1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* temperature.h - temperature controller
|
|
|
25 |
*/
|
|
|
26 |
|
|
|
27 |
#ifndef TEMPERATURE_H
|
|
|
28 |
#define TEMPERATURE_H
|
|
|
29 |
|
|
|
30 |
#include "thermistortables.h"
|
|
|
31 |
|
|
|
32 |
#include "MarlinConfig.h"
|
|
|
33 |
|
|
|
34 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
35 |
#include "power.h"
|
|
|
36 |
#endif
|
|
|
37 |
|
|
|
38 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
39 |
#include "stepper.h"
|
|
|
40 |
#endif
|
|
|
41 |
|
|
|
42 |
#ifndef SOFT_PWM_SCALE
|
|
|
43 |
#define SOFT_PWM_SCALE 0
|
|
|
44 |
#endif
|
|
|
45 |
|
|
|
46 |
#define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0B)
|
|
|
47 |
#define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0B)
|
|
|
48 |
#define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0B)
|
|
|
49 |
|
|
|
50 |
#define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
|
|
|
51 |
|
|
|
52 |
#if HOTENDS == 1
|
|
|
53 |
#define HOTEND_INDEX 0
|
|
|
54 |
#else
|
|
|
55 |
#define HOTEND_INDEX e
|
|
|
56 |
#endif
|
|
|
57 |
|
|
|
58 |
/**
|
|
|
59 |
* States for ADC reading in the ISR
|
|
|
60 |
*/
|
|
|
61 |
enum ADCSensorState : char {
|
|
|
62 |
StartSampling,
|
|
|
63 |
#if HAS_TEMP_ADC_0
|
|
|
64 |
PrepareTemp_0,
|
|
|
65 |
MeasureTemp_0,
|
|
|
66 |
#endif
|
|
|
67 |
#if HAS_TEMP_ADC_1
|
|
|
68 |
PrepareTemp_1,
|
|
|
69 |
MeasureTemp_1,
|
|
|
70 |
#endif
|
|
|
71 |
#if HAS_TEMP_ADC_2
|
|
|
72 |
PrepareTemp_2,
|
|
|
73 |
MeasureTemp_2,
|
|
|
74 |
#endif
|
|
|
75 |
#if HAS_TEMP_ADC_3
|
|
|
76 |
PrepareTemp_3,
|
|
|
77 |
MeasureTemp_3,
|
|
|
78 |
#endif
|
|
|
79 |
#if HAS_TEMP_ADC_4
|
|
|
80 |
PrepareTemp_4,
|
|
|
81 |
MeasureTemp_4,
|
|
|
82 |
#endif
|
|
|
83 |
#if HAS_HEATED_BED
|
|
|
84 |
PrepareTemp_BED,
|
|
|
85 |
MeasureTemp_BED,
|
|
|
86 |
#endif
|
|
|
87 |
#if HAS_TEMP_CHAMBER
|
|
|
88 |
PrepareTemp_CHAMBER,
|
|
|
89 |
MeasureTemp_CHAMBER,
|
|
|
90 |
#endif
|
|
|
91 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
92 |
Prepare_FILWIDTH,
|
|
|
93 |
Measure_FILWIDTH,
|
|
|
94 |
#endif
|
|
|
95 |
#if ENABLED(ADC_KEYPAD)
|
|
|
96 |
Prepare_ADC_KEY,
|
|
|
97 |
Measure_ADC_KEY,
|
|
|
98 |
#endif
|
|
|
99 |
SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
|
|
|
100 |
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
|
|
|
101 |
};
|
|
|
102 |
|
|
|
103 |
// Minimum number of Temperature::ISR loops between sensor readings.
|
|
|
104 |
// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
|
|
|
105 |
// get all oversampled sensor readings
|
|
|
106 |
#define MIN_ADC_ISR_LOOPS 10
|
|
|
107 |
|
|
|
108 |
#define ACTUAL_ADC_SAMPLES MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
|
|
|
109 |
|
|
|
110 |
#if HAS_PID_HEATING
|
|
|
111 |
#define PID_K2 (1.0f-PID_K1)
|
|
|
112 |
#define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0f / 256.0f))
|
|
|
113 |
|
|
|
114 |
// Apply the scale factors to the PID values
|
|
|
115 |
#define scalePID_i(i) ( (i) * float(PID_dT) )
|
|
|
116 |
#define unscalePID_i(i) ( (i) / float(PID_dT) )
|
|
|
117 |
#define scalePID_d(d) ( (d) / float(PID_dT) )
|
|
|
118 |
#define unscalePID_d(d) ( (d) * float(PID_dT) )
|
|
|
119 |
#endif
|
|
|
120 |
|
|
|
121 |
class Temperature {
|
|
|
122 |
|
|
|
123 |
public:
|
|
|
124 |
|
|
|
125 |
static float current_temperature[HOTENDS];
|
|
|
126 |
static int16_t current_temperature_raw[HOTENDS],
|
|
|
127 |
target_temperature[HOTENDS];
|
|
|
128 |
static uint8_t soft_pwm_amount[HOTENDS];
|
|
|
129 |
|
|
|
130 |
#if ENABLED(AUTO_POWER_E_FANS)
|
|
|
131 |
static int16_t autofan_speed[HOTENDS];
|
|
|
132 |
#endif
|
|
|
133 |
|
|
|
134 |
#if ENABLED(FAN_SOFT_PWM)
|
|
|
135 |
static uint8_t soft_pwm_amount_fan[FAN_COUNT],
|
|
|
136 |
soft_pwm_count_fan[FAN_COUNT];
|
|
|
137 |
#endif
|
|
|
138 |
|
|
|
139 |
#if ENABLED(PIDTEMP)
|
|
|
140 |
|
|
|
141 |
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
|
|
|
142 |
|
|
|
143 |
static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
|
|
|
144 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
145 |
static float Kc[HOTENDS];
|
|
|
146 |
#endif
|
|
|
147 |
#define PID_PARAM(param, h) Temperature::param[h]
|
|
|
148 |
|
|
|
149 |
#else
|
|
|
150 |
|
|
|
151 |
static float Kp, Ki, Kd;
|
|
|
152 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
153 |
static float Kc;
|
|
|
154 |
#endif
|
|
|
155 |
#define PID_PARAM(param, h) Temperature::param
|
|
|
156 |
|
|
|
157 |
#endif // PID_PARAMS_PER_HOTEND
|
|
|
158 |
|
|
|
159 |
#endif
|
|
|
160 |
|
|
|
161 |
#if HAS_HEATED_BED
|
|
|
162 |
static float current_temperature_bed;
|
|
|
163 |
static int16_t current_temperature_bed_raw, target_temperature_bed;
|
|
|
164 |
static uint8_t soft_pwm_amount_bed;
|
|
|
165 |
#if ENABLED(PIDTEMPBED)
|
|
|
166 |
static float bedKp, bedKi, bedKd;
|
|
|
167 |
#endif
|
|
|
168 |
#endif
|
|
|
169 |
|
|
|
170 |
#if ENABLED(BABYSTEPPING)
|
|
|
171 |
static volatile int babystepsTodo[3];
|
|
|
172 |
#endif
|
|
|
173 |
|
|
|
174 |
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
175 |
static bool allow_cold_extrude;
|
|
|
176 |
static int16_t extrude_min_temp;
|
|
|
177 |
FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
|
|
|
178 |
FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) {
|
|
|
179 |
#if HOTENDS == 1
|
|
|
180 |
UNUSED(e);
|
|
|
181 |
#endif
|
|
|
182 |
return tooCold(degHotend(HOTEND_INDEX));
|
|
|
183 |
}
|
|
|
184 |
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) {
|
|
|
185 |
#if HOTENDS == 1
|
|
|
186 |
UNUSED(e);
|
|
|
187 |
#endif
|
|
|
188 |
return tooCold(degTargetHotend(HOTEND_INDEX));
|
|
|
189 |
}
|
|
|
190 |
#else
|
|
|
191 |
FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
|
|
|
192 |
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
|
|
|
193 |
#endif
|
|
|
194 |
|
|
|
195 |
FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
|
|
|
196 |
FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
|
|
|
197 |
|
|
|
198 |
private:
|
|
|
199 |
|
|
|
200 |
static volatile bool temp_meas_ready;
|
|
|
201 |
static uint16_t raw_temp_value[MAX_EXTRUDERS];
|
|
|
202 |
|
|
|
203 |
#if WATCH_HOTENDS
|
|
|
204 |
static uint16_t watch_target_temp[HOTENDS];
|
|
|
205 |
static millis_t watch_heater_next_ms[HOTENDS];
|
|
|
206 |
#endif
|
|
|
207 |
|
|
|
208 |
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
209 |
static uint16_t redundant_temperature_raw;
|
|
|
210 |
static float redundant_temperature;
|
|
|
211 |
#endif
|
|
|
212 |
|
|
|
213 |
#if ENABLED(PIDTEMP)
|
|
|
214 |
static float temp_iState[HOTENDS],
|
|
|
215 |
temp_dState[HOTENDS],
|
|
|
216 |
pTerm[HOTENDS],
|
|
|
217 |
iTerm[HOTENDS],
|
|
|
218 |
dTerm[HOTENDS];
|
|
|
219 |
|
|
|
220 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
221 |
static float cTerm[HOTENDS];
|
|
|
222 |
static long last_e_position;
|
|
|
223 |
static long lpq[LPQ_MAX_LEN];
|
|
|
224 |
static int lpq_ptr;
|
|
|
225 |
#endif
|
|
|
226 |
|
|
|
227 |
static float pid_error[HOTENDS];
|
|
|
228 |
static bool pid_reset[HOTENDS];
|
|
|
229 |
#endif
|
|
|
230 |
|
|
|
231 |
// Init min and max temp with extreme values to prevent false errors during startup
|
|
|
232 |
static int16_t minttemp_raw[HOTENDS],
|
|
|
233 |
maxttemp_raw[HOTENDS],
|
|
|
234 |
minttemp[HOTENDS],
|
|
|
235 |
maxttemp[HOTENDS];
|
|
|
236 |
|
|
|
237 |
#if HAS_HEATED_BED
|
|
|
238 |
static uint16_t raw_temp_bed_value;
|
|
|
239 |
#if WATCH_THE_BED
|
|
|
240 |
static uint16_t watch_target_bed_temp;
|
|
|
241 |
static millis_t watch_bed_next_ms;
|
|
|
242 |
#endif
|
|
|
243 |
#if ENABLED(PIDTEMPBED)
|
|
|
244 |
static float temp_iState_bed,
|
|
|
245 |
temp_dState_bed,
|
|
|
246 |
pTerm_bed,
|
|
|
247 |
iTerm_bed,
|
|
|
248 |
dTerm_bed,
|
|
|
249 |
pid_error_bed;
|
|
|
250 |
#else
|
|
|
251 |
static millis_t next_bed_check_ms;
|
|
|
252 |
#endif
|
|
|
253 |
#if HEATER_IDLE_HANDLER
|
|
|
254 |
static millis_t bed_idle_timeout_ms;
|
|
|
255 |
static bool bed_idle_timeout_exceeded;
|
|
|
256 |
#endif
|
|
|
257 |
#ifdef BED_MINTEMP
|
|
|
258 |
static int16_t bed_minttemp_raw;
|
|
|
259 |
#endif
|
|
|
260 |
#ifdef BED_MAXTEMP
|
|
|
261 |
static int16_t bed_maxttemp_raw;
|
|
|
262 |
#endif
|
|
|
263 |
#endif
|
|
|
264 |
|
|
|
265 |
#if HAS_TEMP_CHAMBER
|
|
|
266 |
static uint16_t raw_temp_chamber_value;
|
|
|
267 |
static float current_temperature_chamber;
|
|
|
268 |
static int16_t current_temperature_chamber_raw;
|
|
|
269 |
#endif
|
|
|
270 |
|
|
|
271 |
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
272 |
static uint8_t consecutive_low_temperature_error[HOTENDS];
|
|
|
273 |
#endif
|
|
|
274 |
|
|
|
275 |
#ifdef MILLISECONDS_PREHEAT_TIME
|
|
|
276 |
static millis_t preheat_end_time[HOTENDS];
|
|
|
277 |
#endif
|
|
|
278 |
|
|
|
279 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
280 |
static int8_t meas_shift_index; // Index of a delayed sample in buffer
|
|
|
281 |
#endif
|
|
|
282 |
|
|
|
283 |
#if HAS_AUTO_FAN
|
|
|
284 |
static millis_t next_auto_fan_check_ms;
|
|
|
285 |
#endif
|
|
|
286 |
|
|
|
287 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
288 |
static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
|
|
|
289 |
#endif
|
|
|
290 |
|
|
|
291 |
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
292 |
static bool paused;
|
|
|
293 |
#endif
|
|
|
294 |
|
|
|
295 |
#if HEATER_IDLE_HANDLER
|
|
|
296 |
static millis_t heater_idle_timeout_ms[HOTENDS];
|
|
|
297 |
static bool heater_idle_timeout_exceeded[HOTENDS];
|
|
|
298 |
#endif
|
|
|
299 |
|
|
|
300 |
public:
|
|
|
301 |
#if ENABLED(ADC_KEYPAD)
|
|
|
302 |
static uint32_t current_ADCKey_raw;
|
|
|
303 |
static uint8_t ADCKey_count;
|
|
|
304 |
#endif
|
|
|
305 |
|
|
|
306 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
307 |
static int16_t lpq_len;
|
|
|
308 |
#endif
|
|
|
309 |
|
|
|
310 |
/**
|
|
|
311 |
* Instance Methods
|
|
|
312 |
*/
|
|
|
313 |
|
|
|
314 |
Temperature();
|
|
|
315 |
|
|
|
316 |
void init();
|
|
|
317 |
|
|
|
318 |
/**
|
|
|
319 |
* Static (class) methods
|
|
|
320 |
*/
|
|
|
321 |
static float analog_to_celsius_hotend(const int raw, const uint8_t e);
|
|
|
322 |
|
|
|
323 |
#if HAS_HEATED_BED
|
|
|
324 |
static float analog_to_celsius_bed(const int raw);
|
|
|
325 |
#endif
|
|
|
326 |
#if HAS_TEMP_CHAMBER
|
|
|
327 |
static float analog_to_celsius_chamber(const int raw);
|
|
|
328 |
#endif
|
|
|
329 |
|
|
|
330 |
/**
|
|
|
331 |
* Called from the Temperature ISR
|
|
|
332 |
*/
|
|
|
333 |
static void readings_ready();
|
|
|
334 |
static void isr();
|
|
|
335 |
|
|
|
336 |
/**
|
|
|
337 |
* Call periodically to manage heaters
|
|
|
338 |
*/
|
|
|
339 |
static void manage_heater() _O2; // Added _O2 to work around a compiler error
|
|
|
340 |
|
|
|
341 |
/**
|
|
|
342 |
* Preheating hotends
|
|
|
343 |
*/
|
|
|
344 |
#ifdef MILLISECONDS_PREHEAT_TIME
|
|
|
345 |
static bool is_preheating(const uint8_t e) {
|
|
|
346 |
#if HOTENDS == 1
|
|
|
347 |
UNUSED(e);
|
|
|
348 |
#endif
|
|
|
349 |
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
|
|
|
350 |
}
|
|
|
351 |
static void start_preheat_time(const uint8_t e) {
|
|
|
352 |
#if HOTENDS == 1
|
|
|
353 |
UNUSED(e);
|
|
|
354 |
#endif
|
|
|
355 |
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
|
|
|
356 |
}
|
|
|
357 |
static void reset_preheat_time(const uint8_t e) {
|
|
|
358 |
#if HOTENDS == 1
|
|
|
359 |
UNUSED(e);
|
|
|
360 |
#endif
|
|
|
361 |
preheat_end_time[HOTEND_INDEX] = 0;
|
|
|
362 |
}
|
|
|
363 |
#else
|
|
|
364 |
#define is_preheating(n) (false)
|
|
|
365 |
#endif
|
|
|
366 |
|
|
|
367 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
368 |
static float analog_to_mm_fil_width(); // Convert raw Filament Width to millimeters
|
|
|
369 |
static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
|
|
|
370 |
#endif
|
|
|
371 |
|
|
|
372 |
|
|
|
373 |
//high level conversion routines, for use outside of temperature.cpp
|
|
|
374 |
//inline so that there is no performance decrease.
|
|
|
375 |
//deg=degreeCelsius
|
|
|
376 |
|
|
|
377 |
FORCE_INLINE static float degHotend(const uint8_t e) {
|
|
|
378 |
#if HOTENDS == 1
|
|
|
379 |
UNUSED(e);
|
|
|
380 |
#endif
|
|
|
381 |
return current_temperature[HOTEND_INDEX];
|
|
|
382 |
}
|
|
|
383 |
|
|
|
384 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
385 |
FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) {
|
|
|
386 |
#if HOTENDS == 1
|
|
|
387 |
UNUSED(e);
|
|
|
388 |
#endif
|
|
|
389 |
return current_temperature_raw[HOTEND_INDEX];
|
|
|
390 |
}
|
|
|
391 |
#endif
|
|
|
392 |
|
|
|
393 |
FORCE_INLINE static int16_t degTargetHotend(const uint8_t e) {
|
|
|
394 |
#if HOTENDS == 1
|
|
|
395 |
UNUSED(e);
|
|
|
396 |
#endif
|
|
|
397 |
return target_temperature[HOTEND_INDEX];
|
|
|
398 |
}
|
|
|
399 |
|
|
|
400 |
#if WATCH_HOTENDS
|
|
|
401 |
static void start_watching_heater(const uint8_t e = 0);
|
|
|
402 |
#endif
|
|
|
403 |
|
|
|
404 |
static void setTargetHotend(const int16_t celsius, const uint8_t e) {
|
|
|
405 |
#if HOTENDS == 1
|
|
|
406 |
UNUSED(e);
|
|
|
407 |
#endif
|
|
|
408 |
#ifdef MILLISECONDS_PREHEAT_TIME
|
|
|
409 |
if (celsius == 0)
|
|
|
410 |
reset_preheat_time(HOTEND_INDEX);
|
|
|
411 |
else if (target_temperature[HOTEND_INDEX] == 0)
|
|
|
412 |
start_preheat_time(HOTEND_INDEX);
|
|
|
413 |
#endif
|
|
|
414 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
415 |
powerManager.power_on();
|
|
|
416 |
#endif
|
|
|
417 |
target_temperature[HOTEND_INDEX] = MIN(celsius, maxttemp[HOTEND_INDEX] - 15);
|
|
|
418 |
#if WATCH_HOTENDS
|
|
|
419 |
start_watching_heater(HOTEND_INDEX);
|
|
|
420 |
#endif
|
|
|
421 |
}
|
|
|
422 |
|
|
|
423 |
FORCE_INLINE static bool isHeatingHotend(const uint8_t e) {
|
|
|
424 |
#if HOTENDS == 1
|
|
|
425 |
UNUSED(e);
|
|
|
426 |
#endif
|
|
|
427 |
return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
|
|
|
428 |
}
|
|
|
429 |
|
|
|
430 |
FORCE_INLINE static bool isCoolingHotend(const uint8_t e) {
|
|
|
431 |
#if HOTENDS == 1
|
|
|
432 |
UNUSED(e);
|
|
|
433 |
#endif
|
|
|
434 |
return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
|
|
|
435 |
}
|
|
|
436 |
|
|
|
437 |
#if HAS_HEATED_BED
|
|
|
438 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
439 |
FORCE_INLINE static int16_t rawBedTemp() { return current_temperature_bed_raw; }
|
|
|
440 |
#endif
|
|
|
441 |
FORCE_INLINE static float degBed() { return current_temperature_bed; }
|
|
|
442 |
FORCE_INLINE static int16_t degTargetBed() { return target_temperature_bed; }
|
|
|
443 |
FORCE_INLINE static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
|
|
444 |
FORCE_INLINE static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
|
|
445 |
|
|
|
446 |
static void setTargetBed(const int16_t celsius) {
|
|
|
447 |
#if ENABLED(AUTO_POWER_CONTROL)
|
|
|
448 |
powerManager.power_on();
|
|
|
449 |
#endif
|
|
|
450 |
target_temperature_bed =
|
|
|
451 |
#ifdef BED_MAXTEMP
|
|
|
452 |
MIN(celsius, BED_MAXTEMP - 15)
|
|
|
453 |
#else
|
|
|
454 |
celsius
|
|
|
455 |
#endif
|
|
|
456 |
;
|
|
|
457 |
#if WATCH_THE_BED
|
|
|
458 |
start_watching_bed();
|
|
|
459 |
#endif
|
|
|
460 |
}
|
|
|
461 |
|
|
|
462 |
#if WATCH_THE_BED
|
|
|
463 |
static void start_watching_bed();
|
|
|
464 |
#endif
|
|
|
465 |
#endif
|
|
|
466 |
|
|
|
467 |
#if HAS_TEMP_CHAMBER
|
|
|
468 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
469 |
FORCE_INLINE static int16_t rawChamberTemp() { return current_temperature_chamber_raw; }
|
|
|
470 |
#endif
|
|
|
471 |
FORCE_INLINE static float degChamber() { return current_temperature_chamber; }
|
|
|
472 |
#endif
|
|
|
473 |
|
|
|
474 |
FORCE_INLINE static bool wait_for_heating(const uint8_t e) {
|
|
|
475 |
return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
|
|
|
476 |
}
|
|
|
477 |
|
|
|
478 |
/**
|
|
|
479 |
* The software PWM power for a heater
|
|
|
480 |
*/
|
|
|
481 |
static int getHeaterPower(const int heater);
|
|
|
482 |
|
|
|
483 |
/**
|
|
|
484 |
* Switch off all heaters, set all target temperatures to 0
|
|
|
485 |
*/
|
|
|
486 |
static void disable_all_heaters();
|
|
|
487 |
|
|
|
488 |
/**
|
|
|
489 |
* Perform auto-tuning for hotend or bed in response to M303
|
|
|
490 |
*/
|
|
|
491 |
#if HAS_PID_HEATING
|
|
|
492 |
static void pid_autotune(const float &target, const int8_t hotend, const int8_t ncycles, const bool set_result=false);
|
|
|
493 |
|
|
|
494 |
/**
|
|
|
495 |
* Update the temp manager when PID values change
|
|
|
496 |
*/
|
|
|
497 |
#if ENABLED(PIDTEMP)
|
|
|
498 |
FORCE_INLINE static void update_pid() {
|
|
|
499 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
500 |
last_e_position = 0;
|
|
|
501 |
#endif
|
|
|
502 |
}
|
|
|
503 |
#endif
|
|
|
504 |
|
|
|
505 |
#endif
|
|
|
506 |
|
|
|
507 |
#if ENABLED(BABYSTEPPING)
|
|
|
508 |
|
|
|
509 |
static void babystep_axis(const AxisEnum axis, const int16_t distance) {
|
|
|
510 |
if (TEST(axis_known_position, axis)) {
|
|
|
511 |
#if IS_CORE
|
|
|
512 |
#if ENABLED(BABYSTEP_XY)
|
|
|
513 |
switch (axis) {
|
|
|
514 |
case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
|
|
|
515 |
babystepsTodo[CORE_AXIS_1] += distance * 2;
|
|
|
516 |
babystepsTodo[CORE_AXIS_2] += distance * 2;
|
|
|
517 |
break;
|
|
|
518 |
case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
|
|
|
519 |
babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
|
|
|
520 |
babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
|
|
|
521 |
break;
|
|
|
522 |
case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
|
|
|
523 |
babystepsTodo[NORMAL_AXIS] += distance;
|
|
|
524 |
break;
|
|
|
525 |
}
|
|
|
526 |
#elif CORE_IS_XZ || CORE_IS_YZ
|
|
|
527 |
// Only Z stepping needs to be handled here
|
|
|
528 |
babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
|
|
|
529 |
babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
|
|
|
530 |
#else
|
|
|
531 |
babystepsTodo[Z_AXIS] += distance;
|
|
|
532 |
#endif
|
|
|
533 |
#else
|
|
|
534 |
babystepsTodo[axis] += distance;
|
|
|
535 |
#endif
|
|
|
536 |
}
|
|
|
537 |
}
|
|
|
538 |
|
|
|
539 |
#endif // BABYSTEPPING
|
|
|
540 |
|
|
|
541 |
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
542 |
static void pause(const bool p);
|
|
|
543 |
FORCE_INLINE static bool is_paused() { return paused; }
|
|
|
544 |
#endif
|
|
|
545 |
|
|
|
546 |
#if HEATER_IDLE_HANDLER
|
|
|
547 |
|
|
|
548 |
static void start_heater_idle_timer(const uint8_t e, const millis_t timeout_ms) {
|
|
|
549 |
#if HOTENDS == 1
|
|
|
550 |
UNUSED(e);
|
|
|
551 |
#endif
|
|
|
552 |
heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
|
|
|
553 |
heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
|
|
|
554 |
}
|
|
|
555 |
|
|
|
556 |
static void reset_heater_idle_timer(const uint8_t e) {
|
|
|
557 |
#if HOTENDS == 1
|
|
|
558 |
UNUSED(e);
|
|
|
559 |
#endif
|
|
|
560 |
heater_idle_timeout_ms[HOTEND_INDEX] = 0;
|
|
|
561 |
heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
|
|
|
562 |
#if WATCH_HOTENDS
|
|
|
563 |
start_watching_heater(HOTEND_INDEX);
|
|
|
564 |
#endif
|
|
|
565 |
}
|
|
|
566 |
|
|
|
567 |
FORCE_INLINE static bool is_heater_idle(const uint8_t e) {
|
|
|
568 |
#if HOTENDS == 1
|
|
|
569 |
UNUSED(e);
|
|
|
570 |
#endif
|
|
|
571 |
return heater_idle_timeout_exceeded[HOTEND_INDEX];
|
|
|
572 |
}
|
|
|
573 |
|
|
|
574 |
#if HAS_HEATED_BED
|
|
|
575 |
static void start_bed_idle_timer(const millis_t timeout_ms) {
|
|
|
576 |
bed_idle_timeout_ms = millis() + timeout_ms;
|
|
|
577 |
bed_idle_timeout_exceeded = false;
|
|
|
578 |
}
|
|
|
579 |
|
|
|
580 |
static void reset_bed_idle_timer() {
|
|
|
581 |
bed_idle_timeout_ms = 0;
|
|
|
582 |
bed_idle_timeout_exceeded = false;
|
|
|
583 |
#if WATCH_THE_BED
|
|
|
584 |
start_watching_bed();
|
|
|
585 |
#endif
|
|
|
586 |
}
|
|
|
587 |
|
|
|
588 |
FORCE_INLINE static bool is_bed_idle() { return bed_idle_timeout_exceeded; }
|
|
|
589 |
#endif
|
|
|
590 |
|
|
|
591 |
#endif // HEATER_IDLE_HANDLER
|
|
|
592 |
|
|
|
593 |
#if HAS_TEMP_SENSOR
|
|
|
594 |
static void print_heaterstates();
|
|
|
595 |
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
596 |
static uint8_t auto_report_temp_interval;
|
|
|
597 |
static millis_t next_temp_report_ms;
|
|
|
598 |
static void auto_report_temperatures(void);
|
|
|
599 |
FORCE_INLINE void set_auto_report_interval(uint8_t v) {
|
|
|
600 |
NOMORE(v, 60);
|
|
|
601 |
auto_report_temp_interval = v;
|
|
|
602 |
next_temp_report_ms = millis() + 1000UL * v;
|
|
|
603 |
}
|
|
|
604 |
#endif
|
|
|
605 |
#endif
|
|
|
606 |
|
|
|
607 |
private:
|
|
|
608 |
|
|
|
609 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
610 |
static void setPwmFrequency(const pin_t pin, int val);
|
|
|
611 |
#endif
|
|
|
612 |
|
|
|
613 |
static void set_current_temp_raw();
|
|
|
614 |
|
|
|
615 |
static void calculate_celsius_temperatures();
|
|
|
616 |
|
|
|
617 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
618 |
static int read_max6675();
|
|
|
619 |
#endif
|
|
|
620 |
|
|
|
621 |
static void check_extruder_auto_fans();
|
|
|
622 |
|
|
|
623 |
static float get_pid_output(const int8_t e);
|
|
|
624 |
|
|
|
625 |
#if ENABLED(PIDTEMPBED)
|
|
|
626 |
static float get_pid_output_bed();
|
|
|
627 |
#endif
|
|
|
628 |
|
|
|
629 |
static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
|
|
|
630 |
static void min_temp_error(const int8_t e);
|
|
|
631 |
static void max_temp_error(const int8_t e);
|
|
|
632 |
|
|
|
633 |
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
|
|
|
634 |
|
|
|
635 |
enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
|
|
|
636 |
|
|
|
637 |
static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
|
|
|
638 |
|
|
|
639 |
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
|
640 |
static TRState thermal_runaway_state_machine[HOTENDS];
|
|
|
641 |
static millis_t thermal_runaway_timer[HOTENDS];
|
|
|
642 |
#endif
|
|
|
643 |
|
|
|
644 |
#if HAS_THERMALLY_PROTECTED_BED
|
|
|
645 |
static TRState thermal_runaway_bed_state_machine;
|
|
|
646 |
static millis_t thermal_runaway_bed_timer;
|
|
|
647 |
#endif
|
|
|
648 |
|
|
|
649 |
#endif // THERMAL_PROTECTION
|
|
|
650 |
|
|
|
651 |
};
|
|
|
652 |
|
|
|
653 |
extern Temperature thermalManager;
|
|
|
654 |
|
|
|
655 |
#endif // TEMPERATURE_H
|