
108 |
#ifdef HAS_Z_STEP
|
|
|
109 |
#define ISR_START_Z_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
|
|
|
110 |
#define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
|
|
111 |
#else
|
|
|
112 |
#define ISR_START_Z_STEPPER_CYCLES 0UL
|
|
|
113 |
#define ISR_Z_STEPPER_CYCLES 0UL
|
|
|
114 |
#endif
|
|
|
115 |
|
|
|
116 |
// E is always interpolated, even for mixing extruders
|
|
|
117 |
#define ISR_START_E_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
|
|
|
118 |
#define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
|
|
119 |
|
|
|
120 |
// If linear advance is disabled, then the loop also handles them
|
|
|
121 |
#if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
|
|
|
122 |
#define ISR_START_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_START_STEPPER_CYCLES))
|
|
|
123 |
#define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
|
|
|
124 |
#else
|
|
|
125 |
#define ISR_START_MIXING_STEPPER_CYCLES 0UL
|
|
|
126 |
#define ISR_MIXING_STEPPER_CYCLES 0UL
|
|
|
127 |
#endif
|
|
|
128 |
|
|
|
129 |
// Calculate the minimum time to start all stepper pulses in the ISR loop
|
|
|
130 |
#define MIN_ISR_START_LOOP_CYCLES (ISR_START_X_STEPPER_CYCLES + ISR_START_Y_STEPPER_CYCLES + ISR_START_Z_STEPPER_CYCLES + ISR_START_E_STEPPER_CYCLES + ISR_START_MIXING_STEPPER_CYCLES)
|
|
|
131 |
|
|
|
132 |
// And the total minimum loop time, not including the base
|
|
|
133 |
#define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
|
|
|
134 |
|
|
|
135 |
// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
|
|
|
136 |
#define _MIN_STEPPER_PULSE_CYCLES(N) MAX((unsigned long)((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
|
|
|
137 |
#if MINIMUM_STEPPER_PULSE
|
|
|
138 |
#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES((unsigned long)(MINIMUM_STEPPER_PULSE))
|
|
|
139 |
#else
|
|
|
140 |
#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
|
|
|
141 |
#endif
|
|
|
142 |
|
|
|
143 |
// Calculate the minimum ticks of the PULSE timer that must elapse with the step pulse enabled
|
|
|
144 |
// adding the "start stepper pulse" code section execution cycles to account for that not all
|
|
|
145 |
// pulses start at the beginning of the loop, so an extra time must be added to compensate so
|
|
|
146 |
// the last generated pulse (usually the extruder stepper) has the right length
|
|
|
147 |
#define MIN_PULSE_TICKS (((PULSE_TIMER_TICKS_PER_US) * (unsigned long)(MINIMUM_STEPPER_PULSE)) + ((MIN_ISR_START_LOOP_CYCLES) / (unsigned long)(PULSE_TIMER_PRESCALE)))
|
|
|
148 |
|
|
|
149 |
// Calculate the extra ticks of the PULSE timer between step pulses
|
|
|
150 |
#define ADDED_STEP_TICKS (((MIN_STEPPER_PULSE_CYCLES) / (PULSE_TIMER_PRESCALE)) - (MIN_PULSE_TICKS))
|
|
|
151 |
|
|
|
152 |
// But the user could be enforcing a minimum time, so the loop time is
|
|
|
153 |
#define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
|
|
|
154 |
|
|
|
155 |
// If linear advance is enabled, then it is handled separately
|
|
|
156 |
#if ENABLED(LIN_ADVANCE)
|
|
|
157 |
|
|
|
158 |
// Estimate the minimum LA loop time
|
|
|
159 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
160 |
#define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
|
|
|
161 |
#else
|
|
|
162 |
#define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
|
|
|
163 |
#endif
|
|
|
164 |
|
|
|
165 |
// And the real loop time
|
|
|
166 |
#define ISR_LA_LOOP_CYCLES MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
|
|
|
167 |
|
|
|
168 |
#else
|
|
|
169 |
#define ISR_LA_LOOP_CYCLES 0UL
|
|
|
170 |
#endif
|
|
|
171 |
|
|
|
172 |
// Now estimate the total ISR execution time in cycles given a step per ISR multiplier
|
|
|
173 |
#define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
|
|
|
174 |
|
|
|
175 |
// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
|
|
|
176 |
#define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
|
|
|
177 |
#define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
|
|
|
178 |
#define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
|
|
|
179 |
#define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
|
|
|
180 |
#define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
|
|
|
181 |
#define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
|
|
|
182 |
#define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
|
|
|
183 |
#define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
|
|
|
184 |
|
|
|
185 |
// The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)
|
|
|
186 |
#define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X
|
|
|
187 |
|
|
|
188 |
//
|
|
|
189 |
// Stepper class definition
|
|
|
190 |
//
|
|
|
191 |
|
|
|
192 |
#include "planner.h"
|
|
|
193 |
#include "speed_lookuptable.h"
|
|
|
194 |
#include "stepper_indirection.h"
|
|
|
195 |
#include "language.h"
|
|
|
196 |
#include "types.h"
|
|
|
197 |
|
|
|
198 |
// intRes = intIn1 * intIn2 >> 16
|
|
|
199 |
// uses:
|
|
|
200 |
// r26 to store 0
|
|
|
201 |
// r27 to store the byte 1 of the 24 bit result
|
|
|
202 |
static FORCE_INLINE uint16_t MultiU16X8toH16(uint8_t charIn1, uint16_t intIn2) {
|
|
|
203 |
register uint8_t tmp;
|
|
|
204 |
register uint16_t intRes;
|
|
|
205 |
__asm__ __volatile__ (
|
|
|
206 |
A("clr %[tmp]")
|
|
|
207 |
A("mul %[charIn1], %B[intIn2]")
|
|
|
208 |
A("movw %A[intRes], r0")
|
|
|
209 |
A("mul %[charIn1], %A[intIn2]")
|
|
|
210 |
A("add %A[intRes], r1")
|
|
|
211 |
A("adc %B[intRes], %[tmp]")
|
|
|
212 |
A("lsr r0")
|
|
|
213 |
A("adc %A[intRes], %[tmp]")
|
|
|
214 |
A("adc %B[intRes], %[tmp]")
|
|
|
215 |
A("clr r1")
|
|
|
216 |
: [intRes] "=&r" (intRes),
|
|
|
217 |
[tmp] "=&r" (tmp)
|
|
|
218 |
: [charIn1] "d" (charIn1),
|
|
|
219 |
[intIn2] "d" (intIn2)
|
|
|
220 |
: "cc"
|
|
|
221 |
);
|
|
|
222 |
return intRes;
|
|
|
223 |
}
|
|
|
224 |
|
|
|
225 |
class Stepper {
|
|
|
226 |
|
|
|
227 |
public:
|
|
|
228 |
|
|
|
229 |
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
230 |
static bool homing_dual_axis;
|
|
|
231 |
#endif
|
|
|
232 |
|
|
|
233 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
234 |
#ifndef PWM_MOTOR_CURRENT
|
|
|
235 |
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
|
|
236 |
#endif
|
|
|
237 |
static uint32_t motor_current_setting[3];
|
|
|
238 |
#endif
|
|
|
239 |
|
|
|
240 |
private:
|
|
|
241 |
|
|
|
242 |
static block_t* current_block; // A pointer to the block currently being traced
|
|
|
243 |
|
|
|
244 |
static uint8_t last_direction_bits, // The next stepping-bits to be output
|
|
|
245 |
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
|
|
|
246 |
|
|
|
247 |
static bool abort_current_block; // Signals to the stepper that current block should be aborted
|
|
|
248 |
|
|
|
249 |
#if DISABLED(MIXING_EXTRUDER)
|
|
|
250 |
static uint8_t last_moved_extruder; // Last-moved extruder, as set when the last movement was fetched from planner
|
|
|
251 |
#endif
|
|
|
252 |
|
|
|
253 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
254 |
static bool locked_X_motor, locked_X2_motor;
|
|
|
255 |
#endif
|
|
|
256 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
257 |
static bool locked_Y_motor, locked_Y2_motor;
|
|
|
258 |
#endif
|
|
|
259 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
260 |
static bool locked_Z_motor, locked_Z2_motor;
|
|
|
261 |
#endif
|
|
|
262 |
|
|
|
263 |
static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
|
|
|
264 |
static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
|
|
|
265 |
|
|
|
266 |
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
|
|
|
267 |
static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
|
|
|
268 |
#else
|
|
|
269 |
static constexpr uint8_t oversampling_factor = 0;
|
|
|
270 |
#endif
|
|
|
271 |
|
|
|
272 |
// Delta error variables for the Bresenham line tracer
|
|
|
273 |
static int32_t delta_error[NUM_AXIS];
|
|
|
274 |
static uint32_t advance_dividend[NUM_AXIS],
|
|
|
275 |
advance_divisor,
|
|
|
276 |
step_events_completed, // The number of step events executed in the current block
|
|
|
277 |
accelerate_until, // The point from where we need to stop acceleration
|
|
|
278 |
decelerate_after, // The point from where we need to start decelerating
|
|
|
279 |
step_event_count; // The total event count for the current block
|
|
|
280 |
|
|
|
281 |
// Mixing extruder mix delta_errors for bresenham tracing
|
|
|
282 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
283 |
static int32_t delta_error_m[MIXING_STEPPERS];
|
|
|
284 |
static uint32_t advance_dividend_m[MIXING_STEPPERS],
|
|
|
285 |
advance_divisor_m;
|
|
|
286 |
#define MIXING_STEPPERS_LOOP(VAR) \
|
|
|
287 |
for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++)
|
|
|
288 |
#else
|
|
|
289 |
static int8_t active_extruder; // Active extruder
|
|
|
290 |
#endif
|
|
|
291 |
|
|
|
292 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
293 |
static int32_t bezier_A, // A coefficient in Bézier speed curve
|
|
|
294 |
bezier_B, // B coefficient in Bézier speed curve
|
|
|
295 |
bezier_C; // C coefficient in Bézier speed curve
|
|
|
296 |
static uint32_t bezier_F, // F coefficient in Bézier speed curve
|
|
|
297 |
bezier_AV; // AV coefficient in Bézier speed curve
|
|
|
298 |
static bool A_negative, // If A coefficient was negative
|
|
|
299 |
bezier_2nd_half; // If Bézier curve has been initialized or not
|
|
|
300 |
#endif
|
|
|
301 |
|
|
|
302 |
static uint32_t nextMainISR; // time remaining for the next Step ISR
|
|
|
303 |
#if ENABLED(LIN_ADVANCE)
|
|
|
304 |
static uint32_t nextAdvanceISR, LA_isr_rate;
|
|
|
305 |
static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
|
|
|
306 |
static int8_t LA_steps;
|
|
|
307 |
static bool LA_use_advance_lead;
|
|
|
308 |
#endif // LIN_ADVANCE
|
|
|
309 |
|
|
|
310 |
static int32_t ticks_nominal;
|
|
|
311 |
#if DISABLED(S_CURVE_ACCELERATION)
|
|
|
312 |
static uint32_t acc_step_rate; // needed for deceleration start point
|
|
|
313 |
#endif
|
|
|
314 |
|
|
|
315 |
static volatile int32_t endstops_trigsteps[XYZ];
|
|
|
316 |
|
|
|
317 |
//
|
|
|
318 |
// Positions of stepper motors, in step units
|
|
|
319 |
//
|
|
|
320 |
static volatile int32_t count_position[NUM_AXIS];
|
|
|
321 |
|
|
|
322 |
//
|
|
|
323 |
// Current direction of stepper motors (+1 or -1)
|
|
|
324 |
//
|
|
|
325 |
static int8_t count_direction[NUM_AXIS];
|
|
|
326 |
|
|
|
327 |
public:
|
|
|
328 |
|
|
|
329 |
//
|
|
|
330 |
// Constructor / initializer
|
|
|
331 |
//
|
|
|
332 |
Stepper() { };
|
|
|
333 |
|
|
|
334 |
// Initialize stepper hardware
|
|
|
335 |
static void init();
|
|
|
336 |
|
|
|
337 |
// Interrupt Service Routines
|
|
|
338 |
|
|
|
339 |
// The ISR scheduler
|
|
|
340 |
static void isr();
|
|
|
341 |
|
|
|
342 |
// The stepper pulse phase ISR
|
|
|
343 |
static void stepper_pulse_phase_isr();
|
|
|
344 |
|
|
|
345 |
// The stepper block processing phase ISR
|
|
|
346 |
static uint32_t stepper_block_phase_isr();
|
|
|
347 |
|
|
|
348 |
#if ENABLED(LIN_ADVANCE)
|
|
|
349 |
// The Linear advance stepper ISR
|
|
|
350 |
static uint32_t advance_isr();
|
|
|
351 |
#endif
|
|
|
352 |
|
|
|
353 |
// Check if the given block is busy or not - Must not be called from ISR contexts
|
|
|
354 |
static bool is_block_busy(const block_t* const block);
|
|
|
355 |
|
|
|
356 |
// Get the position of a stepper, in steps
|
|
|
357 |
static int32_t position(const AxisEnum axis);
|
|
|
358 |
|
|
|
359 |
// Report the positions of the steppers, in steps
|
|
|
360 |
static void report_positions();
|
|
|
361 |
|
|
|
362 |
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
|
|
363 |
// to notify the subsystem that it is time to go to work.
|
|
|
364 |
static void wake_up();
|
|
|
365 |
|
|
|
366 |
// Quickly stop all steppers
|
|
|
367 |
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
|
|
|
368 |
|
|
|
369 |
// The direction of a single motor
|
|
|
370 |
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
|
|
|
371 |
|
|
|
372 |
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
|
|
|
373 |
FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
|
|
|
374 |
|
|
|
375 |
// The extruder associated to the last movement
|
|
|
376 |
FORCE_INLINE static uint8_t movement_extruder() {
|
|
|
377 |
return
|
|
|
378 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
379 |
|
|
|
380 |
#else
|
|
|
381 |
last_moved_extruder
|
|
|
382 |
#endif
|
|
|
383 |
;
|
|
|
384 |
}
|
|
|
385 |
|
|
|
386 |
// Handle a triggered endstop
|
|
|
387 |
static void endstop_triggered(const AxisEnum axis);
|
|
|
388 |
|
|
|
389 |
// Triggered position of an axis in steps
|
|
|
390 |
static int32_t triggered_position(const AxisEnum axis);
|
|
|
391 |
|
|
|
392 |
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
|
|
393 |
static void digitalPotWrite(const int16_t address, const int16_t value);
|
|
|
394 |
static void digipot_current(const uint8_t driver, const int16_t current);
|
|
|
395 |
#endif
|
|
|
396 |
|
|
|
397 |
#if HAS_MICROSTEPS
|
|
|
398 |
static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2);
|
|
|
399 |
static void microstep_mode(const uint8_t driver, const uint8_t stepping);
|
|
|
400 |
static void microstep_readings();
|
|
|
401 |
#endif
|
|
|
402 |
|
|
|
403 |
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
404 |
FORCE_INLINE static void set_homing_dual_axis(const bool state) { homing_dual_axis = state; }
|
|
|
405 |
#endif
|
|
|
406 |
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
407 |
FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
|
|
|
408 |
FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
|
|
|
409 |
#endif
|
|
|
410 |
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
411 |
FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
|
|
|
412 |
FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
|
|
|
413 |
#endif
|
|
|
414 |
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
415 |
FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; }
|
|
|
416 |
FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
|
|
|
417 |
#endif
|
|
|
418 |
|
|
|
419 |
#if ENABLED(BABYSTEPPING)
|
|
|
420 |
static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
|
|
|
421 |
#endif
|
|
|
422 |
|
|
|
423 |
#if HAS_MOTOR_CURRENT_PWM
|
|
|
424 |
static void refresh_motor_power();
|
|
|
425 |
#endif
|
|
|
426 |
|
|
|
427 |
// Set the current position in steps
|
|
|
428 |
inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c
|
|
|
429 |
#if ENABLED(HANGPRINTER)
|
|
|
430 |
, const int32_t &d
|
|
|
431 |
#endif
|
|
|
432 |
, const int32_t &e
|
|
|
433 |
) {
|
|
|
434 |
planner.synchronize();
|
|
|
435 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
436 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
437 |
_set_position(a, b, c
|
|
|
438 |
#if ENABLED(HANGPRINTER)
|
|
|
439 |
, d
|
|
|
440 |
#endif
|
|
|
441 |
, e
|
|
|
442 |
);
|
|
|
443 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
444 |
}
|
|
|
445 |
|
|
|
446 |
inline static void set_position(const AxisEnum a, const int32_t &v) {
|
|
|
447 |
planner.synchronize();
|
|
|
448 |
|
|
|
449 |
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
450 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
451 |
|
|
|
452 |
count_position[a] = v;
|
|
|
453 |
|
|
|
454 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
455 |
}
|
|
|
456 |
|
|
|
457 |
private:
|
|
|
458 |
|
|
|
459 |
// Set the current position in steps
|
|
|
460 |
static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c
|
|
|
461 |
#if ENABLED(HANGPRINTER)
|
|
|
462 |
, const int32_t &d
|
|
|
463 |
#endif
|
|
|
464 |
, const int32_t &e
|
|
|
465 |
);
|
|
|
466 |
|
|
|
467 |
// Set direction bits for all steppers
|
|
|
468 |
static void set_directions();
|
|
|
469 |
|
|
|
470 |
// Allow reset_stepper_drivers to access private set_directions
|
|
|
471 |
friend void reset_stepper_drivers();
|
|
|
472 |
|
|
|
473 |
FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t scale, uint8_t* loops) {
|
|
|
474 |
uint32_t timer;
|
|
|
475 |
|
|
|
476 |
// Scale the frequency, as requested by the caller
|
|
|
477 |
step_rate <<= scale;
|
|
|
478 |
|
|
|
479 |
uint8_t multistep = 1;
|
|
|
480 |
#if DISABLED(DISABLE_MULTI_STEPPING)
|
|
|
481 |
|
|
|
482 |
// The stepping frequency limits for each multistepping rate
|
|
|
483 |
static const uint32_t limit[] PROGMEM = {
|
|
|
484 |
( MAX_STEP_ISR_FREQUENCY_1X ),
|
|
|
485 |
( MAX_STEP_ISR_FREQUENCY_2X >> 1),
|
|
|
486 |
( MAX_STEP_ISR_FREQUENCY_4X >> 2),
|
|
|
487 |
( MAX_STEP_ISR_FREQUENCY_8X >> 3),
|
|
|
488 |
( MAX_STEP_ISR_FREQUENCY_16X >> 4),
|
|
|
489 |
( MAX_STEP_ISR_FREQUENCY_32X >> 5),
|
|
|
490 |
( MAX_STEP_ISR_FREQUENCY_64X >> 6),
|
|
|
491 |
(MAX_STEP_ISR_FREQUENCY_128X >> 7)
|
|
|
492 |
};
|
|
|
493 |
|
|
|
494 |
// Select the proper multistepping
|
|
|
495 |
uint8_t idx = 0;
|
|
|
496 |
while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
|
|
|
497 |
step_rate >>= 1;
|
|
|
498 |
multistep <<= 1;
|
|
|
499 |
++idx;
|
|
|
500 |
};
|
|
|
501 |
#else
|
|
|
502 |
NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
|
|
|
503 |
#endif
|
|
|
504 |
*loops = multistep;
|
|
|
505 |
|
|
|
506 |
constexpr uint32_t min_step_rate = F_CPU / 500000U;
|
|
|
507 |
NOLESS(step_rate, min_step_rate);
|
|
|
508 |
step_rate -= min_step_rate; // Correct for minimal speed
|
|
|
509 |
if (step_rate >= (8 * 256)) { // higher step rate
|
|
|
510 |
const uint8_t tmp_step_rate = (step_rate & 0x00FF);
|
|
|
511 |
const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
|
|
|
512 |
gain = (uint16_t)pgm_read_word_near(table_address + 2);
|
|
|
513 |
timer = MultiU16X8toH16(tmp_step_rate, gain);
|
|
|
514 |
timer = (uint16_t)pgm_read_word_near(table_address) - timer;
|
|
|
515 |
}
|
|
|
516 |
else { // lower step rates
|
|
|
517 |
uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
|
|
|
518 |
table_address += ((step_rate) >> 1) & 0xFFFC;
|
|
|
519 |
timer = (uint16_t)pgm_read_word_near(table_address)
|
|
|
520 |
- (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
|
|
|
521 |
}
|
|
|
522 |
// (there is no need to limit the timer value here. All limits have been
|
|
|
523 |
// applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
|
|
|
524 |
|
|
|
525 |
return timer;
|
|
|
526 |
}
|
|
|
527 |
|
|
|
528 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
529 |
static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
|
|
|
530 |
static int32_t _eval_bezier_curve(const uint32_t curr_step);
|
|
|
531 |
#endif
|
|
|
532 |
|
|
|
533 |
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
|
|
534 |
static void digipot_init();
|
|
|
535 |
#endif
|
|
|
536 |
|
|
|
537 |
#if HAS_MICROSTEPS
|
|
|
538 |
static void microstep_init();
|
|
|
539 |
#endif
|
|
|
540 |
|
|
|
541 |
};
|
|
|
542 |
|
|
|
543 |
extern Stepper stepper;
|
|
|
544 |
|
|
|
545 |
#endif // STEPPER_H
|