1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* Marlin Firmware -- G26 - Mesh Validation Tool
|
|
|
25 |
*/
|
|
|
26 |
|
|
|
27 |
#include "MarlinConfig.h"
|
|
|
28 |
|
|
|
29 |
#if ENABLED(G26_MESH_VALIDATION)
|
|
|
30 |
|
|
|
31 |
#include "Marlin.h"
|
|
|
32 |
#include "planner.h"
|
|
|
33 |
#include "stepper.h"
|
|
|
34 |
#include "temperature.h"
|
|
|
35 |
#include "ultralcd.h"
|
|
|
36 |
#include "parser.h"
|
|
|
37 |
#include "serial.h"
|
|
|
38 |
#include "bitmap_flags.h"
|
|
|
39 |
|
|
|
40 |
#if ENABLED(MESH_BED_LEVELING)
|
|
|
41 |
#include "mesh_bed_leveling.h"
|
|
|
42 |
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
43 |
#include "ubl.h"
|
|
|
44 |
#endif
|
|
|
45 |
|
|
|
46 |
#define EXTRUSION_MULTIPLIER 1.0
|
|
|
47 |
#define RETRACTION_MULTIPLIER 1.0
|
|
|
48 |
#define PRIME_LENGTH 10.0
|
|
|
49 |
#define OOZE_AMOUNT 0.3
|
|
|
50 |
|
|
|
51 |
#define INTERSECTION_CIRCLE_RADIUS 5
|
|
|
52 |
#define CROSSHAIRS_SIZE 3
|
|
|
53 |
|
|
|
54 |
#if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
|
|
|
55 |
#error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
|
|
|
56 |
#endif
|
|
|
57 |
|
|
|
58 |
#define G26_OK false
|
|
|
59 |
#define G26_ERR true
|
|
|
60 |
|
|
|
61 |
/**
|
|
|
62 |
* G26 Mesh Validation Tool
|
|
|
63 |
*
|
|
|
64 |
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
|
|
|
65 |
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
|
|
|
66 |
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
|
|
|
67 |
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
|
|
|
68 |
* the intersections of those lines (respectively).
|
|
|
69 |
*
|
|
|
70 |
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
|
|
|
71 |
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
|
|
|
72 |
* the user can specify the X and Y position of interest with command parameters. This allows the user to
|
|
|
73 |
* focus on a particular area of the Mesh where attention is needed.
|
|
|
74 |
*
|
|
|
75 |
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
|
|
|
76 |
*
|
|
|
77 |
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
|
|
|
78 |
* as the base for any distance comparison.
|
|
|
79 |
*
|
|
|
80 |
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
|
|
|
81 |
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
|
|
|
82 |
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
|
|
|
83 |
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
|
|
|
84 |
* it is on.
|
|
|
85 |
*
|
|
|
86 |
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
|
|
|
87 |
*
|
|
|
88 |
* F # Filament Used to specify the diameter of the filament being used. If not specified
|
|
|
89 |
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
|
|
|
90 |
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
|
|
|
91 |
* of filament that is being extruded during the printing of the various lines on the bed.
|
|
|
92 |
*
|
|
|
93 |
* K Keep-On Keep the heaters turned on at the end of the command.
|
|
|
94 |
*
|
|
|
95 |
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
|
|
|
96 |
*
|
|
|
97 |
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
|
|
|
98 |
* is over kill, but using this parameter will let you get the very first 'circle' perfect
|
|
|
99 |
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
|
|
|
100 |
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
|
|
|
101 |
*
|
|
|
102 |
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
|
|
|
103 |
* given, no prime action will take place. If the parameter specifies an amount, that much
|
|
|
104 |
* will be purged before continuing. If no amount is specified the command will start
|
|
|
105 |
* purging filament until the user provides an LCD Click and then it will continue with
|
|
|
106 |
* printing the Mesh. You can carefully remove the spent filament with a needle nose
|
|
|
107 |
* pliers while holding the LCD Click wheel in a depressed state. If you do not have
|
|
|
108 |
* an LCD, you must specify a value if you use P.
|
|
|
109 |
*
|
|
|
110 |
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
|
|
|
111 |
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
|
|
|
112 |
*
|
|
|
113 |
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
|
|
|
114 |
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
|
|
|
115 |
* This works the same way that the UBL G29 P4 R parameter works.
|
|
|
116 |
*
|
|
|
117 |
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
|
|
|
118 |
* aware that there's some risk associated with printing without the ability to abort in
|
|
|
119 |
* cases where mesh point Z value may be inaccurate. As above, if you do not include a
|
|
|
120 |
* parameter, every point will be printed.
|
|
|
121 |
*
|
|
|
122 |
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
|
|
|
123 |
*
|
|
|
124 |
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
|
|
|
125 |
* undrawn cicle is still done. But the distance to the location for each circle has a
|
|
|
126 |
* random number of the size specified added to it. Specifying S50 will give an interesting
|
|
|
127 |
* deviation from the normal behaviour on a 10 x 10 Mesh.
|
|
|
128 |
*
|
|
|
129 |
* X # X Coord. Specify the starting location of the drawing activity.
|
|
|
130 |
*
|
|
|
131 |
* Y # Y Coord. Specify the starting location of the drawing activity.
|
|
|
132 |
*/
|
|
|
133 |
|
|
|
134 |
// External references
|
|
|
135 |
|
|
|
136 |
extern Planner planner;
|
|
|
137 |
|
|
|
138 |
// Private functions
|
|
|
139 |
|
|
|
140 |
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
|
|
|
141 |
float g26_e_axis_feedrate = 0.025,
|
|
|
142 |
random_deviation = 0.0;
|
|
|
143 |
|
|
|
144 |
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
|
|
|
145 |
// retracts/recovers won't result in a bad state.
|
|
|
146 |
|
|
|
147 |
static float g26_extrusion_multiplier,
|
|
|
148 |
g26_retraction_multiplier,
|
|
|
149 |
g26_layer_height,
|
|
|
150 |
g26_prime_length,
|
|
|
151 |
g26_x_pos, g26_y_pos;
|
|
|
152 |
|
|
|
153 |
static int16_t g26_bed_temp,
|
|
|
154 |
g26_hotend_temp;
|
|
|
155 |
|
|
|
156 |
static int8_t g26_prime_flag;
|
|
|
157 |
|
|
|
158 |
#if ENABLED(ULTIPANEL)
|
|
|
159 |
|
|
|
160 |
/**
|
|
|
161 |
* If the LCD is clicked, cancel, wait for release, return true
|
|
|
162 |
*/
|
|
|
163 |
bool user_canceled() {
|
|
|
164 |
if (!is_lcd_clicked()) return false; // Return if the button isn't pressed
|
|
|
165 |
lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
|
|
|
166 |
#if ENABLED(ULTIPANEL)
|
|
|
167 |
lcd_quick_feedback(true);
|
|
|
168 |
#endif
|
|
|
169 |
wait_for_release();
|
|
|
170 |
return true;
|
|
|
171 |
}
|
|
|
172 |
|
|
|
173 |
bool exit_from_g26() {
|
|
|
174 |
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
|
|
|
175 |
wait_for_release();
|
|
|
176 |
return G26_ERR;
|
|
|
177 |
}
|
|
|
178 |
|
|
|
179 |
#endif
|
|
|
180 |
|
|
|
181 |
void G26_line_to_destination(const float &feed_rate) {
|
|
|
182 |
const float save_feedrate = feedrate_mm_s;
|
|
|
183 |
feedrate_mm_s = feed_rate;
|
|
|
184 |
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_SEGMENTED
|
|
|
185 |
feedrate_mm_s = save_feedrate;
|
|
|
186 |
}
|
|
|
187 |
|
|
|
188 |
void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
|
|
|
189 |
float feed_value;
|
|
|
190 |
static float last_z = -999.99;
|
|
|
191 |
|
|
|
192 |
bool has_xy_component = (rx != current_position[X_AXIS] || ry != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
|
|
|
193 |
|
|
|
194 |
if (z != last_z) {
|
|
|
195 |
last_z = z;
|
|
|
196 |
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
|
|
|
197 |
|
|
|
198 |
destination[X_AXIS] = current_position[X_AXIS];
|
|
|
199 |
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
|
200 |
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
|
|
|
201 |
destination[E_CART] = current_position[E_CART];
|
|
|
202 |
|
|
|
203 |
G26_line_to_destination(feed_value);
|
|
|
204 |
set_destination_from_current();
|
|
|
205 |
}
|
|
|
206 |
|
|
|
207 |
// Check if X or Y is involved in the movement.
|
|
|
208 |
// Yes: a 'normal' movement. No: a retract() or recover()
|
|
|
209 |
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
|
|
210 |
|
|
|
211 |
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
|
|
212 |
|
|
|
213 |
destination[X_AXIS] = rx;
|
|
|
214 |
destination[Y_AXIS] = ry;
|
|
|
215 |
destination[E_CART] += e_delta;
|
|
|
216 |
|
|
|
217 |
G26_line_to_destination(feed_value);
|
|
|
218 |
set_destination_from_current();
|
|
|
219 |
}
|
|
|
220 |
|
|
|
221 |
FORCE_INLINE void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
|
|
|
222 |
|
|
|
223 |
void retract_filament(const float where[XYZE]) {
|
|
|
224 |
if (!g26_retracted) { // Only retract if we are not already retracted!
|
|
|
225 |
g26_retracted = true;
|
|
|
226 |
move_to(where, -1.0 * g26_retraction_multiplier);
|
|
|
227 |
}
|
|
|
228 |
}
|
|
|
229 |
|
|
|
230 |
void recover_filament(const float where[XYZE]) {
|
|
|
231 |
if (g26_retracted) { // Only un-retract if we are retracted.
|
|
|
232 |
move_to(where, 1.2 * g26_retraction_multiplier);
|
|
|
233 |
g26_retracted = false;
|
|
|
234 |
}
|
|
|
235 |
}
|
|
|
236 |
|
|
|
237 |
/**
|
|
|
238 |
* Prime the nozzle if needed. Return true on error.
|
|
|
239 |
*/
|
|
|
240 |
inline bool prime_nozzle() {
|
|
|
241 |
|
|
|
242 |
#if ENABLED(ULTIPANEL)
|
|
|
243 |
float Total_Prime = 0.0;
|
|
|
244 |
|
|
|
245 |
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
|
|
|
246 |
|
|
|
247 |
lcd_external_control = true;
|
|
|
248 |
lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
|
|
|
249 |
lcd_chirp();
|
|
|
250 |
|
|
|
251 |
set_destination_from_current();
|
|
|
252 |
|
|
|
253 |
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
|
|
254 |
|
|
|
255 |
while (!is_lcd_clicked()) {
|
|
|
256 |
lcd_chirp();
|
|
|
257 |
destination[E_CART] += 0.25;
|
|
|
258 |
#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
|
259 |
Total_Prime += 0.25;
|
|
|
260 |
if (Total_Prime >= EXTRUDE_MAXLENGTH) return G26_ERR;
|
|
|
261 |
#endif
|
|
|
262 |
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
|
|
|
263 |
set_destination_from_current();
|
|
|
264 |
planner.synchronize(); // Without this synchronize, the purge is more consistent,
|
|
|
265 |
// but because the planner has a buffer, we won't be able
|
|
|
266 |
// to stop as quickly. So we put up with the less smooth
|
|
|
267 |
// action to give the user a more responsive 'Stop'.
|
|
|
268 |
|
|
|
269 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
270 |
}
|
|
|
271 |
|
|
|
272 |
wait_for_release();
|
|
|
273 |
|
|
|
274 |
lcd_setstatusPGM(PSTR("Done Priming"), 99);
|
|
|
275 |
lcd_quick_feedback(true);
|
|
|
276 |
lcd_external_control = false;
|
|
|
277 |
}
|
|
|
278 |
else
|
|
|
279 |
#endif
|
|
|
280 |
{
|
|
|
281 |
#if ENABLED(ULTRA_LCD)
|
|
|
282 |
lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
|
|
|
283 |
lcd_quick_feedback(true);
|
|
|
284 |
#endif
|
|
|
285 |
set_destination_from_current();
|
|
|
286 |
destination[E_CART] += g26_prime_length;
|
|
|
287 |
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
|
|
|
288 |
set_destination_from_current();
|
|
|
289 |
retract_filament(destination);
|
|
|
290 |
}
|
|
|
291 |
|
|
|
292 |
return G26_OK;
|
|
|
293 |
}
|
|
|
294 |
|
|
|
295 |
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
|
|
|
296 |
float closest = 99999.99;
|
|
|
297 |
mesh_index_pair return_val;
|
|
|
298 |
|
|
|
299 |
return_val.x_index = return_val.y_index = -1;
|
|
|
300 |
|
|
|
301 |
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
302 |
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
303 |
if (!is_bitmap_set(circle_flags, i, j)) {
|
|
|
304 |
const float mx = _GET_MESH_X(i), // We found a circle that needs to be printed
|
|
|
305 |
my = _GET_MESH_Y(j);
|
|
|
306 |
|
|
|
307 |
// Get the distance to this intersection
|
|
|
308 |
float f = HYPOT(X - mx, Y - my);
|
|
|
309 |
|
|
|
310 |
// It is possible that we are being called with the values
|
|
|
311 |
// to let us find the closest circle to the start position.
|
|
|
312 |
// But if this is not the case, add a small weighting to the
|
|
|
313 |
// distance calculation to help it choose a better place to continue.
|
|
|
314 |
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
|
|
|
315 |
|
|
|
316 |
// Add in the specified amount of Random Noise to our search
|
|
|
317 |
if (random_deviation > 1.0)
|
|
|
318 |
f += random(0.0, random_deviation);
|
|
|
319 |
|
|
|
320 |
if (f < closest) {
|
|
|
321 |
closest = f; // We found a closer location that is still
|
|
|
322 |
return_val.x_index = i; // un-printed --- save the data for it
|
|
|
323 |
return_val.y_index = j;
|
|
|
324 |
return_val.distance = closest;
|
|
|
325 |
}
|
|
|
326 |
}
|
|
|
327 |
}
|
|
|
328 |
}
|
|
|
329 |
bitmap_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
|
|
|
330 |
return return_val;
|
|
|
331 |
}
|
|
|
332 |
|
|
|
333 |
/**
|
|
|
334 |
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
|
|
|
335 |
* to the other. But there are really three sets of coordinates involved. The first coordinate
|
|
|
336 |
* is the present location of the nozzle. We don't necessarily want to print from this location.
|
|
|
337 |
* We first need to move the nozzle to the start of line segment where we want to print. Once
|
|
|
338 |
* there, we can use the two coordinates supplied to draw the line.
|
|
|
339 |
*
|
|
|
340 |
* Note: Although we assume the first set of coordinates is the start of the line and the second
|
|
|
341 |
* set of coordinates is the end of the line, it does not always work out that way. This function
|
|
|
342 |
* optimizes the movement to minimize the travel distance before it can start printing. This saves
|
|
|
343 |
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
|
|
|
344 |
* cause a lot of very little short retracement of th nozzle when it draws the very first line
|
|
|
345 |
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
|
|
346 |
* cases where the optimization comes into play.
|
|
|
347 |
*/
|
|
|
348 |
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
|
|
349 |
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
|
|
|
350 |
dy_s = current_position[Y_AXIS] - sy,
|
|
|
351 |
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
|
|
|
352 |
// to save computation time
|
|
|
353 |
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
|
|
|
354 |
dy_e = current_position[Y_AXIS] - ey,
|
|
|
355 |
dist_end = HYPOT2(dx_e, dy_e),
|
|
|
356 |
|
|
|
357 |
line_length = HYPOT(ex - sx, ey - sy);
|
|
|
358 |
|
|
|
359 |
// If the end point of the line is closer to the nozzle, flip the direction,
|
|
|
360 |
// moving from the end to the start. On very small lines the optimization isn't worth it.
|
|
|
361 |
if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
|
|
|
362 |
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
|
|
363 |
|
|
|
364 |
// Decide whether to retract & bump
|
|
|
365 |
|
|
|
366 |
if (dist_start > 2.0) {
|
|
|
367 |
retract_filament(destination);
|
|
|
368 |
//todo: parameterize the bump height with a define
|
|
|
369 |
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
|
|
|
370 |
move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
|
|
|
371 |
}
|
|
|
372 |
|
|
|
373 |
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
|
|
|
374 |
|
|
|
375 |
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
|
|
|
376 |
|
|
|
377 |
recover_filament(destination);
|
|
|
378 |
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
|
|
|
379 |
}
|
|
|
380 |
|
|
|
381 |
inline bool look_for_lines_to_connect() {
|
|
|
382 |
float sx, sy, ex, ey;
|
|
|
383 |
|
|
|
384 |
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
385 |
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
386 |
|
|
|
387 |
#if ENABLED(ULTIPANEL)
|
|
|
388 |
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
|
|
|
389 |
#endif
|
|
|
390 |
|
|
|
391 |
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
|
|
|
392 |
// This is already a half circle because we are at the edge of the bed.
|
|
|
393 |
|
|
|
394 |
if (is_bitmap_set(circle_flags, i, j) && is_bitmap_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
|
|
|
395 |
if (!is_bitmap_set(horizontal_mesh_line_flags, i, j)) {
|
|
|
396 |
|
|
|
397 |
//
|
|
|
398 |
// We found two circles that need a horizontal line to connect them
|
|
|
399 |
// Print it!
|
|
|
400 |
//
|
|
|
401 |
sx = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
|
|
|
402 |
ex = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
|
|
|
403 |
|
|
|
404 |
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
405 |
sy = ey = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
406 |
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
407 |
|
|
|
408 |
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
|
|
|
409 |
|
|
|
410 |
if (g26_debug_flag) {
|
|
|
411 |
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
|
|
412 |
SERIAL_ECHOPAIR(", sy=", sy);
|
|
|
413 |
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
|
|
414 |
SERIAL_ECHOPAIR(", ey=", ey);
|
|
|
415 |
SERIAL_CHAR(')');
|
|
|
416 |
SERIAL_EOL();
|
|
|
417 |
//debug_current_and_destination(PSTR("Connecting horizontal line."));
|
|
|
418 |
}
|
|
|
419 |
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
|
|
|
420 |
}
|
|
|
421 |
bitmap_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
|
|
|
422 |
}
|
|
|
423 |
}
|
|
|
424 |
|
|
|
425 |
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
|
|
|
426 |
// This is already a half circle because we are at the edge of the bed.
|
|
|
427 |
|
|
|
428 |
if (is_bitmap_set(circle_flags, i, j) && is_bitmap_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
|
|
|
429 |
if (!is_bitmap_set( vertical_mesh_line_flags, i, j)) {
|
|
|
430 |
//
|
|
|
431 |
// We found two circles that need a vertical line to connect them
|
|
|
432 |
// Print it!
|
|
|
433 |
//
|
|
|
434 |
sy = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
|
|
|
435 |
ey = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
|
|
|
436 |
|
|
|
437 |
sx = ex = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
438 |
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
439 |
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
440 |
|
|
|
441 |
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
|
|
|
442 |
|
|
|
443 |
if (g26_debug_flag) {
|
|
|
444 |
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
|
|
|
445 |
SERIAL_ECHOPAIR(", sy=", sy);
|
|
|
446 |
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
|
|
447 |
SERIAL_ECHOPAIR(", ey=", ey);
|
|
|
448 |
SERIAL_CHAR(')');
|
|
|
449 |
SERIAL_EOL();
|
|
|
450 |
|
|
|
451 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
452 |
debug_current_and_destination(PSTR("Connecting vertical line."));
|
|
|
453 |
#endif
|
|
|
454 |
}
|
|
|
455 |
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
|
|
|
456 |
}
|
|
|
457 |
bitmap_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
|
|
|
458 |
}
|
|
|
459 |
}
|
|
|
460 |
}
|
|
|
461 |
}
|
|
|
462 |
}
|
|
|
463 |
}
|
|
|
464 |
return false;
|
|
|
465 |
}
|
|
|
466 |
|
|
|
467 |
/**
|
|
|
468 |
* Turn on the bed and nozzle heat and
|
|
|
469 |
* wait for them to get up to temperature.
|
|
|
470 |
*/
|
|
|
471 |
inline bool turn_on_heaters() {
|
|
|
472 |
millis_t next = millis() + 5000UL;
|
|
|
473 |
#if HAS_HEATED_BED
|
|
|
474 |
#if ENABLED(ULTRA_LCD)
|
|
|
475 |
if (g26_bed_temp > 25) {
|
|
|
476 |
lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
|
|
|
477 |
lcd_quick_feedback(true);
|
|
|
478 |
#if ENABLED(ULTIPANEL)
|
|
|
479 |
lcd_external_control = true;
|
|
|
480 |
#endif
|
|
|
481 |
#endif
|
|
|
482 |
thermalManager.setTargetBed(g26_bed_temp);
|
|
|
483 |
while (ABS(thermalManager.degBed() - g26_bed_temp) > 3) {
|
|
|
484 |
|
|
|
485 |
#if ENABLED(ULTIPANEL)
|
|
|
486 |
if (is_lcd_clicked()) return exit_from_g26();
|
|
|
487 |
#endif
|
|
|
488 |
|
|
|
489 |
if (ELAPSED(millis(), next)) {
|
|
|
490 |
next = millis() + 5000UL;
|
|
|
491 |
thermalManager.print_heaterstates();
|
|
|
492 |
SERIAL_EOL();
|
|
|
493 |
}
|
|
|
494 |
idle();
|
|
|
495 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
496 |
}
|
|
|
497 |
#if ENABLED(ULTRA_LCD)
|
|
|
498 |
}
|
|
|
499 |
lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
|
|
|
500 |
lcd_quick_feedback(true);
|
|
|
501 |
#endif
|
|
|
502 |
#endif
|
|
|
503 |
|
|
|
504 |
// Start heating the nozzle and wait for it to reach temperature.
|
|
|
505 |
thermalManager.setTargetHotend(g26_hotend_temp, 0);
|
|
|
506 |
while (ABS(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
|
|
|
507 |
|
|
|
508 |
#if ENABLED(ULTIPANEL)
|
|
|
509 |
if (is_lcd_clicked()) return exit_from_g26();
|
|
|
510 |
#endif
|
|
|
511 |
|
|
|
512 |
if (ELAPSED(millis(), next)) {
|
|
|
513 |
next = millis() + 5000UL;
|
|
|
514 |
thermalManager.print_heaterstates();
|
|
|
515 |
SERIAL_EOL();
|
|
|
516 |
}
|
|
|
517 |
idle();
|
|
|
518 |
|
|
|
519 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
520 |
}
|
|
|
521 |
#if ENABLED(ULTRA_LCD)
|
|
|
522 |
lcd_reset_status();
|
|
|
523 |
lcd_quick_feedback(true);
|
|
|
524 |
#endif
|
|
|
525 |
|
|
|
526 |
return G26_OK;
|
|
|
527 |
}
|
|
|
528 |
|
|
|
529 |
float valid_trig_angle(float d) {
|
|
|
530 |
while (d > 360.0) d -= 360.0;
|
|
|
531 |
while (d < 0.0) d += 360.0;
|
|
|
532 |
return d;
|
|
|
533 |
}
|
|
|
534 |
|
|
|
535 |
/**
|
|
|
536 |
* G26: Mesh Validation Pattern generation.
|
|
|
537 |
*
|
|
|
538 |
* Used to interactively edit the mesh by placing the
|
|
|
539 |
* nozzle in a problem area and doing a G29 P4 R command.
|
|
|
540 |
*
|
|
|
541 |
* Parameters:
|
|
|
542 |
*
|
|
|
543 |
* B Bed Temperature
|
|
|
544 |
* C Continue from the Closest mesh point
|
|
|
545 |
* D Disable leveling before starting
|
|
|
546 |
* F Filament diameter
|
|
|
547 |
* H Hotend Temperature
|
|
|
548 |
* K Keep heaters on when completed
|
|
|
549 |
* L Layer Height
|
|
|
550 |
* O Ooze extrusion length
|
|
|
551 |
* P Prime length
|
|
|
552 |
* Q Retraction multiplier
|
|
|
553 |
* R Repetitions (number of grid points)
|
|
|
554 |
* S Nozzle Size (diameter) in mm
|
|
|
555 |
* U Random deviation (50 if no value given)
|
|
|
556 |
* X X position
|
|
|
557 |
* Y Y position
|
|
|
558 |
*/
|
|
|
559 |
void gcode_G26() {
|
|
|
560 |
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
|
|
|
561 |
|
|
|
562 |
// Don't allow Mesh Validation without homing first,
|
|
|
563 |
// or if the parameter parsing did not go OK, abort
|
|
|
564 |
if (axis_unhomed_error()) return;
|
|
|
565 |
|
|
|
566 |
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
|
|
567 |
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
|
|
|
568 |
g26_layer_height = MESH_TEST_LAYER_HEIGHT;
|
|
|
569 |
g26_prime_length = PRIME_LENGTH;
|
|
|
570 |
g26_bed_temp = MESH_TEST_BED_TEMP;
|
|
|
571 |
g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
|
|
|
572 |
g26_prime_flag = 0;
|
|
|
573 |
|
|
|
574 |
float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
|
|
|
575 |
g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
|
|
|
576 |
g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
|
|
|
577 |
|
|
|
578 |
bool g26_continue_with_closest = parser.boolval('C'),
|
|
|
579 |
g26_keep_heaters_on = parser.boolval('K');
|
|
|
580 |
|
|
|
581 |
if (parser.seenval('B')) {
|
|
|
582 |
g26_bed_temp = parser.value_celsius();
|
|
|
583 |
if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, 140)) {
|
|
|
584 |
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible (40-140C).");
|
|
|
585 |
return;
|
|
|
586 |
}
|
|
|
587 |
}
|
|
|
588 |
|
|
|
589 |
if (parser.seenval('L')) {
|
|
|
590 |
g26_layer_height = parser.value_linear_units();
|
|
|
591 |
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
|
|
|
592 |
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
|
|
|
593 |
return;
|
|
|
594 |
}
|
|
|
595 |
}
|
|
|
596 |
|
|
|
597 |
if (parser.seen('Q')) {
|
|
|
598 |
if (parser.has_value()) {
|
|
|
599 |
g26_retraction_multiplier = parser.value_float();
|
|
|
600 |
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
|
|
|
601 |
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
|
|
|
602 |
return;
|
|
|
603 |
}
|
|
|
604 |
}
|
|
|
605 |
else {
|
|
|
606 |
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
|
|
|
607 |
return;
|
|
|
608 |
}
|
|
|
609 |
}
|
|
|
610 |
|
|
|
611 |
if (parser.seenval('S')) {
|
|
|
612 |
g26_nozzle = parser.value_float();
|
|
|
613 |
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
|
|
|
614 |
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
|
|
|
615 |
return;
|
|
|
616 |
}
|
|
|
617 |
}
|
|
|
618 |
|
|
|
619 |
if (parser.seen('P')) {
|
|
|
620 |
if (!parser.has_value()) {
|
|
|
621 |
#if ENABLED(ULTIPANEL)
|
|
|
622 |
g26_prime_flag = -1;
|
|
|
623 |
#else
|
|
|
624 |
SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
|
|
|
625 |
return;
|
|
|
626 |
#endif
|
|
|
627 |
}
|
|
|
628 |
else {
|
|
|
629 |
g26_prime_flag++;
|
|
|
630 |
g26_prime_length = parser.value_linear_units();
|
|
|
631 |
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
|
|
|
632 |
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
|
|
|
633 |
return;
|
|
|
634 |
}
|
|
|
635 |
}
|
|
|
636 |
}
|
|
|
637 |
|
|
|
638 |
if (parser.seenval('F')) {
|
|
|
639 |
g26_filament_diameter = parser.value_linear_units();
|
|
|
640 |
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
|
|
|
641 |
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
|
|
|
642 |
return;
|
|
|
643 |
}
|
|
|
644 |
}
|
|
|
645 |
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
|
|
|
646 |
// scale up or down the length needed to get the
|
|
|
647 |
// same volume of filament
|
|
|
648 |
|
|
|
649 |
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
|
|
|
650 |
|
|
|
651 |
if (parser.seenval('H')) {
|
|
|
652 |
g26_hotend_temp = parser.value_celsius();
|
|
|
653 |
if (!WITHIN(g26_hotend_temp, 165, 280)) {
|
|
|
654 |
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
|
|
|
655 |
return;
|
|
|
656 |
}
|
|
|
657 |
}
|
|
|
658 |
|
|
|
659 |
if (parser.seen('U')) {
|
|
|
660 |
randomSeed(millis());
|
|
|
661 |
// This setting will persist for the next G26
|
|
|
662 |
random_deviation = parser.has_value() ? parser.value_float() : 50.0;
|
|
|
663 |
}
|
|
|
664 |
|
|
|
665 |
int16_t g26_repeats;
|
|
|
666 |
#if ENABLED(ULTIPANEL)
|
|
|
667 |
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
|
|
|
668 |
#else
|
|
|
669 |
if (!parser.seen('R')) {
|
|
|
670 |
SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
|
|
|
671 |
return;
|
|
|
672 |
}
|
|
|
673 |
else
|
|
|
674 |
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
|
|
|
675 |
#endif
|
|
|
676 |
if (g26_repeats < 1) {
|
|
|
677 |
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
|
|
|
678 |
return;
|
|
|
679 |
}
|
|
|
680 |
|
|
|
681 |
g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS];
|
|
|
682 |
g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
|
|
|
683 |
if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
|
|
|
684 |
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
|
|
|
685 |
return;
|
|
|
686 |
}
|
|
|
687 |
|
|
|
688 |
/**
|
|
|
689 |
* Wait until all parameters are verified before altering the state!
|
|
|
690 |
*/
|
|
|
691 |
set_bed_leveling_enabled(!parser.seen('D'));
|
|
|
692 |
|
|
|
693 |
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
|
|
|
694 |
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
695 |
set_current_from_destination();
|
|
|
696 |
}
|
|
|
697 |
|
|
|
698 |
if (turn_on_heaters() != G26_OK) goto LEAVE;
|
|
|
699 |
|
|
|
700 |
current_position[E_CART] = 0.0;
|
|
|
701 |
sync_plan_position_e();
|
|
|
702 |
|
|
|
703 |
if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
|
|
|
704 |
|
|
|
705 |
/**
|
|
|
706 |
* Bed is preheated
|
|
|
707 |
*
|
|
|
708 |
* Nozzle is at temperature
|
|
|
709 |
*
|
|
|
710 |
* Filament is primed!
|
|
|
711 |
*
|
|
|
712 |
* It's "Show Time" !!!
|
|
|
713 |
*/
|
|
|
714 |
|
|
|
715 |
ZERO(circle_flags);
|
|
|
716 |
ZERO(horizontal_mesh_line_flags);
|
|
|
717 |
ZERO(vertical_mesh_line_flags);
|
|
|
718 |
|
|
|
719 |
// Move nozzle to the specified height for the first layer
|
|
|
720 |
set_destination_from_current();
|
|
|
721 |
destination[Z_AXIS] = g26_layer_height;
|
|
|
722 |
move_to(destination, 0.0);
|
|
|
723 |
move_to(destination, g26_ooze_amount);
|
|
|
724 |
|
|
|
725 |
#if ENABLED(ULTIPANEL)
|
|
|
726 |
lcd_external_control = true;
|
|
|
727 |
#endif
|
|
|
728 |
|
|
|
729 |
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
|
|
|
730 |
|
|
|
731 |
#if DISABLED(ARC_SUPPORT)
|
|
|
732 |
|
|
|
733 |
/**
|
|
|
734 |
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
|
|
|
735 |
*/
|
|
|
736 |
#define A_INT 30
|
|
|
737 |
#define _ANGS (360 / A_INT)
|
|
|
738 |
#define A_CNT (_ANGS / 2)
|
|
|
739 |
#define _IND(A) ((A + _ANGS * 8) % _ANGS)
|
|
|
740 |
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
|
|
|
741 |
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
|
|
|
742 |
#if A_CNT & 1
|
|
|
743 |
#error "A_CNT must be a positive value. Please change A_INT."
|
|
|
744 |
#endif
|
|
|
745 |
float trig_table[A_CNT];
|
|
|
746 |
for (uint8_t i = 0; i < A_CNT; i++)
|
|
|
747 |
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
|
|
|
748 |
|
|
|
749 |
#endif // !ARC_SUPPORT
|
|
|
750 |
|
|
|
751 |
mesh_index_pair location;
|
|
|
752 |
do {
|
|
|
753 |
location = g26_continue_with_closest
|
|
|
754 |
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
|
|
|
755 |
: find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
|
|
|
756 |
|
|
|
757 |
if (location.x_index >= 0 && location.y_index >= 0) {
|
|
|
758 |
const float circle_x = _GET_MESH_X(location.x_index),
|
|
|
759 |
circle_y = _GET_MESH_Y(location.y_index);
|
|
|
760 |
|
|
|
761 |
// If this mesh location is outside the printable_radius, skip it.
|
|
|
762 |
if (!position_is_reachable(circle_x, circle_y)) continue;
|
|
|
763 |
|
|
|
764 |
// Determine where to start and end the circle,
|
|
|
765 |
// which is always drawn counter-clockwise.
|
|
|
766 |
const uint8_t xi = location.x_index, yi = location.y_index;
|
|
|
767 |
const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1;
|
|
|
768 |
|
|
|
769 |
#if ENABLED(ARC_SUPPORT)
|
|
|
770 |
|
|
|
771 |
#define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
|
|
|
772 |
float sx = circle_x + INTERSECTION_CIRCLE_RADIUS, // default to full circle
|
|
|
773 |
ex = circle_x + INTERSECTION_CIRCLE_RADIUS,
|
|
|
774 |
sy = circle_y, ey = circle_y,
|
|
|
775 |
arc_length = ARC_LENGTH(4);
|
|
|
776 |
|
|
|
777 |
// Figure out where to start and end the arc - we always print counterclockwise
|
|
|
778 |
if (xi == 0) { // left edge
|
|
|
779 |
sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
|
|
|
780 |
ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
|
|
|
781 |
sy = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
|
|
|
782 |
ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
|
|
|
783 |
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
|
|
|
784 |
}
|
|
|
785 |
else if (r) { // right edge
|
|
|
786 |
sx = b ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
|
|
|
787 |
ex = f ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
|
|
|
788 |
sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
|
|
|
789 |
ey = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
|
|
|
790 |
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
|
|
|
791 |
}
|
|
|
792 |
else if (f) {
|
|
|
793 |
sx = circle_x + INTERSECTION_CIRCLE_RADIUS;
|
|
|
794 |
ex = circle_x - INTERSECTION_CIRCLE_RADIUS;
|
|
|
795 |
sy = ey = circle_y;
|
|
|
796 |
arc_length = ARC_LENGTH(2);
|
|
|
797 |
}
|
|
|
798 |
else if (b) {
|
|
|
799 |
sx = circle_x - INTERSECTION_CIRCLE_RADIUS;
|
|
|
800 |
ex = circle_x + INTERSECTION_CIRCLE_RADIUS;
|
|
|
801 |
sy = ey = circle_y;
|
|
|
802 |
arc_length = ARC_LENGTH(2);
|
|
|
803 |
}
|
|
|
804 |
const float arc_offset[2] = {
|
|
|
805 |
circle_x - sx,
|
|
|
806 |
circle_y - sy
|
|
|
807 |
};
|
|
|
808 |
|
|
|
809 |
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual circle
|
|
|
810 |
dy_s = current_position[Y_AXIS] - sy,
|
|
|
811 |
dist_start = HYPOT2(dx_s, dy_s);
|
|
|
812 |
const float endpoint[XYZE] = {
|
|
|
813 |
ex, ey,
|
|
|
814 |
g26_layer_height,
|
|
|
815 |
current_position[E_CART] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
|
|
|
816 |
};
|
|
|
817 |
|
|
|
818 |
if (dist_start > 2.0) {
|
|
|
819 |
retract_filament(destination);
|
|
|
820 |
//todo: parameterize the bump height with a define
|
|
|
821 |
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
|
|
|
822 |
move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
|
|
|
823 |
}
|
|
|
824 |
|
|
|
825 |
move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump
|
|
|
826 |
|
|
|
827 |
recover_filament(destination);
|
|
|
828 |
const float save_feedrate = feedrate_mm_s;
|
|
|
829 |
feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0;
|
|
|
830 |
plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
|
|
|
831 |
feedrate_mm_s = save_feedrate;
|
|
|
832 |
set_destination_from_current();
|
|
|
833 |
#if ENABLED(ULTIPANEL)
|
|
|
834 |
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
|
|
835 |
#endif
|
|
|
836 |
|
|
|
837 |
#else // !ARC_SUPPORT
|
|
|
838 |
|
|
|
839 |
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
|
|
|
840 |
if (xi == 0) { // Left edge? Just right half.
|
|
|
841 |
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
|
|
|
842 |
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
|
|
|
843 |
}
|
|
|
844 |
else if (r) { // Right edge? Just left half.
|
|
|
845 |
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
|
|
|
846 |
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
|
|
|
847 |
}
|
|
|
848 |
else if (f) { // Front edge? Just back half.
|
|
|
849 |
start_ind = 0; // 03:00
|
|
|
850 |
end_ind = 5; // 09:00
|
|
|
851 |
}
|
|
|
852 |
else if (b) { // Back edge? Just front half.
|
|
|
853 |
start_ind = 6; // 09:00
|
|
|
854 |
end_ind = 11; // 03:00
|
|
|
855 |
}
|
|
|
856 |
|
|
|
857 |
for (int8_t ind = start_ind; ind <= end_ind; ind++) {
|
|
|
858 |
|
|
|
859 |
#if ENABLED(ULTIPANEL)
|
|
|
860 |
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
|
|
861 |
#endif
|
|
|
862 |
|
|
|
863 |
float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry
|
|
|
864 |
ry = circle_y + _SIN(ind),
|
|
|
865 |
xe = circle_x + _COS(ind + 1),
|
|
|
866 |
ye = circle_y + _SIN(ind + 1);
|
|
|
867 |
|
|
|
868 |
#if IS_KINEMATIC
|
|
|
869 |
// Check to make sure this segment is entirely on the bed, skip if not.
|
|
|
870 |
if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
|
|
|
871 |
#else // not, we need to skip
|
|
|
872 |
rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
|
|
873 |
ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
874 |
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
875 |
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
876 |
#endif
|
|
|
877 |
|
|
|
878 |
print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height);
|
|
|
879 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
880 |
}
|
|
|
881 |
|
|
|
882 |
#endif // !ARC_SUPPORT
|
|
|
883 |
|
|
|
884 |
if (look_for_lines_to_connect()) goto LEAVE;
|
|
|
885 |
}
|
|
|
886 |
|
|
|
887 |
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
888 |
|
|
|
889 |
} while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
|
|
|
890 |
|
|
|
891 |
LEAVE:
|
|
|
892 |
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
|
|
|
893 |
|
|
|
894 |
retract_filament(destination);
|
|
|
895 |
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
|
|
|
896 |
|
|
|
897 |
//debug_current_and_destination(PSTR("ready to do Z-Raise."));
|
|
|
898 |
move_to(destination, 0); // Raise the nozzle
|
|
|
899 |
//debug_current_and_destination(PSTR("done doing Z-Raise."));
|
|
|
900 |
|
|
|
901 |
destination[X_AXIS] = g26_x_pos; // Move back to the starting position
|
|
|
902 |
destination[Y_AXIS] = g26_y_pos;
|
|
|
903 |
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
|
|
|
904 |
|
|
|
905 |
move_to(destination, 0); // Move back to the starting position
|
|
|
906 |
//debug_current_and_destination(PSTR("done doing X/Y move."));
|
|
|
907 |
|
|
|
908 |
#if ENABLED(ULTIPANEL)
|
|
|
909 |
lcd_external_control = false; // Give back control of the LCD Panel!
|
|
|
910 |
#endif
|
|
|
911 |
|
|
|
912 |
if (!g26_keep_heaters_on) {
|
|
|
913 |
#if HAS_HEATED_BED
|
|
|
914 |
thermalManager.setTargetBed(0);
|
|
|
915 |
#endif
|
|
|
916 |
thermalManager.setTargetHotend(0, 0);
|
|
|
917 |
}
|
|
|
918 |
}
|
|
|
919 |
|
|
|
920 |
#endif // G26_MESH_VALIDATION
|