1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
#include "MarlinConfig.h"
|
|
|
24 |
|
|
|
25 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
26 |
|
|
|
27 |
//#define UBL_DEVEL_DEBUGGING
|
|
|
28 |
|
|
|
29 |
#include "ubl.h"
|
|
|
30 |
#include "Marlin.h"
|
|
|
31 |
#include "hex_print_routines.h"
|
|
|
32 |
#include "configuration_store.h"
|
|
|
33 |
#include "ultralcd.h"
|
|
|
34 |
#include "stepper.h"
|
|
|
35 |
#include "planner.h"
|
|
|
36 |
#include "parser.h"
|
|
|
37 |
#include "serial.h"
|
|
|
38 |
#include "bitmap_flags.h"
|
|
|
39 |
|
|
|
40 |
#include <math.h>
|
|
|
41 |
#include "least_squares_fit.h"
|
|
|
42 |
|
|
|
43 |
#define UBL_G29_P31
|
|
|
44 |
|
|
|
45 |
extern float destination[XYZE], current_position[XYZE];
|
|
|
46 |
|
|
|
47 |
#if ENABLED(NEWPANEL)
|
|
|
48 |
void lcd_return_to_status();
|
|
|
49 |
void _lcd_ubl_output_map_lcd();
|
|
|
50 |
#endif
|
|
|
51 |
|
|
|
52 |
#define SIZE_OF_LITTLE_RAISE 1
|
|
|
53 |
#define BIG_RAISE_NOT_NEEDED 0
|
|
|
54 |
|
|
|
55 |
int unified_bed_leveling::g29_verbose_level,
|
|
|
56 |
unified_bed_leveling::g29_phase_value,
|
|
|
57 |
unified_bed_leveling::g29_repetition_cnt,
|
|
|
58 |
unified_bed_leveling::g29_storage_slot = 0,
|
|
|
59 |
unified_bed_leveling::g29_map_type;
|
|
|
60 |
bool unified_bed_leveling::g29_c_flag,
|
|
|
61 |
unified_bed_leveling::g29_x_flag,
|
|
|
62 |
unified_bed_leveling::g29_y_flag;
|
|
|
63 |
float unified_bed_leveling::g29_x_pos,
|
|
|
64 |
unified_bed_leveling::g29_y_pos,
|
|
|
65 |
unified_bed_leveling::g29_card_thickness = 0,
|
|
|
66 |
unified_bed_leveling::g29_constant = 0;
|
|
|
67 |
|
|
|
68 |
#if HAS_BED_PROBE
|
|
|
69 |
int unified_bed_leveling::g29_grid_size;
|
|
|
70 |
#endif
|
|
|
71 |
|
|
|
72 |
/**
|
|
|
73 |
* G29: Unified Bed Leveling by Roxy
|
|
|
74 |
*
|
|
|
75 |
* Parameters understood by this leveling system:
|
|
|
76 |
*
|
|
|
77 |
* A Activate Activate the Unified Bed Leveling system.
|
|
|
78 |
*
|
|
|
79 |
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
|
|
|
80 |
* Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
|
|
|
81 |
* In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
|
|
|
82 |
* grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
|
|
|
83 |
* same resistance is felt in the shim. You can omit the numerical value on first invocation
|
|
|
84 |
* of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
|
|
|
85 |
* measured thickness by default.
|
|
|
86 |
*
|
|
|
87 |
* C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
|
|
|
88 |
* previous measurements.
|
|
|
89 |
*
|
|
|
90 |
* C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle
|
|
|
91 |
* location in its search for the closest unmeasured Mesh Point. Instead, attempt to
|
|
|
92 |
* start at one end of the uprobed points and Continue sequentially.
|
|
|
93 |
*
|
|
|
94 |
* G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
|
|
|
95 |
*
|
|
|
96 |
* C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
|
|
|
97 |
*
|
|
|
98 |
* D Disable Disable the Unified Bed Leveling system.
|
|
|
99 |
*
|
|
|
100 |
* E Stow_probe Stow the probe after each sampled point.
|
|
|
101 |
*
|
|
|
102 |
* F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
|
|
|
103 |
* specified height, no correction is applied and natural printer kenimatics take over. If no
|
|
|
104 |
* number is specified for the command, 10mm is assumed to be reasonable.
|
|
|
105 |
*
|
|
|
106 |
* H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
|
|
|
107 |
* If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
|
|
|
108 |
*
|
|
|
109 |
* H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
|
|
|
110 |
* If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
|
|
|
111 |
*
|
|
|
112 |
* I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
|
|
|
113 |
* the nozzle location is used. If no 'I' value is given, only the point nearest to the location
|
|
|
114 |
* is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
|
|
|
115 |
* portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
|
|
|
116 |
* an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
|
|
|
117 |
* can move the nozzle around and use this feature to select the center of the area (or cell) to
|
|
|
118 |
* invalidate.
|
|
|
119 |
*
|
|
|
120 |
* J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
|
|
|
121 |
* Not specifying a grid size will invoke the 3-Point leveling function.
|
|
|
122 |
*
|
|
|
123 |
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
|
|
|
124 |
* command literally performs a diff between two Meshes.
|
|
|
125 |
*
|
|
|
126 |
* L Load Load Mesh from the previously activated location in the EEPROM.
|
|
|
127 |
*
|
|
|
128 |
* L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
|
|
|
129 |
* for subsequent Load and Store operations.
|
|
|
130 |
*
|
|
|
131 |
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
|
|
|
132 |
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
|
|
|
133 |
* each additional Phase that processes it.
|
|
|
134 |
*
|
|
|
135 |
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
|
|
|
136 |
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
|
|
|
137 |
* was turned on. Setting the entire Mesh to Zero is a special case that allows
|
|
|
138 |
* a subsequent G or T leveling operation for backward compatibility.
|
|
|
139 |
*
|
|
|
140 |
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
|
|
|
141 |
* the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta
|
|
|
142 |
* printers only the areas where the probe and nozzle can both reach will be automatically probed.
|
|
|
143 |
*
|
|
|
144 |
* Unreachable points will be handled in Phase 2 and Phase 3.
|
|
|
145 |
*
|
|
|
146 |
* Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
|
|
|
147 |
* to invalidate parts of the Mesh but still use Automatic Probing.
|
|
|
148 |
*
|
|
|
149 |
* The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
|
|
|
150 |
* probe position is used.
|
|
|
151 |
*
|
|
|
152 |
* Use 'T' (Topology) to generate a report of mesh generation.
|
|
|
153 |
*
|
|
|
154 |
* P1 will suspend Mesh generation if the controller button is held down. Note that you may need
|
|
|
155 |
* to press and hold the switch for several seconds if moves are underway.
|
|
|
156 |
*
|
|
|
157 |
* P2 Phase 2 Probe unreachable points.
|
|
|
158 |
*
|
|
|
159 |
* Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
|
|
|
160 |
* Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
|
|
|
161 |
* nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
|
|
|
162 |
* (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
|
|
|
163 |
*
|
|
|
164 |
* The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
|
|
|
165 |
* controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
|
|
|
166 |
* with an 'H' parameter more suitable for the area you're manually probing. Note that the command
|
|
|
167 |
* tries to start in a corner of the bed where movement will be predictable. Override the distance
|
|
|
168 |
* calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
|
|
|
169 |
* the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
|
|
|
170 |
* indicate that the search should be based on the current position.
|
|
|
171 |
*
|
|
|
172 |
* The 'B' parameter for this command is described above. It places the manual probe subsystem into
|
|
|
173 |
* Business Card mode where the thickness of a business card is measured and then used to accurately
|
|
|
174 |
* set the nozzle height in all manual probing for the duration of the command. A Business card can
|
|
|
175 |
* be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
|
|
|
176 |
* easier to produce similar amounts of force and get more accurate measurements. Google if you're
|
|
|
177 |
* not sure how to use a shim.
|
|
|
178 |
*
|
|
|
179 |
* The 'T' (Map) parameter helps track Mesh building progress.
|
|
|
180 |
*
|
|
|
181 |
* NOTE: P2 requires an LCD controller!
|
|
|
182 |
*
|
|
|
183 |
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
|
|
|
184 |
* go down:
|
|
|
185 |
*
|
|
|
186 |
* - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
|
|
|
187 |
* and a repeat count can then also be specified with 'R'.
|
|
|
188 |
*
|
|
|
189 |
* - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
|
|
|
190 |
* invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
|
|
|
191 |
* upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
|
|
|
192 |
* replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
|
|
|
193 |
* and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
|
|
|
194 |
* Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
|
|
|
195 |
*
|
|
|
196 |
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
|
|
|
197 |
* an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
|
|
|
198 |
* G42 and M421. See the UBL documentation for further details.
|
|
|
199 |
*
|
|
|
200 |
* Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
|
|
|
201 |
* of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
|
|
|
202 |
* adhesion.
|
|
|
203 |
*
|
|
|
204 |
* P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
|
|
|
205 |
* by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle
|
|
|
206 |
* height. On click the displayed height is saved in the mesh.
|
|
|
207 |
*
|
|
|
208 |
* Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
|
|
|
209 |
* the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
|
|
|
210 |
* terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
|
|
|
211 |
*
|
|
|
212 |
* The general form is G29 P4 [R points] [X position] [Y position]
|
|
|
213 |
*
|
|
|
214 |
* The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
|
|
|
215 |
* command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
|
|
|
216 |
* and on click the height minus the shim thickness will be saved in the mesh.
|
|
|
217 |
*
|
|
|
218 |
* !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
|
|
|
219 |
*
|
|
|
220 |
* NOTE: P4 is not available unless you have LCD support enabled!
|
|
|
221 |
*
|
|
|
222 |
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
|
|
|
223 |
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
|
|
|
224 |
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
|
|
|
225 |
* execute a G29 P6 C <mean height>.
|
|
|
226 |
*
|
|
|
227 |
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
|
|
|
228 |
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
|
|
|
229 |
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
|
|
|
230 |
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
|
|
|
231 |
* 0.000 at the Z Home location.
|
|
|
232 |
*
|
|
|
233 |
* Q Test Load specified Test Pattern to assist in checking correct operation of system. This
|
|
|
234 |
* command is not anticipated to be of much value to the typical user. It is intended
|
|
|
235 |
* for developers to help them verify correct operation of the Unified Bed Leveling System.
|
|
|
236 |
*
|
|
|
237 |
* R # Repeat Repeat this command the specified number of times. If no number is specified the
|
|
|
238 |
* command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
|
|
|
239 |
*
|
|
|
240 |
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
|
|
|
241 |
* current state of the Unified Bed Leveling system in the EEPROM.
|
|
|
242 |
*
|
|
|
243 |
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
|
|
|
244 |
* for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
|
|
|
245 |
* extend to a limit related to the available EEPROM storage.
|
|
|
246 |
*
|
|
|
247 |
* S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime.
|
|
|
248 |
*
|
|
|
249 |
* T Topology Display the Mesh Map Topology.
|
|
|
250 |
* 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
|
|
|
251 |
* This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
|
|
|
252 |
* This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
|
|
|
253 |
* is suitable to paste into a spreadsheet for a 3D graph of the mesh.
|
|
|
254 |
*
|
|
|
255 |
* U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
|
|
|
256 |
* Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
|
|
|
257 |
* when the entire bed doesn't need to be probed because it will be adjusted.
|
|
|
258 |
*
|
|
|
259 |
* V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
|
|
|
260 |
*
|
|
|
261 |
* W What? Display valuable Unified Bed Leveling System data.
|
|
|
262 |
*
|
|
|
263 |
* X # X Location for this command
|
|
|
264 |
*
|
|
|
265 |
* Y # Y Location for this command
|
|
|
266 |
*
|
|
|
267 |
*
|
|
|
268 |
* Release Notes:
|
|
|
269 |
* You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
|
|
|
270 |
* kinds of problems. Enabling EEPROM Storage is required.
|
|
|
271 |
*
|
|
|
272 |
* When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that
|
|
|
273 |
* UBL probes points increasingly further from the starting location. (The starting location defaults
|
|
|
274 |
* to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is
|
|
|
275 |
* especially better for Delta printers, since it populates the center of the mesh first, allowing for
|
|
|
276 |
* a quicker test print to verify settings. You don't need to populate the entire mesh to use it.
|
|
|
277 |
* After all, you don't want to spend a lot of time generating a mesh only to realize the resolution
|
|
|
278 |
* or zprobe_zoffset are incorrect. Mesh-generation gathers points starting closest to the nozzle unless
|
|
|
279 |
* an (X,Y) coordinate pair is given.
|
|
|
280 |
*
|
|
|
281 |
* Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get
|
|
|
282 |
* the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure
|
|
|
283 |
* evolves, UBL stores all mesh data at the end of EEPROM.
|
|
|
284 |
*
|
|
|
285 |
* UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of
|
|
|
286 |
* 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and
|
|
|
287 |
* features of all three systems combined.
|
|
|
288 |
*/
|
|
|
289 |
|
|
|
290 |
void unified_bed_leveling::G29() {
|
|
|
291 |
|
|
|
292 |
if (g29_parameter_parsing()) return; // Abort on parameter error
|
|
|
293 |
|
|
|
294 |
const int8_t p_val = parser.intval('P', -1);
|
|
|
295 |
const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J');
|
|
|
296 |
|
|
|
297 |
// Check for commands that require the printer to be homed
|
|
|
298 |
if (may_move) {
|
|
|
299 |
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
300 |
if (active_extruder != 0) tool_change(0);
|
|
|
301 |
#endif
|
|
|
302 |
if (axis_unhomed_error()) home_all_axes();
|
|
|
303 |
}
|
|
|
304 |
|
|
|
305 |
// Invalidate Mesh Points. This command is a little bit asymmetrical because
|
|
|
306 |
// it directly specifies the repetition count and does not use the 'R' parameter.
|
|
|
307 |
if (parser.seen('I')) {
|
|
|
308 |
uint8_t cnt = 0;
|
|
|
309 |
g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
|
|
|
310 |
if (g29_repetition_cnt >= GRID_MAX_POINTS) {
|
|
|
311 |
set_all_mesh_points_to_value(NAN);
|
|
|
312 |
}
|
|
|
313 |
else {
|
|
|
314 |
while (g29_repetition_cnt--) {
|
|
|
315 |
if (cnt > 20) { cnt = 0; idle(); }
|
|
|
316 |
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
|
|
|
317 |
if (location.x_index < 0) {
|
|
|
318 |
// No more REACHABLE mesh points to invalidate, so we ASSUME the user
|
|
|
319 |
// meant to invalidate the ENTIRE mesh, which cannot be done with
|
|
|
320 |
// find_closest_mesh_point loop which only returns REACHABLE points.
|
|
|
321 |
set_all_mesh_points_to_value(NAN);
|
|
|
322 |
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
|
|
|
323 |
break; // No more invalid Mesh Points to populate
|
|
|
324 |
}
|
|
|
325 |
z_values[location.x_index][location.y_index] = NAN;
|
|
|
326 |
cnt++;
|
|
|
327 |
}
|
|
|
328 |
}
|
|
|
329 |
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
|
|
|
330 |
}
|
|
|
331 |
|
|
|
332 |
if (parser.seen('Q')) {
|
|
|
333 |
const int test_pattern = parser.has_value() ? parser.value_int() : -99;
|
|
|
334 |
if (!WITHIN(test_pattern, -1, 2)) {
|
|
|
335 |
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
|
|
|
336 |
return;
|
|
|
337 |
}
|
|
|
338 |
SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
|
|
|
339 |
switch (test_pattern) {
|
|
|
340 |
case -1:
|
|
|
341 |
g29_eeprom_dump();
|
|
|
342 |
break;
|
|
|
343 |
case 0:
|
|
|
344 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
|
|
|
345 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
|
|
|
346 |
const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x,
|
|
|
347 |
p2 = 0.5f * (GRID_MAX_POINTS_Y) - y;
|
|
|
348 |
z_values[x][y] += 2.0f * HYPOT(p1, p2);
|
|
|
349 |
}
|
|
|
350 |
}
|
|
|
351 |
break;
|
|
|
352 |
case 1:
|
|
|
353 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
|
|
|
354 |
z_values[x][x] += 9.999f;
|
|
|
355 |
z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick
|
|
|
356 |
}
|
|
|
357 |
break;
|
|
|
358 |
case 2:
|
|
|
359 |
// Allow the user to specify the height because 10mm is a little extreme in some cases.
|
|
|
360 |
for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
|
|
|
361 |
for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
|
|
|
362 |
z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f;
|
|
|
363 |
break;
|
|
|
364 |
}
|
|
|
365 |
}
|
|
|
366 |
|
|
|
367 |
#if HAS_BED_PROBE
|
|
|
368 |
|
|
|
369 |
if (parser.seen('J')) {
|
|
|
370 |
if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
|
|
|
371 |
save_ubl_active_state_and_disable();
|
|
|
372 |
tilt_mesh_based_on_probed_grid(false /* false says to do normal grid probing */ );
|
|
|
373 |
restore_ubl_active_state_and_leave();
|
|
|
374 |
}
|
|
|
375 |
else { // grid_size == 0 : A 3-Point leveling has been requested
|
|
|
376 |
|
|
|
377 |
save_ubl_active_state_and_disable();
|
|
|
378 |
tilt_mesh_based_on_probed_grid(true /* true says to do 3-Point leveling */ );
|
|
|
379 |
restore_ubl_active_state_and_leave();
|
|
|
380 |
}
|
|
|
381 |
do_blocking_move_to_xy(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)));
|
|
|
382 |
report_current_position();
|
|
|
383 |
}
|
|
|
384 |
|
|
|
385 |
#endif // HAS_BED_PROBE
|
|
|
386 |
|
|
|
387 |
if (parser.seen('P')) {
|
|
|
388 |
if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
|
|
|
389 |
storage_slot = 0;
|
|
|
390 |
SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
|
|
|
391 |
}
|
|
|
392 |
|
|
|
393 |
switch (g29_phase_value) {
|
|
|
394 |
case 0:
|
|
|
395 |
//
|
|
|
396 |
// Zero Mesh Data
|
|
|
397 |
//
|
|
|
398 |
reset();
|
|
|
399 |
SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
|
|
|
400 |
break;
|
|
|
401 |
|
|
|
402 |
#if HAS_BED_PROBE
|
|
|
403 |
|
|
|
404 |
case 1:
|
|
|
405 |
//
|
|
|
406 |
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
|
|
|
407 |
//
|
|
|
408 |
if (!parser.seen('C')) {
|
|
|
409 |
invalidate();
|
|
|
410 |
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
|
|
|
411 |
}
|
|
|
412 |
if (g29_verbose_level > 1) {
|
|
|
413 |
SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
|
|
|
414 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
415 |
SERIAL_PROTOCOL(g29_y_pos);
|
|
|
416 |
SERIAL_PROTOCOLLNPGM(").\n");
|
|
|
417 |
}
|
|
|
418 |
probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
|
|
419 |
parser.seen('T'), parser.seen('E'), parser.seen('U'));
|
|
|
420 |
|
|
|
421 |
report_current_position();
|
|
|
422 |
break;
|
|
|
423 |
|
|
|
424 |
#endif // HAS_BED_PROBE
|
|
|
425 |
|
|
|
426 |
case 2: {
|
|
|
427 |
#if ENABLED(NEWPANEL)
|
|
|
428 |
//
|
|
|
429 |
// Manually Probe Mesh in areas that can't be reached by the probe
|
|
|
430 |
//
|
|
|
431 |
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
|
|
|
432 |
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
433 |
|
|
|
434 |
if (parser.seen('C') && !g29_x_flag && !g29_y_flag) {
|
|
|
435 |
/**
|
|
|
436 |
* Use a good default location for the path.
|
|
|
437 |
* The flipped > and < operators in these comparisons is intentional.
|
|
|
438 |
* It should cause the probed points to follow a nice path on Cartesian printers.
|
|
|
439 |
* It may make sense to have Delta printers default to the center of the bed.
|
|
|
440 |
* Until that is decided, this can be forced with the X and Y parameters.
|
|
|
441 |
*/
|
|
|
442 |
#if IS_KINEMATIC
|
|
|
443 |
g29_x_pos = X_HOME_POS;
|
|
|
444 |
g29_y_pos = Y_HOME_POS;
|
|
|
445 |
#else // cartesian
|
|
|
446 |
g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0;
|
|
|
447 |
g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0;
|
|
|
448 |
#endif
|
|
|
449 |
}
|
|
|
450 |
|
|
|
451 |
if (parser.seen('B')) {
|
|
|
452 |
g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness((float) Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
453 |
if (ABS(g29_card_thickness) > 1.5f) {
|
|
|
454 |
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
|
|
|
455 |
return;
|
|
|
456 |
}
|
|
|
457 |
}
|
|
|
458 |
|
|
|
459 |
if (!position_is_reachable(g29_x_pos, g29_y_pos)) {
|
|
|
460 |
SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
|
|
|
461 |
return;
|
|
|
462 |
}
|
|
|
463 |
|
|
|
464 |
const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
465 |
manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
|
|
|
466 |
|
|
|
467 |
SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
|
|
|
468 |
|
|
|
469 |
report_current_position();
|
|
|
470 |
|
|
|
471 |
#else
|
|
|
472 |
|
|
|
473 |
SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
|
|
|
474 |
return;
|
|
|
475 |
|
|
|
476 |
#endif
|
|
|
477 |
} break;
|
|
|
478 |
|
|
|
479 |
case 3: {
|
|
|
480 |
/**
|
|
|
481 |
* Populate invalid mesh areas. Proceed with caution.
|
|
|
482 |
* Two choices are available:
|
|
|
483 |
* - Specify a constant with the 'C' parameter.
|
|
|
484 |
* - Allow 'G29 P3' to choose a 'reasonable' constant.
|
|
|
485 |
*/
|
|
|
486 |
|
|
|
487 |
if (g29_c_flag) {
|
|
|
488 |
if (g29_repetition_cnt >= GRID_MAX_POINTS) {
|
|
|
489 |
set_all_mesh_points_to_value(g29_constant);
|
|
|
490 |
}
|
|
|
491 |
else {
|
|
|
492 |
while (g29_repetition_cnt--) { // this only populates reachable mesh points near
|
|
|
493 |
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
|
|
|
494 |
if (location.x_index < 0) {
|
|
|
495 |
// No more REACHABLE INVALID mesh points to populate, so we ASSUME
|
|
|
496 |
// user meant to populate ALL INVALID mesh points to value
|
|
|
497 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
498 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
499 |
if (isnan(z_values[x][y]))
|
|
|
500 |
z_values[x][y] = g29_constant;
|
|
|
501 |
break; // No more invalid Mesh Points to populate
|
|
|
502 |
}
|
|
|
503 |
z_values[location.x_index][location.y_index] = g29_constant;
|
|
|
504 |
}
|
|
|
505 |
}
|
|
|
506 |
}
|
|
|
507 |
else {
|
|
|
508 |
const float cvf = parser.value_float();
|
|
|
509 |
switch ((int)truncf(cvf * 10.0f) - 30) { // 3.1 -> 1
|
|
|
510 |
#if ENABLED(UBL_G29_P31)
|
|
|
511 |
case 1: {
|
|
|
512 |
|
|
|
513 |
// P3.1 use least squares fit to fill missing mesh values
|
|
|
514 |
// P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
|
|
|
515 |
// P3.11 10X weighting for nearest grid points versus farthest grid points
|
|
|
516 |
// P3.12 100X distance weighting
|
|
|
517 |
// P3.13 1000X distance weighting, approaches simple average of nearest points
|
|
|
518 |
|
|
|
519 |
const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345
|
|
|
520 |
weight_factor = weight_power ? POW(10.0f, weight_power) : 0;
|
|
|
521 |
smart_fill_wlsf(weight_factor);
|
|
|
522 |
}
|
|
|
523 |
break;
|
|
|
524 |
#endif
|
|
|
525 |
case 0: // P3 or P3.0
|
|
|
526 |
default: // and anything P3.x that's not P3.1
|
|
|
527 |
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
|
|
|
528 |
break;
|
|
|
529 |
}
|
|
|
530 |
}
|
|
|
531 |
break;
|
|
|
532 |
}
|
|
|
533 |
|
|
|
534 |
case 4: // Fine Tune (i.e., Edit) the Mesh
|
|
|
535 |
#if ENABLED(NEWPANEL)
|
|
|
536 |
fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
|
|
|
537 |
#else
|
|
|
538 |
SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
|
|
|
539 |
return;
|
|
|
540 |
#endif
|
|
|
541 |
break;
|
|
|
542 |
|
|
|
543 |
case 5: adjust_mesh_to_mean(g29_c_flag, g29_constant); break;
|
|
|
544 |
|
|
|
545 |
case 6: shift_mesh_height(); break;
|
|
|
546 |
}
|
|
|
547 |
}
|
|
|
548 |
|
|
|
549 |
//
|
|
|
550 |
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
|
|
|
551 |
// good to have the extra information. Soon... we prune this to just a few items
|
|
|
552 |
//
|
|
|
553 |
if (parser.seen('W')) g29_what_command();
|
|
|
554 |
|
|
|
555 |
//
|
|
|
556 |
// When we are fully debugged, this may go away. But there are some valid
|
|
|
557 |
// use cases for the users. So we can wait and see what to do with it.
|
|
|
558 |
//
|
|
|
559 |
|
|
|
560 |
if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
|
|
|
561 |
g29_compare_current_mesh_to_stored_mesh();
|
|
|
562 |
|
|
|
563 |
//
|
|
|
564 |
// Load a Mesh from the EEPROM
|
|
|
565 |
//
|
|
|
566 |
|
|
|
567 |
if (parser.seen('L')) { // Load Current Mesh Data
|
|
|
568 |
g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
|
|
|
569 |
|
|
|
570 |
int16_t a = settings.calc_num_meshes();
|
|
|
571 |
|
|
|
572 |
if (!a) {
|
|
|
573 |
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
|
|
574 |
return;
|
|
|
575 |
}
|
|
|
576 |
|
|
|
577 |
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
|
|
|
578 |
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
|
|
|
579 |
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
|
|
|
580 |
return;
|
|
|
581 |
}
|
|
|
582 |
|
|
|
583 |
settings.load_mesh(g29_storage_slot);
|
|
|
584 |
storage_slot = g29_storage_slot;
|
|
|
585 |
|
|
|
586 |
SERIAL_PROTOCOLLNPGM("Done.");
|
|
|
587 |
}
|
|
|
588 |
|
|
|
589 |
//
|
|
|
590 |
// Store a Mesh in the EEPROM
|
|
|
591 |
//
|
|
|
592 |
|
|
|
593 |
if (parser.seen('S')) { // Store (or Save) Current Mesh Data
|
|
|
594 |
g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
|
|
|
595 |
|
|
|
596 |
if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the
|
|
|
597 |
return report_current_mesh(); // host program to be saved on the user's computer
|
|
|
598 |
|
|
|
599 |
int16_t a = settings.calc_num_meshes();
|
|
|
600 |
|
|
|
601 |
if (!a) {
|
|
|
602 |
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
|
|
603 |
goto LEAVE;
|
|
|
604 |
}
|
|
|
605 |
|
|
|
606 |
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
|
|
|
607 |
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
|
|
|
608 |
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
|
|
|
609 |
goto LEAVE;
|
|
|
610 |
}
|
|
|
611 |
|
|
|
612 |
settings.store_mesh(g29_storage_slot);
|
|
|
613 |
storage_slot = g29_storage_slot;
|
|
|
614 |
|
|
|
615 |
SERIAL_PROTOCOLLNPGM("Done.");
|
|
|
616 |
}
|
|
|
617 |
|
|
|
618 |
if (parser.seen('T'))
|
|
|
619 |
display_map(g29_map_type);
|
|
|
620 |
|
|
|
621 |
LEAVE:
|
|
|
622 |
|
|
|
623 |
#if ENABLED(NEWPANEL)
|
|
|
624 |
lcd_reset_alert_level();
|
|
|
625 |
lcd_quick_feedback(true);
|
|
|
626 |
lcd_reset_status();
|
|
|
627 |
lcd_external_control = false;
|
|
|
628 |
#endif
|
|
|
629 |
|
|
|
630 |
return;
|
|
|
631 |
}
|
|
|
632 |
|
|
|
633 |
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) {
|
|
|
634 |
float sum = 0;
|
|
|
635 |
int n = 0;
|
|
|
636 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
637 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
638 |
if (!isnan(z_values[x][y])) {
|
|
|
639 |
sum += z_values[x][y];
|
|
|
640 |
n++;
|
|
|
641 |
}
|
|
|
642 |
|
|
|
643 |
const float mean = sum / n;
|
|
|
644 |
|
|
|
645 |
//
|
|
|
646 |
// Sum the squares of difference from mean
|
|
|
647 |
//
|
|
|
648 |
float sum_of_diff_squared = 0;
|
|
|
649 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
650 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
651 |
if (!isnan(z_values[x][y]))
|
|
|
652 |
sum_of_diff_squared += sq(z_values[x][y] - mean);
|
|
|
653 |
|
|
|
654 |
SERIAL_ECHOLNPAIR("# of samples: ", n);
|
|
|
655 |
SERIAL_ECHOPGM("Mean Mesh Height: ");
|
|
|
656 |
SERIAL_ECHO_F(mean, 6);
|
|
|
657 |
SERIAL_EOL();
|
|
|
658 |
|
|
|
659 |
const float sigma = SQRT(sum_of_diff_squared / (n + 1));
|
|
|
660 |
SERIAL_ECHOPGM("Standard Deviation: ");
|
|
|
661 |
SERIAL_ECHO_F(sigma, 6);
|
|
|
662 |
SERIAL_EOL();
|
|
|
663 |
|
|
|
664 |
if (cflag)
|
|
|
665 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
666 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
667 |
if (!isnan(z_values[x][y]))
|
|
|
668 |
z_values[x][y] -= mean + value;
|
|
|
669 |
}
|
|
|
670 |
|
|
|
671 |
void unified_bed_leveling::shift_mesh_height() {
|
|
|
672 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
673 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
674 |
if (!isnan(z_values[x][y]))
|
|
|
675 |
z_values[x][y] += g29_constant;
|
|
|
676 |
}
|
|
|
677 |
|
|
|
678 |
#if ENABLED(NEWPANEL)
|
|
|
679 |
|
|
|
680 |
typedef void (*clickFunc_t)();
|
|
|
681 |
|
|
|
682 |
bool click_and_hold(const clickFunc_t func=NULL) {
|
|
|
683 |
if (is_lcd_clicked()) {
|
|
|
684 |
lcd_quick_feedback(false); // Do NOT clear button status! If cleared, the code
|
|
|
685 |
// code can not look for a 'click and hold'
|
|
|
686 |
const millis_t nxt = millis() + 1500UL;
|
|
|
687 |
while (is_lcd_clicked()) { // Loop while the encoder is pressed. Uses hardware flag!
|
|
|
688 |
idle(); // idle, of course
|
|
|
689 |
if (ELAPSED(millis(), nxt)) { // After 1.5 seconds
|
|
|
690 |
lcd_quick_feedback(true);
|
|
|
691 |
if (func) (*func)();
|
|
|
692 |
wait_for_release();
|
|
|
693 |
safe_delay(50); // Debounce the Encoder wheel
|
|
|
694 |
return true;
|
|
|
695 |
}
|
|
|
696 |
}
|
|
|
697 |
}
|
|
|
698 |
safe_delay(15);
|
|
|
699 |
return false;
|
|
|
700 |
}
|
|
|
701 |
|
|
|
702 |
#endif // NEWPANEL
|
|
|
703 |
|
|
|
704 |
#if HAS_BED_PROBE
|
|
|
705 |
/**
|
|
|
706 |
* Probe all invalidated locations of the mesh that can be reached by the probe.
|
|
|
707 |
* This attempts to fill in locations closest to the nozzle's start location first.
|
|
|
708 |
*/
|
|
|
709 |
void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) {
|
|
|
710 |
mesh_index_pair location;
|
|
|
711 |
|
|
|
712 |
#if ENABLED(NEWPANEL)
|
|
|
713 |
lcd_external_control = true;
|
|
|
714 |
#endif
|
|
|
715 |
|
|
|
716 |
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
717 |
DEPLOY_PROBE();
|
|
|
718 |
|
|
|
719 |
uint16_t count = GRID_MAX_POINTS;
|
|
|
720 |
|
|
|
721 |
do {
|
|
|
722 |
if (do_ubl_mesh_map) display_map(g29_map_type);
|
|
|
723 |
|
|
|
724 |
#if ENABLED(NEWPANEL)
|
|
|
725 |
if (is_lcd_clicked()) {
|
|
|
726 |
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
|
|
|
727 |
lcd_quick_feedback(false);
|
|
|
728 |
STOW_PROBE();
|
|
|
729 |
while (is_lcd_clicked()) idle();
|
|
|
730 |
lcd_external_control = false;
|
|
|
731 |
restore_ubl_active_state_and_leave();
|
|
|
732 |
lcd_quick_feedback(true);
|
|
|
733 |
safe_delay(50); // Debounce the Encoder wheel
|
|
|
734 |
return;
|
|
|
735 |
}
|
|
|
736 |
#endif
|
|
|
737 |
|
|
|
738 |
if (do_furthest)
|
|
|
739 |
location = find_furthest_invalid_mesh_point();
|
|
|
740 |
else
|
|
|
741 |
location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_PROBE_AS_REFERENCE, NULL);
|
|
|
742 |
|
|
|
743 |
if (location.x_index >= 0) { // mesh point found and is reachable by probe
|
|
|
744 |
const float rawx = mesh_index_to_xpos(location.x_index),
|
|
|
745 |
rawy = mesh_index_to_ypos(location.y_index);
|
|
|
746 |
|
|
|
747 |
const float measured_z = probe_pt(rawx, rawy, stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling
|
|
|
748 |
z_values[location.x_index][location.y_index] = measured_z;
|
|
|
749 |
}
|
|
|
750 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
751 |
} while (location.x_index >= 0 && --count);
|
|
|
752 |
|
|
|
753 |
STOW_PROBE();
|
|
|
754 |
|
|
|
755 |
#ifdef Z_AFTER_PROBING
|
|
|
756 |
move_z_after_probing();
|
|
|
757 |
#endif
|
|
|
758 |
|
|
|
759 |
restore_ubl_active_state_and_leave();
|
|
|
760 |
|
|
|
761 |
do_blocking_move_to_xy(
|
|
|
762 |
constrain(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_X, MESH_MAX_X),
|
|
|
763 |
constrain(ry - (Y_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_Y, MESH_MAX_Y)
|
|
|
764 |
);
|
|
|
765 |
}
|
|
|
766 |
|
|
|
767 |
|
|
|
768 |
#endif // HAS_BED_PROBE
|
|
|
769 |
|
|
|
770 |
#if ENABLED(NEWPANEL)
|
|
|
771 |
|
|
|
772 |
void unified_bed_leveling::move_z_with_encoder(const float &multiplier) {
|
|
|
773 |
wait_for_release();
|
|
|
774 |
while (!is_lcd_clicked()) {
|
|
|
775 |
idle();
|
|
|
776 |
reset_stepper_timeout(); // Keep steppers powered
|
|
|
777 |
if (encoder_diff) {
|
|
|
778 |
do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * multiplier);
|
|
|
779 |
encoder_diff = 0;
|
|
|
780 |
}
|
|
|
781 |
}
|
|
|
782 |
}
|
|
|
783 |
|
|
|
784 |
float unified_bed_leveling::measure_point_with_encoder() {
|
|
|
785 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
786 |
move_z_with_encoder(0.01f);
|
|
|
787 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
788 |
return current_position[Z_AXIS];
|
|
|
789 |
}
|
|
|
790 |
|
|
|
791 |
static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
|
|
|
792 |
|
|
|
793 |
float unified_bed_leveling::measure_business_card_thickness(float in_height) {
|
|
|
794 |
lcd_external_control = true;
|
|
|
795 |
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
|
|
|
796 |
|
|
|
797 |
do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), in_height);
|
|
|
798 |
//, MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) * 0.5f);
|
|
|
799 |
planner.synchronize();
|
|
|
800 |
|
|
|
801 |
SERIAL_PROTOCOLPGM("Place shim under nozzle");
|
|
|
802 |
LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
|
|
|
803 |
lcd_return_to_status();
|
|
|
804 |
echo_and_take_a_measurement();
|
|
|
805 |
|
|
|
806 |
const float z1 = measure_point_with_encoder();
|
|
|
807 |
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
|
|
808 |
planner.synchronize();
|
|
|
809 |
|
|
|
810 |
SERIAL_PROTOCOLPGM("Remove shim");
|
|
|
811 |
LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
|
|
|
812 |
echo_and_take_a_measurement();
|
|
|
813 |
|
|
|
814 |
const float z2 = measure_point_with_encoder();
|
|
|
815 |
|
|
|
816 |
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
817 |
|
|
|
818 |
const float thickness = ABS(z1 - z2);
|
|
|
819 |
|
|
|
820 |
if (g29_verbose_level > 1) {
|
|
|
821 |
SERIAL_PROTOCOLPGM("Business Card is ");
|
|
|
822 |
SERIAL_PROTOCOL_F(thickness, 4);
|
|
|
823 |
SERIAL_PROTOCOLLNPGM("mm thick.");
|
|
|
824 |
}
|
|
|
825 |
|
|
|
826 |
lcd_external_control = false;
|
|
|
827 |
|
|
|
828 |
restore_ubl_active_state_and_leave();
|
|
|
829 |
|
|
|
830 |
return thickness;
|
|
|
831 |
}
|
|
|
832 |
|
|
|
833 |
void abort_manual_probe_remaining_mesh() {
|
|
|
834 |
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
|
|
|
835 |
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
|
836 |
lcd_external_control = false;
|
|
|
837 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
838 |
lcd_quick_feedback(true);
|
|
|
839 |
ubl.restore_ubl_active_state_and_leave();
|
|
|
840 |
}
|
|
|
841 |
|
|
|
842 |
void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
|
|
|
843 |
|
|
|
844 |
lcd_external_control = true;
|
|
|
845 |
|
|
|
846 |
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
847 |
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_clearance);
|
|
|
848 |
|
|
|
849 |
lcd_return_to_status();
|
|
|
850 |
|
|
|
851 |
mesh_index_pair location;
|
|
|
852 |
do {
|
|
|
853 |
location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_NOZZLE_AS_REFERENCE, NULL);
|
|
|
854 |
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
|
|
855 |
if (location.x_index < 0 && location.y_index < 0) continue;
|
|
|
856 |
|
|
|
857 |
const float xProbe = mesh_index_to_xpos(location.x_index),
|
|
|
858 |
yProbe = mesh_index_to_ypos(location.y_index);
|
|
|
859 |
|
|
|
860 |
if (!position_is_reachable(xProbe, yProbe)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
|
|
|
861 |
|
|
|
862 |
LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
|
|
|
863 |
|
|
|
864 |
do_blocking_move_to(xProbe, yProbe, Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
865 |
do_blocking_move_to_z(z_clearance);
|
|
|
866 |
|
|
|
867 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
868 |
lcd_external_control = true;
|
|
|
869 |
|
|
|
870 |
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
|
|
|
871 |
|
|
|
872 |
serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
|
|
|
873 |
|
|
|
874 |
const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step
|
|
|
875 |
//const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click
|
|
|
876 |
|
|
|
877 |
move_z_with_encoder(z_step);
|
|
|
878 |
|
|
|
879 |
if (click_and_hold()) {
|
|
|
880 |
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
|
|
|
881 |
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
|
|
882 |
lcd_external_control = false;
|
|
|
883 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
884 |
restore_ubl_active_state_and_leave();
|
|
|
885 |
return;
|
|
|
886 |
}
|
|
|
887 |
|
|
|
888 |
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
|
|
|
889 |
if (g29_verbose_level > 2) {
|
|
|
890 |
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
|
|
|
891 |
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
|
|
|
892 |
SERIAL_EOL();
|
|
|
893 |
}
|
|
|
894 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
895 |
} while (location.x_index >= 0 && location.y_index >= 0);
|
|
|
896 |
|
|
|
897 |
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
|
|
|
898 |
|
|
|
899 |
restore_ubl_active_state_and_leave();
|
|
|
900 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
901 |
do_blocking_move_to(rx, ry, Z_CLEARANCE_DEPLOY_PROBE);
|
|
|
902 |
}
|
|
|
903 |
#endif // NEWPANEL
|
|
|
904 |
|
|
|
905 |
bool unified_bed_leveling::g29_parameter_parsing() {
|
|
|
906 |
bool err_flag = false;
|
|
|
907 |
|
|
|
908 |
#if ENABLED(NEWPANEL)
|
|
|
909 |
LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
|
|
|
910 |
lcd_quick_feedback(true);
|
|
|
911 |
#endif
|
|
|
912 |
|
|
|
913 |
g29_constant = 0;
|
|
|
914 |
g29_repetition_cnt = 0;
|
|
|
915 |
|
|
|
916 |
g29_x_flag = parser.seenval('X');
|
|
|
917 |
g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
|
|
|
918 |
g29_y_flag = parser.seenval('Y');
|
|
|
919 |
g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
|
|
|
920 |
|
|
|
921 |
if (parser.seen('R')) {
|
|
|
922 |
g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
|
|
|
923 |
NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
|
|
|
924 |
if (g29_repetition_cnt < 1) {
|
|
|
925 |
SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
|
|
|
926 |
return UBL_ERR;
|
|
|
927 |
}
|
|
|
928 |
}
|
|
|
929 |
|
|
|
930 |
g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
|
|
|
931 |
if (!WITHIN(g29_verbose_level, 0, 4)) {
|
|
|
932 |
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
|
|
|
933 |
err_flag = true;
|
|
|
934 |
}
|
|
|
935 |
|
|
|
936 |
if (parser.seen('P')) {
|
|
|
937 |
const int pv = parser.value_int();
|
|
|
938 |
#if !HAS_BED_PROBE
|
|
|
939 |
if (pv == 1) {
|
|
|
940 |
SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n");
|
|
|
941 |
err_flag = true;
|
|
|
942 |
}
|
|
|
943 |
else
|
|
|
944 |
#endif
|
|
|
945 |
{
|
|
|
946 |
g29_phase_value = pv;
|
|
|
947 |
if (!WITHIN(g29_phase_value, 0, 6)) {
|
|
|
948 |
SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
|
|
|
949 |
err_flag = true;
|
|
|
950 |
}
|
|
|
951 |
}
|
|
|
952 |
}
|
|
|
953 |
|
|
|
954 |
if (parser.seen('J')) {
|
|
|
955 |
#if HAS_BED_PROBE
|
|
|
956 |
g29_grid_size = parser.has_value() ? parser.value_int() : 0;
|
|
|
957 |
if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
|
|
|
958 |
SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
|
|
|
959 |
err_flag = true;
|
|
|
960 |
}
|
|
|
961 |
#else
|
|
|
962 |
SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n");
|
|
|
963 |
err_flag = true;
|
|
|
964 |
#endif
|
|
|
965 |
}
|
|
|
966 |
|
|
|
967 |
if (g29_x_flag != g29_y_flag) {
|
|
|
968 |
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
|
|
|
969 |
err_flag = true;
|
|
|
970 |
}
|
|
|
971 |
|
|
|
972 |
// If X or Y are not valid, use center of the bed values
|
|
|
973 |
if (!WITHIN(g29_x_pos, X_MIN_BED, X_MAX_BED)) g29_x_pos = X_CENTER;
|
|
|
974 |
if (!WITHIN(g29_y_pos, Y_MIN_BED, Y_MAX_BED)) g29_y_pos = Y_CENTER;
|
|
|
975 |
|
|
|
976 |
if (err_flag) return UBL_ERR;
|
|
|
977 |
|
|
|
978 |
/**
|
|
|
979 |
* Activate or deactivate UBL
|
|
|
980 |
* Note: UBL's G29 restores the state set here when done.
|
|
|
981 |
* Leveling is being enabled here with old data, possibly
|
|
|
982 |
* none. Error handling should disable for safety...
|
|
|
983 |
*/
|
|
|
984 |
if (parser.seen('A')) {
|
|
|
985 |
if (parser.seen('D')) {
|
|
|
986 |
SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
|
|
|
987 |
return UBL_ERR;
|
|
|
988 |
}
|
|
|
989 |
set_bed_leveling_enabled(true);
|
|
|
990 |
report_state();
|
|
|
991 |
}
|
|
|
992 |
else if (parser.seen('D')) {
|
|
|
993 |
set_bed_leveling_enabled(false);
|
|
|
994 |
report_state();
|
|
|
995 |
}
|
|
|
996 |
|
|
|
997 |
// Set global 'C' flag and its value
|
|
|
998 |
if ((g29_c_flag = parser.seen('C')))
|
|
|
999 |
g29_constant = parser.value_float();
|
|
|
1000 |
|
|
|
1001 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1002 |
if (parser.seenval('F')) {
|
|
|
1003 |
const float fh = parser.value_float();
|
|
|
1004 |
if (!WITHIN(fh, 0, 100)) {
|
|
|
1005 |
SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
|
|
|
1006 |
return UBL_ERR;
|
|
|
1007 |
}
|
|
|
1008 |
set_z_fade_height(fh);
|
|
|
1009 |
}
|
|
|
1010 |
#endif
|
|
|
1011 |
|
|
|
1012 |
g29_map_type = parser.intval('T');
|
|
|
1013 |
if (!WITHIN(g29_map_type, 0, 2)) {
|
|
|
1014 |
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
|
|
|
1015 |
return UBL_ERR;
|
|
|
1016 |
}
|
|
|
1017 |
return UBL_OK;
|
|
|
1018 |
}
|
|
|
1019 |
|
|
|
1020 |
static uint8_t ubl_state_at_invocation = 0;
|
|
|
1021 |
|
|
|
1022 |
#ifdef UBL_DEVEL_DEBUGGING
|
|
|
1023 |
static uint8_t ubl_state_recursion_chk = 0;
|
|
|
1024 |
#endif
|
|
|
1025 |
|
|
|
1026 |
void unified_bed_leveling::save_ubl_active_state_and_disable() {
|
|
|
1027 |
#ifdef UBL_DEVEL_DEBUGGING
|
|
|
1028 |
ubl_state_recursion_chk++;
|
|
|
1029 |
if (ubl_state_recursion_chk != 1) {
|
|
|
1030 |
SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
|
|
|
1031 |
#if ENABLED(NEWPANEL)
|
|
|
1032 |
LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
|
|
|
1033 |
lcd_quick_feedback(true);
|
|
|
1034 |
#endif
|
|
|
1035 |
return;
|
|
|
1036 |
}
|
|
|
1037 |
#endif
|
|
|
1038 |
ubl_state_at_invocation = planner.leveling_active;
|
|
|
1039 |
set_bed_leveling_enabled(false);
|
|
|
1040 |
}
|
|
|
1041 |
|
|
|
1042 |
void unified_bed_leveling::restore_ubl_active_state_and_leave() {
|
|
|
1043 |
#ifdef UBL_DEVEL_DEBUGGING
|
|
|
1044 |
if (--ubl_state_recursion_chk) {
|
|
|
1045 |
SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
|
|
|
1046 |
#if ENABLED(NEWPANEL)
|
|
|
1047 |
LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
|
|
|
1048 |
lcd_quick_feedback(true);
|
|
|
1049 |
#endif
|
|
|
1050 |
return;
|
|
|
1051 |
}
|
|
|
1052 |
#endif
|
|
|
1053 |
set_bed_leveling_enabled(ubl_state_at_invocation);
|
|
|
1054 |
}
|
|
|
1055 |
|
|
|
1056 |
/**
|
|
|
1057 |
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
|
|
|
1058 |
* good to have the extra information. Soon... we prune this to just a few items
|
|
|
1059 |
*/
|
|
|
1060 |
void unified_bed_leveling::g29_what_command() {
|
|
|
1061 |
report_state();
|
|
|
1062 |
|
|
|
1063 |
if (storage_slot == -1)
|
|
|
1064 |
SERIAL_PROTOCOLPGM("No Mesh Loaded.");
|
|
|
1065 |
else {
|
|
|
1066 |
SERIAL_PROTOCOLPAIR("Mesh ", storage_slot);
|
|
|
1067 |
SERIAL_PROTOCOLPGM(" Loaded.");
|
|
|
1068 |
}
|
|
|
1069 |
SERIAL_EOL();
|
|
|
1070 |
safe_delay(50);
|
|
|
1071 |
|
|
|
1072 |
SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
|
|
|
1073 |
|
|
|
1074 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
1075 |
SERIAL_PROTOCOLPGM("planner.z_fade_height : ");
|
|
|
1076 |
SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
|
|
|
1077 |
SERIAL_EOL();
|
|
|
1078 |
#endif
|
|
|
1079 |
|
|
|
1080 |
adjust_mesh_to_mean(g29_c_flag, g29_constant);
|
|
|
1081 |
|
|
|
1082 |
#if HAS_BED_PROBE
|
|
|
1083 |
SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
|
|
|
1084 |
SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
|
|
|
1085 |
SERIAL_EOL();
|
|
|
1086 |
#endif
|
|
|
1087 |
|
|
|
1088 |
SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X);
|
|
|
1089 |
safe_delay(50);
|
|
|
1090 |
SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y);
|
|
|
1091 |
safe_delay(50);
|
|
|
1092 |
SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X);
|
|
|
1093 |
safe_delay(50);
|
|
|
1094 |
SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y);
|
|
|
1095 |
safe_delay(50);
|
|
|
1096 |
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
|
|
|
1097 |
safe_delay(50);
|
|
|
1098 |
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
|
|
|
1099 |
safe_delay(50);
|
|
|
1100 |
SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
|
|
|
1101 |
SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
|
|
|
1102 |
safe_delay(50);
|
|
|
1103 |
|
|
|
1104 |
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
|
|
|
1105 |
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
1106 |
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
|
|
|
1107 |
SERIAL_PROTOCOLPGM(" ");
|
|
|
1108 |
safe_delay(25);
|
|
|
1109 |
}
|
|
|
1110 |
SERIAL_EOL();
|
|
|
1111 |
|
|
|
1112 |
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
|
|
|
1113 |
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
|
|
|
1114 |
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
|
|
|
1115 |
SERIAL_PROTOCOLPGM(" ");
|
|
|
1116 |
safe_delay(25);
|
|
|
1117 |
}
|
|
|
1118 |
SERIAL_EOL();
|
|
|
1119 |
|
|
|
1120 |
#if HAS_KILL
|
|
|
1121 |
SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
|
|
|
1122 |
SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
|
|
|
1123 |
#endif
|
|
|
1124 |
SERIAL_EOL();
|
|
|
1125 |
safe_delay(50);
|
|
|
1126 |
|
|
|
1127 |
#ifdef UBL_DEVEL_DEBUGGING
|
|
|
1128 |
SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
|
|
|
1129 |
SERIAL_EOL();
|
|
|
1130 |
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
|
|
|
1131 |
SERIAL_EOL();
|
|
|
1132 |
safe_delay(50);
|
|
|
1133 |
|
|
|
1134 |
SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()));
|
|
|
1135 |
SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.meshes_end_index()));
|
|
|
1136 |
safe_delay(50);
|
|
|
1137 |
|
|
|
1138 |
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
|
|
|
1139 |
SERIAL_EOL();
|
|
|
1140 |
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
|
|
|
1141 |
SERIAL_EOL();
|
|
|
1142 |
safe_delay(25);
|
|
|
1143 |
|
|
|
1144 |
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index())));
|
|
|
1145 |
safe_delay(50);
|
|
|
1146 |
|
|
|
1147 |
SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
|
|
|
1148 |
SERIAL_PROTOCOLLNPGM(" meshes.\n");
|
|
|
1149 |
safe_delay(25);
|
|
|
1150 |
#endif // UBL_DEVEL_DEBUGGING
|
|
|
1151 |
|
|
|
1152 |
if (!sanity_check()) {
|
|
|
1153 |
echo_name();
|
|
|
1154 |
SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
|
|
|
1155 |
}
|
|
|
1156 |
}
|
|
|
1157 |
|
|
|
1158 |
/**
|
|
|
1159 |
* When we are fully debugged, the EEPROM dump command will get deleted also. But
|
|
|
1160 |
* right now, it is good to have the extra information. Soon... we prune this.
|
|
|
1161 |
*/
|
|
|
1162 |
void unified_bed_leveling::g29_eeprom_dump() {
|
|
|
1163 |
unsigned char cccc;
|
|
|
1164 |
unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms
|
|
|
1165 |
|
|
|
1166 |
SERIAL_ECHO_START();
|
|
|
1167 |
SERIAL_ECHOLNPGM("EEPROM Dump:");
|
|
|
1168 |
for (uint16_t i = 0; i <= E2END; i += 16) {
|
|
|
1169 |
if (!(i & 0x3)) idle();
|
|
|
1170 |
print_hex_word(i);
|
|
|
1171 |
SERIAL_ECHOPGM(": ");
|
|
|
1172 |
for (uint16_t j = 0; j < 16; j++) {
|
|
|
1173 |
kkkk = i + j;
|
|
|
1174 |
eeprom_read_block(&cccc, (const void *)kkkk, sizeof(unsigned char));
|
|
|
1175 |
print_hex_byte(cccc);
|
|
|
1176 |
SERIAL_ECHO(' ');
|
|
|
1177 |
}
|
|
|
1178 |
SERIAL_EOL();
|
|
|
1179 |
}
|
|
|
1180 |
SERIAL_EOL();
|
|
|
1181 |
}
|
|
|
1182 |
|
|
|
1183 |
/**
|
|
|
1184 |
* When we are fully debugged, this may go away. But there are some valid
|
|
|
1185 |
* use cases for the users. So we can wait and see what to do with it.
|
|
|
1186 |
*/
|
|
|
1187 |
void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
|
|
|
1188 |
int16_t a = settings.calc_num_meshes();
|
|
|
1189 |
|
|
|
1190 |
if (!a) {
|
|
|
1191 |
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
|
|
1192 |
return;
|
|
|
1193 |
}
|
|
|
1194 |
|
|
|
1195 |
if (!parser.has_value()) {
|
|
|
1196 |
SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
|
|
|
1197 |
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
|
|
|
1198 |
return;
|
|
|
1199 |
}
|
|
|
1200 |
|
|
|
1201 |
g29_storage_slot = parser.value_int();
|
|
|
1202 |
|
|
|
1203 |
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
|
|
|
1204 |
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
|
|
|
1205 |
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
|
|
|
1206 |
return;
|
|
|
1207 |
}
|
|
|
1208 |
|
|
|
1209 |
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
1210 |
settings.load_mesh(g29_storage_slot, &tmp_z_values);
|
|
|
1211 |
|
|
|
1212 |
SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
|
|
|
1213 |
SERIAL_PROTOCOLLNPGM(" from current mesh.");
|
|
|
1214 |
|
|
|
1215 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
1216 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
1217 |
z_values[x][y] -= tmp_z_values[x][y];
|
|
|
1218 |
}
|
|
|
1219 |
|
|
|
1220 |
mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
|
|
|
1221 |
|
|
|
1222 |
bool found_a_NAN = false, found_a_real = false;
|
|
|
1223 |
|
|
|
1224 |
mesh_index_pair out_mesh;
|
|
|
1225 |
out_mesh.x_index = out_mesh.y_index = -1;
|
|
|
1226 |
out_mesh.distance = -99999.99f;
|
|
|
1227 |
|
|
|
1228 |
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
1229 |
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
1230 |
|
|
|
1231 |
if (isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point
|
|
|
1232 |
|
|
|
1233 |
const float mx = mesh_index_to_xpos(i),
|
|
|
1234 |
my = mesh_index_to_ypos(j);
|
|
|
1235 |
|
|
|
1236 |
if (!position_is_reachable_by_probe(mx, my)) // make sure the probe can get to the mesh point
|
|
|
1237 |
continue;
|
|
|
1238 |
|
|
|
1239 |
found_a_NAN = true;
|
|
|
1240 |
|
|
|
1241 |
int8_t closest_x = -1, closest_y = -1;
|
|
|
1242 |
float d1, d2 = 99999.9f;
|
|
|
1243 |
for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
|
|
|
1244 |
for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
|
|
|
1245 |
if (!isnan(z_values[k][l])) {
|
|
|
1246 |
found_a_real = true;
|
|
|
1247 |
|
|
|
1248 |
// Add in a random weighting factor that scrambles the probing of the
|
|
|
1249 |
// last half of the mesh (when every unprobed mesh point is one index
|
|
|
1250 |
// from a probed location).
|
|
|
1251 |
|
|
|
1252 |
d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13));
|
|
|
1253 |
|
|
|
1254 |
if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l)
|
|
|
1255 |
d2 = d1; // found a closer location with
|
|
|
1256 |
closest_x = i; // an assigned mesh point value
|
|
|
1257 |
closest_y = j;
|
|
|
1258 |
}
|
|
|
1259 |
}
|
|
|
1260 |
}
|
|
|
1261 |
}
|
|
|
1262 |
|
|
|
1263 |
//
|
|
|
1264 |
// At this point d2 should have the closest defined mesh point to invalid mesh point (i,j)
|
|
|
1265 |
//
|
|
|
1266 |
|
|
|
1267 |
if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) {
|
|
|
1268 |
out_mesh.distance = d2; // found an invalid location with a greater distance
|
|
|
1269 |
out_mesh.x_index = closest_x; // to a defined mesh point
|
|
|
1270 |
out_mesh.y_index = closest_y;
|
|
|
1271 |
}
|
|
|
1272 |
}
|
|
|
1273 |
} // for j
|
|
|
1274 |
} // for i
|
|
|
1275 |
|
|
|
1276 |
if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
|
|
|
1277 |
out_mesh.x_index = GRID_MAX_POINTS_X / 2;
|
|
|
1278 |
out_mesh.y_index = GRID_MAX_POINTS_Y / 2;
|
|
|
1279 |
out_mesh.distance = 1;
|
|
|
1280 |
}
|
|
|
1281 |
return out_mesh;
|
|
|
1282 |
}
|
|
|
1283 |
|
|
|
1284 |
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) {
|
|
|
1285 |
mesh_index_pair out_mesh;
|
|
|
1286 |
out_mesh.x_index = out_mesh.y_index = -1;
|
|
|
1287 |
out_mesh.distance = -99999.9f;
|
|
|
1288 |
|
|
|
1289 |
// Get our reference position. Either the nozzle or probe location.
|
|
|
1290 |
const float px = rx + (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
|
|
|
1291 |
py = ry + (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
|
|
|
1292 |
|
|
|
1293 |
float best_so_far = 99999.99f;
|
|
|
1294 |
|
|
|
1295 |
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
1296 |
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
1297 |
|
|
|
1298 |
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|
|
|
1299 |
|| (type == REAL && !isnan(z_values[i][j]))
|
|
|
1300 |
|| (type == SET_IN_BITMAP && is_bitmap_set(bits, i, j))
|
|
|
1301 |
) {
|
|
|
1302 |
// We only get here if we found a Mesh Point of the specified type
|
|
|
1303 |
|
|
|
1304 |
const float mx = mesh_index_to_xpos(i),
|
|
|
1305 |
my = mesh_index_to_ypos(j);
|
|
|
1306 |
|
|
|
1307 |
// If using the probe as the reference there are some unreachable locations.
|
|
|
1308 |
// Also for round beds, there are grid points outside the bed the nozzle can't reach.
|
|
|
1309 |
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
|
|
1310 |
|
|
|
1311 |
if (probe_as_reference ? !position_is_reachable_by_probe(mx, my) : !position_is_reachable(mx, my))
|
|
|
1312 |
continue;
|
|
|
1313 |
|
|
|
1314 |
// Reachable. Check if it's the best_so_far location to the nozzle.
|
|
|
1315 |
|
|
|
1316 |
float distance = HYPOT(px - mx, py - my);
|
|
|
1317 |
|
|
|
1318 |
// factor in the distance from the current location for the normal case
|
|
|
1319 |
// so the nozzle isn't running all over the bed.
|
|
|
1320 |
distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1f;
|
|
|
1321 |
if (distance < best_so_far) {
|
|
|
1322 |
best_so_far = distance; // We found a closer location with
|
|
|
1323 |
out_mesh.x_index = i; // the specified type of mesh value.
|
|
|
1324 |
out_mesh.y_index = j;
|
|
|
1325 |
out_mesh.distance = best_so_far;
|
|
|
1326 |
}
|
|
|
1327 |
}
|
|
|
1328 |
} // for j
|
|
|
1329 |
} // for i
|
|
|
1330 |
|
|
|
1331 |
return out_mesh;
|
|
|
1332 |
}
|
|
|
1333 |
|
|
|
1334 |
#if ENABLED(NEWPANEL)
|
|
|
1335 |
|
|
|
1336 |
void abort_fine_tune() {
|
|
|
1337 |
lcd_return_to_status();
|
|
|
1338 |
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
1339 |
LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
|
|
|
1340 |
lcd_quick_feedback(true);
|
|
|
1341 |
}
|
|
|
1342 |
|
|
|
1343 |
void unified_bed_leveling::fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) {
|
|
|
1344 |
if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
|
|
|
1345 |
g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
|
|
|
1346 |
|
|
|
1347 |
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
|
|
|
1348 |
const float h_offset = parser.seenval('H') ? parser.value_linear_units() : 0;
|
|
|
1349 |
if (!WITHIN(h_offset, 0, 10)) {
|
|
|
1350 |
SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
|
|
|
1351 |
return;
|
|
|
1352 |
}
|
|
|
1353 |
#endif
|
|
|
1354 |
|
|
|
1355 |
mesh_index_pair location;
|
|
|
1356 |
|
|
|
1357 |
if (!position_is_reachable(rx, ry)) {
|
|
|
1358 |
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
|
|
|
1359 |
return;
|
|
|
1360 |
}
|
|
|
1361 |
|
|
|
1362 |
save_ubl_active_state_and_disable();
|
|
|
1363 |
|
|
|
1364 |
LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
|
|
|
1365 |
lcd_external_control = true; // Take over control of the LCD encoder
|
|
|
1366 |
|
|
|
1367 |
do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance
|
|
|
1368 |
|
|
|
1369 |
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
|
|
|
1370 |
do_blocking_move_to_z(h_offset); // Move Z to the given 'H' offset
|
|
|
1371 |
#endif
|
|
|
1372 |
|
|
|
1373 |
uint16_t not_done[16];
|
|
|
1374 |
memset(not_done, 0xFF, sizeof(not_done));
|
|
|
1375 |
do {
|
|
|
1376 |
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, rx, ry, USE_NOZZLE_AS_REFERENCE, not_done);
|
|
|
1377 |
|
|
|
1378 |
if (location.x_index < 0) break; // Stop when there are no more reachable points
|
|
|
1379 |
|
|
|
1380 |
bitmap_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so a new
|
|
|
1381 |
// location is used on the next loop
|
|
|
1382 |
|
|
|
1383 |
const float rawx = mesh_index_to_xpos(location.x_index),
|
|
|
1384 |
rawy = mesh_index_to_ypos(location.y_index);
|
|
|
1385 |
|
|
|
1386 |
if (!position_is_reachable(rawx, rawy)) break; // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
|
|
|
1387 |
|
|
|
1388 |
do_blocking_move_to(rawx, rawy, Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to the edit point with probe clearance
|
|
|
1389 |
|
|
|
1390 |
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
|
|
|
1391 |
do_blocking_move_to_z(h_offset); // Move Z to the given 'H' offset before editing
|
|
|
1392 |
#endif
|
|
|
1393 |
|
|
|
1394 |
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
1395 |
|
|
|
1396 |
if (do_ubl_mesh_map) display_map(g29_map_type); // Display the current point
|
|
|
1397 |
|
|
|
1398 |
lcd_refresh();
|
|
|
1399 |
|
|
|
1400 |
float new_z = z_values[location.x_index][location.y_index];
|
|
|
1401 |
if (isnan(new_z)) new_z = 0; // Invalid points begin at 0
|
|
|
1402 |
new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place
|
|
|
1403 |
|
|
|
1404 |
lcd_mesh_edit_setup(new_z);
|
|
|
1405 |
|
|
|
1406 |
do {
|
|
|
1407 |
new_z = lcd_mesh_edit();
|
|
|
1408 |
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
|
|
|
1409 |
do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
|
|
|
1410 |
#endif
|
|
|
1411 |
idle();
|
|
|
1412 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
1413 |
} while (!is_lcd_clicked());
|
|
|
1414 |
|
|
|
1415 |
if (!lcd_map_control) lcd_return_to_status(); // Just editing a single point? Return to status
|
|
|
1416 |
|
|
|
1417 |
if (click_and_hold(abort_fine_tune)) goto FINE_TUNE_EXIT; // If the click is held down, abort editing
|
|
|
1418 |
|
|
|
1419 |
z_values[location.x_index][location.y_index] = new_z; // Save the updated Z value
|
|
|
1420 |
|
|
|
1421 |
safe_delay(20); // No switch noise
|
|
|
1422 |
lcd_refresh();
|
|
|
1423 |
|
|
|
1424 |
} while (location.x_index >= 0 && --g29_repetition_cnt > 0);
|
|
|
1425 |
|
|
|
1426 |
FINE_TUNE_EXIT:
|
|
|
1427 |
|
|
|
1428 |
lcd_external_control = false;
|
|
|
1429 |
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
1430 |
|
|
|
1431 |
if (do_ubl_mesh_map) display_map(g29_map_type);
|
|
|
1432 |
restore_ubl_active_state_and_leave();
|
|
|
1433 |
|
|
|
1434 |
do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
1435 |
|
|
|
1436 |
LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
|
|
|
1437 |
SERIAL_ECHOLNPGM("Done Editing Mesh");
|
|
|
1438 |
|
|
|
1439 |
if (lcd_map_control)
|
|
|
1440 |
lcd_goto_screen(_lcd_ubl_output_map_lcd);
|
|
|
1441 |
else
|
|
|
1442 |
lcd_return_to_status();
|
|
|
1443 |
}
|
|
|
1444 |
|
|
|
1445 |
#endif // NEWPANEL
|
|
|
1446 |
|
|
|
1447 |
/**
|
|
|
1448 |
* 'Smart Fill': Scan from the outward edges of the mesh towards the center.
|
|
|
1449 |
* If an invalid location is found, use the next two points (if valid) to
|
|
|
1450 |
* calculate a 'reasonable' value for the unprobed mesh point.
|
|
|
1451 |
*/
|
|
|
1452 |
|
|
|
1453 |
bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
|
|
|
1454 |
const int8_t x1 = x + xdir, x2 = x1 + xdir,
|
|
|
1455 |
y1 = y + ydir, y2 = y1 + ydir;
|
|
|
1456 |
// A NAN next to a pair of real values?
|
|
|
1457 |
if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
|
|
|
1458 |
if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
|
|
|
1459 |
z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
|
|
|
1460 |
else
|
|
|
1461 |
z_values[x][y] = 2.0f * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
|
|
|
1462 |
return true;
|
|
|
1463 |
}
|
|
|
1464 |
return false;
|
|
|
1465 |
}
|
|
|
1466 |
|
|
|
1467 |
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
|
|
|
1468 |
|
|
|
1469 |
void unified_bed_leveling::smart_fill_mesh() {
|
|
|
1470 |
static const smart_fill_info
|
|
|
1471 |
info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
|
|
|
1472 |
info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
|
|
|
1473 |
info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
|
|
|
1474 |
info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
|
|
|
1475 |
static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
|
|
|
1476 |
|
|
|
1477 |
for (uint8_t i = 0; i < COUNT(info); ++i) {
|
|
|
1478 |
const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
|
|
|
1479 |
const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
|
|
|
1480 |
ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
|
|
|
1481 |
if (pgm_read_byte(&f->yfirst)) {
|
|
|
1482 |
const int8_t dir = ex > sx ? 1 : -1;
|
|
|
1483 |
for (uint8_t y = sy; y != ey; ++y)
|
|
|
1484 |
for (uint8_t x = sx; x != ex; x += dir)
|
|
|
1485 |
if (smart_fill_one(x, y, dir, 0)) break;
|
|
|
1486 |
}
|
|
|
1487 |
else {
|
|
|
1488 |
const int8_t dir = ey > sy ? 1 : -1;
|
|
|
1489 |
for (uint8_t x = sx; x != ex; ++x)
|
|
|
1490 |
for (uint8_t y = sy; y != ey; y += dir)
|
|
|
1491 |
if (smart_fill_one(x, y, 0, dir)) break;
|
|
|
1492 |
}
|
|
|
1493 |
}
|
|
|
1494 |
}
|
|
|
1495 |
|
|
|
1496 |
#if HAS_BED_PROBE
|
|
|
1497 |
|
|
|
1498 |
#include "vector_3.h"
|
|
|
1499 |
|
|
|
1500 |
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) {
|
|
|
1501 |
constexpr int16_t x_min = MAX(MIN_PROBE_X, MESH_MIN_X),
|
|
|
1502 |
x_max = MIN(MAX_PROBE_X, MESH_MAX_X),
|
|
|
1503 |
y_min = MAX(MIN_PROBE_Y, MESH_MIN_Y),
|
|
|
1504 |
y_max = MIN(MAX_PROBE_Y, MESH_MAX_Y);
|
|
|
1505 |
|
|
|
1506 |
bool abort_flag = false;
|
|
|
1507 |
|
|
|
1508 |
float measured_z;
|
|
|
1509 |
|
|
|
1510 |
const float dx = float(x_max - x_min) / (g29_grid_size - 1),
|
|
|
1511 |
dy = float(y_max - y_min) / (g29_grid_size - 1);
|
|
|
1512 |
|
|
|
1513 |
struct linear_fit_data lsf_results;
|
|
|
1514 |
|
|
|
1515 |
//float z1, z2, z3; // Needed for algorithm validation down below.
|
|
|
1516 |
|
|
|
1517 |
incremental_LSF_reset(&lsf_results);
|
|
|
1518 |
|
|
|
1519 |
if (do_3_pt_leveling) {
|
|
|
1520 |
measured_z = probe_pt(PROBE_PT_1_X, PROBE_PT_1_Y, PROBE_PT_RAISE, g29_verbose_level);
|
|
|
1521 |
if (isnan(measured_z))
|
|
|
1522 |
abort_flag = true;
|
|
|
1523 |
else {
|
|
|
1524 |
measured_z -= get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y);
|
|
|
1525 |
//z1 = measured_z;
|
|
|
1526 |
if (g29_verbose_level > 3) {
|
|
|
1527 |
serial_spaces(16);
|
|
|
1528 |
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
|
|
|
1529 |
}
|
|
|
1530 |
incremental_LSF(&lsf_results, PROBE_PT_1_X, PROBE_PT_1_Y, measured_z);
|
|
|
1531 |
}
|
|
|
1532 |
|
|
|
1533 |
if (!abort_flag) {
|
|
|
1534 |
measured_z = probe_pt(PROBE_PT_2_X, PROBE_PT_2_Y, PROBE_PT_RAISE, g29_verbose_level);
|
|
|
1535 |
//z2 = measured_z;
|
|
|
1536 |
if (isnan(measured_z))
|
|
|
1537 |
abort_flag = true;
|
|
|
1538 |
else {
|
|
|
1539 |
measured_z -= get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y);
|
|
|
1540 |
if (g29_verbose_level > 3) {
|
|
|
1541 |
serial_spaces(16);
|
|
|
1542 |
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
|
|
|
1543 |
}
|
|
|
1544 |
incremental_LSF(&lsf_results, PROBE_PT_2_X, PROBE_PT_2_Y, measured_z);
|
|
|
1545 |
}
|
|
|
1546 |
}
|
|
|
1547 |
|
|
|
1548 |
if (!abort_flag) {
|
|
|
1549 |
measured_z = probe_pt(PROBE_PT_3_X, PROBE_PT_3_Y, PROBE_PT_STOW, g29_verbose_level);
|
|
|
1550 |
//z3 = measured_z;
|
|
|
1551 |
if (isnan(measured_z))
|
|
|
1552 |
abort_flag = true;
|
|
|
1553 |
else {
|
|
|
1554 |
measured_z -= get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y);
|
|
|
1555 |
if (g29_verbose_level > 3) {
|
|
|
1556 |
serial_spaces(16);
|
|
|
1557 |
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
|
|
|
1558 |
}
|
|
|
1559 |
incremental_LSF(&lsf_results, PROBE_PT_3_X, PROBE_PT_3_Y, measured_z);
|
|
|
1560 |
}
|
|
|
1561 |
}
|
|
|
1562 |
|
|
|
1563 |
STOW_PROBE();
|
|
|
1564 |
#ifdef Z_AFTER_PROBING
|
|
|
1565 |
move_z_after_probing();
|
|
|
1566 |
#endif
|
|
|
1567 |
|
|
|
1568 |
if (abort_flag) {
|
|
|
1569 |
SERIAL_ECHOPGM("?Error probing point. Aborting operation.\n");
|
|
|
1570 |
return;
|
|
|
1571 |
}
|
|
|
1572 |
}
|
|
|
1573 |
else { // !do_3_pt_leveling
|
|
|
1574 |
|
|
|
1575 |
bool zig_zag = false;
|
|
|
1576 |
for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
|
|
|
1577 |
const float rx = float(x_min) + ix * dx;
|
|
|
1578 |
for (int8_t iy = 0; iy < g29_grid_size; iy++) {
|
|
|
1579 |
const float ry = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
|
|
|
1580 |
|
|
|
1581 |
if (!abort_flag) {
|
|
|
1582 |
measured_z = probe_pt(rx, ry, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling
|
|
|
1583 |
|
|
|
1584 |
abort_flag = isnan(measured_z);
|
|
|
1585 |
|
|
|
1586 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1587 |
if (DEBUGGING(LEVELING)) {
|
|
|
1588 |
SERIAL_CHAR('(');
|
|
|
1589 |
SERIAL_PROTOCOL_F(rx, 7);
|
|
|
1590 |
SERIAL_CHAR(',');
|
|
|
1591 |
SERIAL_PROTOCOL_F(ry, 7);
|
|
|
1592 |
SERIAL_ECHOPGM(") logical: ");
|
|
|
1593 |
SERIAL_CHAR('(');
|
|
|
1594 |
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 7);
|
|
|
1595 |
SERIAL_CHAR(',');
|
|
|
1596 |
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 7);
|
|
|
1597 |
SERIAL_ECHOPGM(") measured: ");
|
|
|
1598 |
SERIAL_PROTOCOL_F(measured_z, 7);
|
|
|
1599 |
SERIAL_ECHOPGM(" correction: ");
|
|
|
1600 |
SERIAL_PROTOCOL_F(get_z_correction(rx, ry), 7);
|
|
|
1601 |
}
|
|
|
1602 |
#endif
|
|
|
1603 |
|
|
|
1604 |
measured_z -= get_z_correction(rx, ry) /* + zprobe_zoffset */ ;
|
|
|
1605 |
|
|
|
1606 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1607 |
if (DEBUGGING(LEVELING)) {
|
|
|
1608 |
SERIAL_ECHOPGM(" final >>>---> ");
|
|
|
1609 |
SERIAL_PROTOCOL_F(measured_z, 7);
|
|
|
1610 |
SERIAL_EOL();
|
|
|
1611 |
}
|
|
|
1612 |
#endif
|
|
|
1613 |
if (g29_verbose_level > 3) {
|
|
|
1614 |
serial_spaces(16);
|
|
|
1615 |
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
|
|
|
1616 |
}
|
|
|
1617 |
incremental_LSF(&lsf_results, rx, ry, measured_z);
|
|
|
1618 |
}
|
|
|
1619 |
}
|
|
|
1620 |
|
|
|
1621 |
zig_zag ^= true;
|
|
|
1622 |
}
|
|
|
1623 |
}
|
|
|
1624 |
STOW_PROBE();
|
|
|
1625 |
#ifdef Z_AFTER_PROBING
|
|
|
1626 |
move_z_after_probing();
|
|
|
1627 |
#endif
|
|
|
1628 |
|
|
|
1629 |
if (abort_flag || finish_incremental_LSF(&lsf_results)) {
|
|
|
1630 |
SERIAL_ECHOPGM("Could not complete LSF!");
|
|
|
1631 |
return;
|
|
|
1632 |
}
|
|
|
1633 |
|
|
|
1634 |
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal();
|
|
|
1635 |
|
|
|
1636 |
if (g29_verbose_level > 2) {
|
|
|
1637 |
SERIAL_ECHOPGM("bed plane normal = [");
|
|
|
1638 |
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
|
1639 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1640 |
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
|
1641 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1642 |
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
|
1643 |
SERIAL_ECHOLNPGM("]");
|
|
|
1644 |
}
|
|
|
1645 |
|
|
|
1646 |
matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
|
|
|
1647 |
|
|
|
1648 |
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
1649 |
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
1650 |
float x_tmp = mesh_index_to_xpos(i),
|
|
|
1651 |
y_tmp = mesh_index_to_ypos(j),
|
|
|
1652 |
z_tmp = z_values[i][j];
|
|
|
1653 |
|
|
|
1654 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1655 |
if (DEBUGGING(LEVELING)) {
|
|
|
1656 |
SERIAL_ECHOPGM("before rotation = [");
|
|
|
1657 |
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
|
1658 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1659 |
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
|
1660 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1661 |
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
|
1662 |
SERIAL_ECHOPGM("] ---> ");
|
|
|
1663 |
safe_delay(20);
|
|
|
1664 |
}
|
|
|
1665 |
#endif
|
|
|
1666 |
|
|
|
1667 |
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
|
|
|
1668 |
|
|
|
1669 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1670 |
if (DEBUGGING(LEVELING)) {
|
|
|
1671 |
SERIAL_ECHOPGM("after rotation = [");
|
|
|
1672 |
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
|
1673 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1674 |
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
|
1675 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1676 |
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
|
1677 |
SERIAL_ECHOLNPGM("]");
|
|
|
1678 |
safe_delay(55);
|
|
|
1679 |
}
|
|
|
1680 |
#endif
|
|
|
1681 |
|
|
|
1682 |
z_values[i][j] = z_tmp - lsf_results.D;
|
|
|
1683 |
}
|
|
|
1684 |
}
|
|
|
1685 |
|
|
|
1686 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
1687 |
if (DEBUGGING(LEVELING)) {
|
|
|
1688 |
rotation.debug(PSTR("rotation matrix:\n"));
|
|
|
1689 |
SERIAL_ECHOPGM("LSF Results A=");
|
|
|
1690 |
SERIAL_PROTOCOL_F(lsf_results.A, 7);
|
|
|
1691 |
SERIAL_ECHOPGM(" B=");
|
|
|
1692 |
SERIAL_PROTOCOL_F(lsf_results.B, 7);
|
|
|
1693 |
SERIAL_ECHOPGM(" D=");
|
|
|
1694 |
SERIAL_PROTOCOL_F(lsf_results.D, 7);
|
|
|
1695 |
SERIAL_EOL();
|
|
|
1696 |
safe_delay(55);
|
|
|
1697 |
|
|
|
1698 |
SERIAL_ECHOPGM("bed plane normal = [");
|
|
|
1699 |
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
|
1700 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1701 |
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
|
1702 |
SERIAL_PROTOCOLCHAR(',');
|
|
|
1703 |
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
|
1704 |
SERIAL_ECHOPGM("]\n");
|
|
|
1705 |
SERIAL_EOL();
|
|
|
1706 |
|
|
|
1707 |
/**
|
|
|
1708 |
* The following code can be used to check the validity of the mesh tilting algorithm.
|
|
|
1709 |
* When a 3-Point Mesh Tilt is done, the same algorithm is used as the grid based tilting.
|
|
|
1710 |
* The only difference is just 3 points are used in the calculations. That fact guarantees
|
|
|
1711 |
* each probed point should have an exact match when a get_z_correction() for that location
|
|
|
1712 |
* is calculated. The Z error between the probed point locations and the get_z_correction()
|
|
|
1713 |
* numbers for those locations should be 0.
|
|
|
1714 |
*/
|
|
|
1715 |
#if 0
|
|
|
1716 |
float t, t1, d;
|
|
|
1717 |
t = normal.x * (PROBE_PT_1_X) + normal.y * (PROBE_PT_1_Y);
|
|
|
1718 |
d = t + normal.z * z1;
|
|
|
1719 |
SERIAL_ECHOPGM("D from 1st point: ");
|
|
|
1720 |
SERIAL_ECHO_F(d, 6);
|
|
|
1721 |
SERIAL_ECHOPGM(" Z error: ");
|
|
|
1722 |
SERIAL_ECHO_F(normal.z*z1-get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y), 6);
|
|
|
1723 |
SERIAL_EOL();
|
|
|
1724 |
|
|
|
1725 |
t = normal.x * (PROBE_PT_2_X) + normal.y * (PROBE_PT_2_Y);
|
|
|
1726 |
d = t + normal.z * z2;
|
|
|
1727 |
SERIAL_EOL();
|
|
|
1728 |
SERIAL_ECHOPGM("D from 2nd point: ");
|
|
|
1729 |
SERIAL_ECHO_F(d, 6);
|
|
|
1730 |
SERIAL_ECHOPGM(" Z error: ");
|
|
|
1731 |
SERIAL_ECHO_F(normal.z*z2-get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y), 6);
|
|
|
1732 |
SERIAL_EOL();
|
|
|
1733 |
|
|
|
1734 |
t = normal.x * (PROBE_PT_3_X) + normal.y * (PROBE_PT_3_Y);
|
|
|
1735 |
d = t + normal.z * z3;
|
|
|
1736 |
SERIAL_ECHOPGM("D from 3rd point: ");
|
|
|
1737 |
SERIAL_ECHO_F(d, 6);
|
|
|
1738 |
SERIAL_ECHOPGM(" Z error: ");
|
|
|
1739 |
SERIAL_ECHO_F(normal.z*z3-get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y), 6);
|
|
|
1740 |
SERIAL_EOL();
|
|
|
1741 |
|
|
|
1742 |
t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT);
|
|
|
1743 |
d = t + normal.z * 0;
|
|
|
1744 |
SERIAL_ECHOPGM("D from home location with Z=0 : ");
|
|
|
1745 |
SERIAL_ECHO_F(d, 6);
|
|
|
1746 |
SERIAL_EOL();
|
|
|
1747 |
|
|
|
1748 |
t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT);
|
|
|
1749 |
d = t + get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT); // normal.z * 0;
|
|
|
1750 |
SERIAL_ECHOPGM("D from home location using mesh value for Z: ");
|
|
|
1751 |
SERIAL_ECHO_F(d, 6);
|
|
|
1752 |
|
|
|
1753 |
SERIAL_ECHOPAIR(" Z error: (", Z_SAFE_HOMING_X_POINT);
|
|
|
1754 |
SERIAL_ECHOPAIR(",", Z_SAFE_HOMING_Y_POINT );
|
|
|
1755 |
SERIAL_ECHOPGM(") = ");
|
|
|
1756 |
SERIAL_ECHO_F(get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT), 6);
|
|
|
1757 |
SERIAL_EOL();
|
|
|
1758 |
#endif
|
|
|
1759 |
} // DEBUGGING(LEVELING)
|
|
|
1760 |
#endif
|
|
|
1761 |
|
|
|
1762 |
}
|
|
|
1763 |
|
|
|
1764 |
#endif // HAS_BED_PROBE
|
|
|
1765 |
|
|
|
1766 |
#if ENABLED(UBL_G29_P31)
|
|
|
1767 |
void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
|
|
|
1768 |
|
|
|
1769 |
// For each undefined mesh point, compute a distance-weighted least squares fit
|
|
|
1770 |
// from all the originally populated mesh points, weighted toward the point
|
|
|
1771 |
// being extrapolated so that nearby points will have greater influence on
|
|
|
1772 |
// the point being extrapolated. Then extrapolate the mesh point from WLSF.
|
|
|
1773 |
|
|
|
1774 |
static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
|
|
|
1775 |
uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
|
|
|
1776 |
struct linear_fit_data lsf_results;
|
|
|
1777 |
|
|
|
1778 |
SERIAL_ECHOPGM("Extrapolating mesh...");
|
|
|
1779 |
|
|
|
1780 |
const float weight_scaled = weight_factor * MAX(MESH_X_DIST, MESH_Y_DIST);
|
|
|
1781 |
|
|
|
1782 |
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
|
|
|
1783 |
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
|
|
|
1784 |
if (!isnan(z_values[jx][jy]))
|
|
|
1785 |
SBI(bitmap[jx], jy);
|
|
|
1786 |
|
|
|
1787 |
for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
|
|
|
1788 |
const float px = mesh_index_to_xpos(ix);
|
|
|
1789 |
for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
|
|
|
1790 |
const float py = mesh_index_to_ypos(iy);
|
|
|
1791 |
if (isnan(z_values[ix][iy])) {
|
|
|
1792 |
// undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
|
|
|
1793 |
incremental_LSF_reset(&lsf_results);
|
|
|
1794 |
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
|
|
|
1795 |
const float rx = mesh_index_to_xpos(jx);
|
|
|
1796 |
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
|
|
|
1797 |
if (TEST(bitmap[jx], jy)) {
|
|
|
1798 |
const float ry = mesh_index_to_ypos(jy),
|
|
|
1799 |
rz = z_values[jx][jy],
|
|
|
1800 |
w = 1 + weight_scaled / HYPOT((rx - px), (ry - py));
|
|
|
1801 |
incremental_WLSF(&lsf_results, rx, ry, rz, w);
|
|
|
1802 |
}
|
|
|
1803 |
}
|
|
|
1804 |
}
|
|
|
1805 |
if (finish_incremental_LSF(&lsf_results)) {
|
|
|
1806 |
SERIAL_ECHOLNPGM("Insufficient data");
|
|
|
1807 |
return;
|
|
|
1808 |
}
|
|
|
1809 |
const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
|
|
|
1810 |
z_values[ix][iy] = ez;
|
|
|
1811 |
idle(); // housekeeping
|
|
|
1812 |
}
|
|
|
1813 |
}
|
|
|
1814 |
}
|
|
|
1815 |
|
|
|
1816 |
SERIAL_ECHOLNPGM("done");
|
|
|
1817 |
}
|
|
|
1818 |
#endif // UBL_G29_P31
|
|
|
1819 |
|
|
|
1820 |
#endif // AUTO_BED_LEVELING_UBL
|