1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* planner.h
|
|
|
25 |
*
|
|
|
26 |
* Buffer movement commands and manage the acceleration profile plan
|
|
|
27 |
*
|
|
|
28 |
* Derived from Grbl
|
|
|
29 |
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
30 |
*/
|
|
|
31 |
|
|
|
32 |
#ifndef PLANNER_H
|
|
|
33 |
#define PLANNER_H
|
|
|
34 |
|
|
|
35 |
#include "types.h"
|
|
|
36 |
#include "enum.h"
|
|
|
37 |
#include "Marlin.h"
|
|
|
38 |
|
|
|
39 |
#if ABL_PLANAR
|
|
|
40 |
#include "vector_3.h"
|
|
|
41 |
#endif
|
|
|
42 |
|
|
|
43 |
enum BlockFlagBit : char {
|
|
|
44 |
// Recalculate trapezoids on entry junction. For optimization.
|
|
|
45 |
BLOCK_BIT_RECALCULATE,
|
|
|
46 |
|
|
|
47 |
// Nominal speed always reached.
|
|
|
48 |
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
|
|
|
49 |
// from a safe speed (in consideration of jerking from zero speed).
|
|
|
50 |
BLOCK_BIT_NOMINAL_LENGTH,
|
|
|
51 |
|
|
|
52 |
// The block is segment 2+ of a longer move
|
|
|
53 |
BLOCK_BIT_CONTINUED,
|
|
|
54 |
|
|
|
55 |
// Sync the stepper counts from the block
|
|
|
56 |
BLOCK_BIT_SYNC_POSITION
|
|
|
57 |
};
|
|
|
58 |
|
|
|
59 |
enum BlockFlag : char {
|
|
|
60 |
BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
|
|
|
61 |
BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
|
|
|
62 |
BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED),
|
|
|
63 |
BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
|
|
|
64 |
};
|
|
|
65 |
|
|
|
66 |
/**
|
|
|
67 |
* struct block_t
|
|
|
68 |
*
|
|
|
69 |
* A single entry in the planner buffer.
|
|
|
70 |
* Tracks linear movement over multiple axes.
|
|
|
71 |
*
|
|
|
72 |
* The "nominal" values are as-specified by gcode, and
|
|
|
73 |
* may never actually be reached due to acceleration limits.
|
|
|
74 |
*/
|
|
|
75 |
typedef struct {
|
|
|
76 |
|
|
|
77 |
volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
|
|
|
78 |
|
|
|
79 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
80 |
bool count_it;
|
|
|
81 |
#endif
|
|
|
82 |
|
|
|
83 |
// Fields used by the motion planner to manage acceleration
|
|
|
84 |
float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
|
|
|
85 |
entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
|
|
|
86 |
max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
|
|
|
87 |
millimeters, // The total travel of this block in mm
|
|
|
88 |
acceleration; // acceleration mm/sec^2
|
|
|
89 |
|
|
|
90 |
union {
|
|
|
91 |
// Data used by all move blocks
|
|
|
92 |
struct {
|
|
|
93 |
// Fields used by the Bresenham algorithm for tracing the line
|
|
|
94 |
uint32_t steps[NUM_AXIS]; // Step count along each axis
|
|
|
95 |
};
|
|
|
96 |
// Data used by all sync blocks
|
|
|
97 |
struct {
|
|
|
98 |
int32_t position[NUM_AXIS]; // New position to force when this sync block is executed
|
|
|
99 |
};
|
|
|
100 |
};
|
|
|
101 |
uint32_t step_event_count; // The number of step events required to complete this block
|
|
|
102 |
|
|
|
103 |
uint8_t active_extruder; // The extruder to move (if E move)
|
|
|
104 |
|
|
|
105 |
#if ENABLED(MIXING_EXTRUDER)
|
|
|
106 |
uint32_t mix_steps[MIXING_STEPPERS]; // Scaled steps[E_AXIS] for the mixing steppers
|
|
|
107 |
#endif
|
|
|
108 |
|
|
|
109 |
// Settings for the trapezoid generator
|
|
|
110 |
uint32_t accelerate_until, // The index of the step event on which to stop acceleration
|
|
|
111 |
decelerate_after; // The index of the step event on which to start decelerating
|
|
|
112 |
|
|
|
113 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
114 |
uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
|
|
|
115 |
acceleration_time, // Acceleration time and deceleration time in STEP timer counts
|
|
|
116 |
deceleration_time,
|
|
|
117 |
acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
|
|
|
118 |
deceleration_time_inverse;
|
|
|
119 |
#else
|
|
|
120 |
uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
|
|
|
121 |
#endif
|
|
|
122 |
|
|
|
123 |
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
|
|
124 |
|
|
|
125 |
// Advance extrusion
|
|
|
126 |
#if ENABLED(LIN_ADVANCE)
|
|
|
127 |
bool use_advance_lead;
|
|
|
128 |
uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
|
|
|
129 |
max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
|
|
|
130 |
final_adv_steps; // advance steps due to exit speed
|
|
|
131 |
float e_D_ratio;
|
|
|
132 |
#endif
|
|
|
133 |
|
|
|
134 |
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
|
|
|
135 |
initial_rate, // The jerk-adjusted step rate at start of block
|
|
|
136 |
final_rate, // The minimal rate at exit
|
|
|
137 |
acceleration_steps_per_s2; // acceleration steps/sec^2
|
|
|
138 |
|
|
|
139 |
#if FAN_COUNT > 0
|
|
|
140 |
uint16_t fan_speed[FAN_COUNT];
|
|
|
141 |
#endif
|
|
|
142 |
|
|
|
143 |
#if ENABLED(BARICUDA)
|
|
|
144 |
uint8_t valve_pressure, e_to_p_pressure;
|
|
|
145 |
#endif
|
|
|
146 |
|
|
|
147 |
uint32_t segment_time_us;
|
|
|
148 |
|
|
|
149 |
} block_t;
|
|
|
150 |
|
|
|
151 |
#define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || HAS_FEEDRATE_SCALING)
|
|
|
152 |
|
|
|
153 |
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
|
|
|
154 |
|
|
|
155 |
class Planner {
|
|
|
156 |
public:
|
|
|
157 |
|
|
|
158 |
/**
|
|
|
159 |
* The move buffer, calculated in stepper steps
|
|
|
160 |
*
|
|
|
161 |
* block_buffer is a ring buffer...
|
|
|
162 |
*
|
|
|
163 |
* head,tail : indexes for write,read
|
|
|
164 |
* head==tail : the buffer is empty
|
|
|
165 |
* head!=tail : blocks are in the buffer
|
|
|
166 |
* head==(tail-1)%size : the buffer is full
|
|
|
167 |
*
|
|
|
168 |
* Writer of head is Planner::buffer_segment().
|
|
|
169 |
* Reader of tail is Stepper::isr(). Always consider tail busy / read-only
|
|
|
170 |
*/
|
|
|
171 |
static block_t block_buffer[BLOCK_BUFFER_SIZE];
|
|
|
172 |
static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
|
|
|
173 |
block_buffer_nonbusy, // Index of the first non busy block
|
|
|
174 |
block_buffer_planned, // Index of the optimally planned block
|
|
|
175 |
block_buffer_tail; // Index of the busy block, if any
|
|
|
176 |
static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
|
|
|
177 |
static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
|
|
|
178 |
|
|
|
179 |
|
|
|
180 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
181 |
static uint8_t last_extruder; // Respond to extruder change
|
|
|
182 |
#endif
|
|
|
183 |
|
|
|
184 |
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
|
|
185 |
|
|
|
186 |
static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
|
|
|
187 |
|
|
|
188 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
189 |
static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
|
|
190 |
volumetric_area_nominal, // Nominal cross-sectional area
|
|
|
191 |
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
|
|
192 |
// May be auto-adjusted by a filament width sensor
|
|
|
193 |
#endif
|
|
|
194 |
|
|
|
195 |
static uint32_t max_acceleration_mm_per_s2[NUM_AXIS_N], // (mm/s^2) M201 XYZE
|
|
|
196 |
max_acceleration_steps_per_s2[NUM_AXIS_N], // (steps/s^2) Derived from mm_per_s2
|
|
|
197 |
min_segment_time_us; // (µs) M205 Q
|
|
|
198 |
static float max_feedrate_mm_s[NUM_AXIS_N], // (mm/s) M203 XYZE - Max speeds
|
|
|
199 |
axis_steps_per_mm[NUM_AXIS_N], // (steps) M92 XYZE - Steps per millimeter
|
|
|
200 |
steps_to_mm[NUM_AXIS_N], // (mm) Millimeters per step
|
|
|
201 |
min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
|
|
|
202 |
acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
|
|
|
203 |
retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
|
|
|
204 |
travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
|
|
|
205 |
min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
|
|
|
206 |
|
|
|
207 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
208 |
static float junction_deviation_mm; // (mm) M205 J
|
|
|
209 |
#if ENABLED(LIN_ADVANCE)
|
|
|
210 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
211 |
static float max_e_jerk[EXTRUDERS]; // Calculated from junction_deviation_mm
|
|
|
212 |
#else
|
|
|
213 |
static float max_e_jerk;
|
|
|
214 |
#endif
|
|
|
215 |
#endif
|
|
|
216 |
#else
|
|
|
217 |
static float max_jerk[NUM_AXIS]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
|
|
|
218 |
#endif
|
|
|
219 |
|
|
|
220 |
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
|
|
|
221 |
/*
|
|
|
222 |
* Parameters for calculating target[]
|
|
|
223 |
* See buildup compensation theory:
|
|
|
224 |
* https://vitana.se/opr3d/tbear/2017.html#hangprinter_project_29
|
|
|
225 |
*/
|
|
|
226 |
static float k0[MOV_AXIS],
|
|
|
227 |
k1[MOV_AXIS],
|
|
|
228 |
k2[MOV_AXIS],
|
|
|
229 |
sqrtk1[MOV_AXIS];
|
|
|
230 |
#endif
|
|
|
231 |
|
|
|
232 |
#if HAS_LEVELING
|
|
|
233 |
static bool leveling_active; // Flag that bed leveling is enabled
|
|
|
234 |
#if ABL_PLANAR
|
|
|
235 |
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
|
|
236 |
#endif
|
|
|
237 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
238 |
static float z_fade_height, inverse_z_fade_height;
|
|
|
239 |
#endif
|
|
|
240 |
#else
|
|
|
241 |
static constexpr bool leveling_active = false;
|
|
|
242 |
#endif
|
|
|
243 |
|
|
|
244 |
#if ENABLED(LIN_ADVANCE)
|
|
|
245 |
static float extruder_advance_K;
|
|
|
246 |
#endif
|
|
|
247 |
|
|
|
248 |
#if HAS_POSITION_FLOAT
|
|
|
249 |
static float position_float[NUM_AXIS];
|
|
|
250 |
#endif
|
|
|
251 |
|
|
|
252 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
253 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
254 |
static float xy_skew_factor;
|
|
|
255 |
#else
|
|
|
256 |
static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
|
|
|
257 |
#endif
|
|
|
258 |
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
259 |
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
260 |
static float xz_skew_factor, yz_skew_factor;
|
|
|
261 |
#else
|
|
|
262 |
static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
|
|
|
263 |
#endif
|
|
|
264 |
#else
|
|
|
265 |
static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
|
|
|
266 |
#endif
|
|
|
267 |
#endif
|
|
|
268 |
|
|
|
269 |
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
270 |
static bool abort_on_endstop_hit;
|
|
|
271 |
#endif
|
|
|
272 |
|
|
|
273 |
private:
|
|
|
274 |
|
|
|
275 |
/**
|
|
|
276 |
* The current position of the tool in absolute steps
|
|
|
277 |
* Recalculated if any axis_steps_per_mm are changed by gcode
|
|
|
278 |
*/
|
|
|
279 |
static int32_t position[NUM_AXIS];
|
|
|
280 |
|
|
|
281 |
/**
|
|
|
282 |
* Speed of previous path line segment
|
|
|
283 |
*/
|
|
|
284 |
static float previous_speed[NUM_AXIS];
|
|
|
285 |
|
|
|
286 |
/**
|
|
|
287 |
* Nominal speed of previous path line segment (mm/s)^2
|
|
|
288 |
*/
|
|
|
289 |
static float previous_nominal_speed_sqr;
|
|
|
290 |
|
|
|
291 |
/**
|
|
|
292 |
* Limit where 64bit math is necessary for acceleration calculation
|
|
|
293 |
*/
|
|
|
294 |
static uint32_t cutoff_long;
|
|
|
295 |
|
|
|
296 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
297 |
static float last_fade_z;
|
|
|
298 |
#endif
|
|
|
299 |
|
|
|
300 |
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
|
|
|
301 |
/**
|
|
|
302 |
* Counters to manage disabling inactive extruders
|
|
|
303 |
*/
|
|
|
304 |
static uint8_t g_uc_extruder_last_move[EXTRUDERS];
|
|
|
305 |
#endif // DISABLE_INACTIVE_EXTRUDER
|
|
|
306 |
|
|
|
307 |
#ifdef XY_FREQUENCY_LIMIT
|
|
|
308 |
// Used for the frequency limit
|
|
|
309 |
#define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
|
|
|
310 |
// Old direction bits. Used for speed calculations
|
|
|
311 |
static unsigned char old_direction_bits;
|
|
|
312 |
// Segment times (in µs). Used for speed calculations
|
|
|
313 |
static uint32_t axis_segment_time_us[2][3];
|
|
|
314 |
#endif
|
|
|
315 |
|
|
|
316 |
#if ENABLED(ULTRA_LCD)
|
|
|
317 |
volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
|
|
|
318 |
#endif
|
|
|
319 |
|
|
|
320 |
public:
|
|
|
321 |
|
|
|
322 |
/**
|
|
|
323 |
* Instance Methods
|
|
|
324 |
*/
|
|
|
325 |
|
|
|
326 |
Planner();
|
|
|
327 |
|
|
|
328 |
void init();
|
|
|
329 |
|
|
|
330 |
/**
|
|
|
331 |
* Static (class) Methods
|
|
|
332 |
*/
|
|
|
333 |
|
|
|
334 |
static void reset_acceleration_rates();
|
|
|
335 |
static void refresh_positioning();
|
|
|
336 |
|
|
|
337 |
FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
|
|
|
338 |
e_factor[e] = (flow_percentage[e] * 0.01f
|
|
|
339 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
340 |
* volumetric_multiplier[e]
|
|
|
341 |
#endif
|
|
|
342 |
);
|
|
|
343 |
}
|
|
|
344 |
|
|
|
345 |
// Manage fans, paste pressure, etc.
|
|
|
346 |
static void check_axes_activity();
|
|
|
347 |
|
|
|
348 |
// Update multipliers based on new diameter measurements
|
|
|
349 |
static void calculate_volumetric_multipliers();
|
|
|
350 |
|
|
|
351 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
352 |
void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
|
|
|
353 |
#endif
|
|
|
354 |
|
|
|
355 |
#if DISABLED(NO_VOLUMETRICS)
|
|
|
356 |
|
|
|
357 |
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
|
|
|
358 |
filament_size[e] = v;
|
|
|
359 |
// make sure all extruders have some sane value for the filament size
|
|
|
360 |
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
|
|
361 |
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
|
362 |
}
|
|
|
363 |
|
|
|
364 |
#endif
|
|
|
365 |
|
|
|
366 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
367 |
|
|
|
368 |
/**
|
|
|
369 |
* Get the Z leveling fade factor based on the given Z height,
|
|
|
370 |
* re-calculating only when needed.
|
|
|
371 |
*
|
|
|
372 |
* Returns 1.0 if planner.z_fade_height is 0.0.
|
|
|
373 |
* Returns 0.0 if Z is past the specified 'Fade Height'.
|
|
|
374 |
*/
|
|
|
375 |
inline static float fade_scaling_factor_for_z(const float &rz) {
|
|
|
376 |
static float z_fade_factor = 1;
|
|
|
377 |
if (z_fade_height) {
|
|
|
378 |
if (rz >= z_fade_height) return 0;
|
|
|
379 |
if (last_fade_z != rz) {
|
|
|
380 |
last_fade_z = rz;
|
|
|
381 |
z_fade_factor = 1 - rz * inverse_z_fade_height;
|
|
|
382 |
}
|
|
|
383 |
return z_fade_factor;
|
|
|
384 |
}
|
|
|
385 |
return 1;
|
|
|
386 |
}
|
|
|
387 |
|
|
|
388 |
FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
|
|
|
389 |
|
|
|
390 |
FORCE_INLINE static void set_z_fade_height(const float &zfh) {
|
|
|
391 |
z_fade_height = zfh > 0 ? zfh : 0;
|
|
|
392 |
inverse_z_fade_height = RECIPROCAL(z_fade_height);
|
|
|
393 |
force_fade_recalc();
|
|
|
394 |
}
|
|
|
395 |
|
|
|
396 |
FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
|
|
|
397 |
return !z_fade_height || rz < z_fade_height;
|
|
|
398 |
}
|
|
|
399 |
|
|
|
400 |
#else
|
|
|
401 |
|
|
|
402 |
FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
|
|
|
403 |
UNUSED(rz);
|
|
|
404 |
return 1;
|
|
|
405 |
}
|
|
|
406 |
|
|
|
407 |
FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
|
|
|
408 |
|
|
|
409 |
#endif
|
|
|
410 |
|
|
|
411 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
412 |
|
|
|
413 |
FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
|
|
|
414 |
if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
|
|
|
415 |
const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
|
|
|
416 |
sy = cy - cz * yz_skew_factor;
|
|
|
417 |
if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
|
|
|
418 |
cx = sx; cy = sy;
|
|
|
419 |
}
|
|
|
420 |
}
|
|
|
421 |
}
|
|
|
422 |
|
|
|
423 |
FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
|
|
|
424 |
if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
|
|
|
425 |
const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
|
|
|
426 |
sy = cy + cz * yz_skew_factor;
|
|
|
427 |
if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
|
|
|
428 |
cx = sx; cy = sy;
|
|
|
429 |
}
|
|
|
430 |
}
|
|
|
431 |
}
|
|
|
432 |
|
|
|
433 |
#endif // SKEW_CORRECTION
|
|
|
434 |
|
|
|
435 |
#if PLANNER_LEVELING || HAS_UBL_AND_CURVES
|
|
|
436 |
/**
|
|
|
437 |
* Apply leveling to transform a cartesian position
|
|
|
438 |
* as it will be given to the planner and steppers.
|
|
|
439 |
*/
|
|
|
440 |
static void apply_leveling(float &rx, float &ry, float &rz);
|
|
|
441 |
FORCE_INLINE static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
|
|
|
442 |
#endif
|
|
|
443 |
|
|
|
444 |
#if PLANNER_LEVELING
|
|
|
445 |
#define ARG_X float rx
|
|
|
446 |
#define ARG_Y float ry
|
|
|
447 |
#define ARG_Z float rz
|
|
|
448 |
#if ENABLED(HANGPRINTER)
|
|
|
449 |
#define ARG_E1 float re1
|
|
|
450 |
#endif
|
|
|
451 |
static void unapply_leveling(float raw[XYZ]);
|
|
|
452 |
#else
|
|
|
453 |
#define ARG_X const float &rx
|
|
|
454 |
#define ARG_Y const float &ry
|
|
|
455 |
#define ARG_Z const float &rz
|
|
|
456 |
#if ENABLED(HANGPRINTER)
|
|
|
457 |
#define ARG_E1 const float &re1
|
|
|
458 |
#endif
|
|
|
459 |
#endif
|
|
|
460 |
|
|
|
461 |
// Number of moves currently in the planner including the busy block, if any
|
|
|
462 |
FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
|
|
|
463 |
|
|
|
464 |
// Number of nonbusy moves currently in the planner
|
|
|
465 |
FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
|
|
|
466 |
|
|
|
467 |
// Remove all blocks from the buffer
|
|
|
468 |
FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
|
|
|
469 |
|
|
|
470 |
// Check if movement queue is full
|
|
|
471 |
FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
|
|
|
472 |
|
|
|
473 |
// Get count of movement slots free
|
|
|
474 |
FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
|
|
|
475 |
|
|
|
476 |
/**
|
|
|
477 |
* Planner::get_next_free_block
|
|
|
478 |
*
|
|
|
479 |
* - Get the next head indices (passed by reference)
|
|
|
480 |
* - Wait for the number of spaces to open up in the planner
|
|
|
481 |
* - Return the first head block
|
|
|
482 |
*/
|
|
|
483 |
FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
|
|
|
484 |
|
|
|
485 |
// Wait until there are enough slots free
|
|
|
486 |
while (moves_free() < count) { idle(); }
|
|
|
487 |
|
|
|
488 |
// Return the first available block
|
|
|
489 |
next_buffer_head = next_block_index(block_buffer_head);
|
|
|
490 |
return &block_buffer[block_buffer_head];
|
|
|
491 |
}
|
|
|
492 |
|
|
|
493 |
/**
|
|
|
494 |
* Planner::_buffer_steps
|
|
|
495 |
*
|
|
|
496 |
* Add a new linear movement to the buffer (in terms of steps).
|
|
|
497 |
*
|
|
|
498 |
* target - target position in steps units
|
|
|
499 |
* fr_mm_s - (target) speed of the move
|
|
|
500 |
* extruder - target extruder
|
|
|
501 |
* millimeters - the length of the movement, if known
|
|
|
502 |
* count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
|
|
|
503 |
*
|
|
|
504 |
* Returns true if movement was buffered, false otherwise
|
|
|
505 |
*/
|
|
|
506 |
static bool _buffer_steps(const int32_t (&target)[NUM_AXIS]
|
|
|
507 |
#if HAS_POSITION_FLOAT
|
|
|
508 |
, const float (&target_float)[NUM_AXIS]
|
|
|
509 |
#endif
|
|
|
510 |
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
|
|
|
511 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
512 |
, const bool count_it=true
|
|
|
513 |
#endif
|
|
|
514 |
);
|
|
|
515 |
|
|
|
516 |
/**
|
|
|
517 |
* Planner::_populate_block
|
|
|
518 |
*
|
|
|
519 |
* Fills a new linear movement in the block (in terms of steps).
|
|
|
520 |
*
|
|
|
521 |
* target - target position in steps units
|
|
|
522 |
* fr_mm_s - (target) speed of the move
|
|
|
523 |
* extruder - target extruder
|
|
|
524 |
* millimeters - the length of the movement, if known
|
|
|
525 |
* count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
|
|
|
526 |
*
|
|
|
527 |
* Returns true is movement is acceptable, false otherwise
|
|
|
528 |
*/
|
|
|
529 |
static bool _populate_block(block_t * const block, bool split_move,
|
|
|
530 |
const int32_t (&target)[NUM_AXIS]
|
|
|
531 |
#if HAS_POSITION_FLOAT
|
|
|
532 |
, const float (&target_float)[NUM_AXIS]
|
|
|
533 |
#endif
|
|
|
534 |
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
|
|
|
535 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
536 |
, const bool count_it=true
|
|
|
537 |
#endif
|
|
|
538 |
);
|
|
|
539 |
|
|
|
540 |
/**
|
|
|
541 |
* Planner::buffer_sync_block
|
|
|
542 |
* Add a block to the buffer that just updates the position
|
|
|
543 |
*/
|
|
|
544 |
static void buffer_sync_block();
|
|
|
545 |
|
|
|
546 |
/**
|
|
|
547 |
* Planner::buffer_segment
|
|
|
548 |
*
|
|
|
549 |
* Add a new linear movement to the buffer in axis units.
|
|
|
550 |
*
|
|
|
551 |
* Leveling and kinematics should be applied ahead of calling this.
|
|
|
552 |
*
|
|
|
553 |
* a,b,c,e - target positions in mm and/or degrees
|
|
|
554 |
* (a, b, c, d, e for Hangprinter)
|
|
|
555 |
* fr_mm_s - (target) speed of the move
|
|
|
556 |
* extruder - target extruder
|
|
|
557 |
* millimeters - the length of the movement, if known
|
|
|
558 |
* count_it - remember this move in its counters (UNREGISTERED_MOVE_SUPPORT)
|
|
|
559 |
*/
|
|
|
560 |
static bool buffer_segment(const float &a, const float &b, const float &c,
|
|
|
561 |
#if ENABLED(HANGPRINTER)
|
|
|
562 |
const float &d,
|
|
|
563 |
#endif
|
|
|
564 |
const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
|
|
|
565 |
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
|
566 |
, bool count_it=true
|
|
|
567 |
#endif
|
|
|
568 |
);
|
|
|
569 |
|
|
|
570 |
static void _set_position_mm(const float &a, const float &b, const float &c,
|
|
|
571 |
#if ENABLED(HANGPRINTER)
|
|
|
572 |
const float &d,
|
|
|
573 |
#endif
|
|
|
574 |
const float &e
|
|
|
575 |
);
|
|
|
576 |
|
|
|
577 |
/**
|
|
|
578 |
* Add a new linear movement to the buffer.
|
|
|
579 |
* The target is NOT translated to delta/scara
|
|
|
580 |
*
|
|
|
581 |
* Leveling will be applied to input on cartesians.
|
|
|
582 |
* Kinematic machines should call buffer_line_kinematic (for leveled moves).
|
|
|
583 |
* (Cartesians may also call buffer_line_kinematic.)
|
|
|
584 |
*
|
|
|
585 |
* rx,ry,rz,e - target position in mm or degrees
|
|
|
586 |
* (rx, ry, rz, re1 for Hangprinter)
|
|
|
587 |
* fr_mm_s - (target) speed of the move (mm/s)
|
|
|
588 |
* extruder - target extruder
|
|
|
589 |
* millimeters - the length of the movement, if known
|
|
|
590 |
*/
|
|
|
591 |
FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z,
|
|
|
592 |
#if ENABLED(HANGPRINTER)
|
|
|
593 |
ARG_E1,
|
|
|
594 |
#endif
|
|
|
595 |
const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0
|
|
|
596 |
) {
|
|
|
597 |
#if PLANNER_LEVELING && IS_CARTESIAN
|
|
|
598 |
apply_leveling(rx, ry, rz);
|
|
|
599 |
#endif
|
|
|
600 |
return buffer_segment(rx, ry, rz,
|
|
|
601 |
#if ENABLED(HANGPRINTER)
|
|
|
602 |
re1,
|
|
|
603 |
#endif
|
|
|
604 |
e, fr_mm_s, extruder, millimeters
|
|
|
605 |
);
|
|
|
606 |
}
|
|
|
607 |
|
|
|
608 |
/**
|
|
|
609 |
* Add a new linear movement to the buffer.
|
|
|
610 |
* The target is cartesian, it's translated to delta/scara if
|
|
|
611 |
* needed.
|
|
|
612 |
*
|
|
|
613 |
* cart - x,y,z,e CARTESIAN target in mm
|
|
|
614 |
* fr_mm_s - (target) speed of the move (mm/s)
|
|
|
615 |
* extruder - target extruder
|
|
|
616 |
* millimeters - the length of the movement, if known
|
|
|
617 |
*/
|
|
|
618 |
FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
|
|
|
619 |
#if PLANNER_LEVELING
|
|
|
620 |
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
|
|
621 |
apply_leveling(raw);
|
|
|
622 |
#else
|
|
|
623 |
const float (&raw)[XYZE] = cart;
|
|
|
624 |
#endif
|
|
|
625 |
#if IS_KINEMATIC
|
|
|
626 |
inverse_kinematics(raw);
|
|
|
627 |
return buffer_segment(
|
|
|
628 |
#if ENABLED(HANGPRINTER)
|
|
|
629 |
line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS]
|
|
|
630 |
#else
|
|
|
631 |
delta[A_AXIS], delta[B_AXIS], delta[C_AXIS]
|
|
|
632 |
#endif
|
|
|
633 |
, cart[E_CART], fr_mm_s, extruder, millimeters
|
|
|
634 |
);
|
|
|
635 |
#else
|
|
|
636 |
return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_CART], fr_mm_s, extruder, millimeters);
|
|
|
637 |
#endif
|
|
|
638 |
}
|
|
|
639 |
|
|
|
640 |
/**
|
|
|
641 |
* Set the planner.position and individual stepper positions.
|
|
|
642 |
* Used by G92, G28, G29, and other procedures.
|
|
|
643 |
*
|
|
|
644 |
* Multiplies by axis_steps_per_mm[] and does necessary conversion
|
|
|
645 |
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
|
|
|
646 |
*
|
|
|
647 |
* Clears previous speed values.
|
|
|
648 |
*/
|
|
|
649 |
FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z,
|
|
|
650 |
#if ENABLED(HANGPRINTER)
|
|
|
651 |
ARG_E1,
|
|
|
652 |
#endif
|
|
|
653 |
const float &e
|
|
|
654 |
) {
|
|
|
655 |
#if PLANNER_LEVELING && IS_CARTESIAN
|
|
|
656 |
apply_leveling(rx, ry, rz);
|
|
|
657 |
#endif
|
|
|
658 |
_set_position_mm(rx, ry, rz,
|
|
|
659 |
#if ENABLED(HANGPRINTER)
|
|
|
660 |
re1,
|
|
|
661 |
#endif
|
|
|
662 |
e
|
|
|
663 |
);
|
|
|
664 |
}
|
|
|
665 |
static void set_position_mm_kinematic(const float (&cart)[XYZE]);
|
|
|
666 |
static void set_position_mm(const AxisEnum axis, const float &v);
|
|
|
667 |
FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
|
|
|
668 |
FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); }
|
|
|
669 |
|
|
|
670 |
/**
|
|
|
671 |
* Get an axis position according to stepper position(s)
|
|
|
672 |
* For CORE machines apply translation from ABC to XYZ.
|
|
|
673 |
*/
|
|
|
674 |
static float get_axis_position_mm(const AxisEnum axis);
|
|
|
675 |
|
|
|
676 |
// SCARA AB axes are in degrees, not mm
|
|
|
677 |
#if IS_SCARA
|
|
|
678 |
FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
|
|
|
679 |
#endif
|
|
|
680 |
|
|
|
681 |
// Called to force a quick stop of the machine (for example, when an emergency
|
|
|
682 |
// stop is required, or when endstops are hit)
|
|
|
683 |
static void quick_stop();
|
|
|
684 |
|
|
|
685 |
// Called when an endstop is triggered. Causes the machine to stop inmediately
|
|
|
686 |
static void endstop_triggered(const AxisEnum axis);
|
|
|
687 |
|
|
|
688 |
// Triggered position of an axis in mm (not core-savvy)
|
|
|
689 |
static float triggered_position_mm(const AxisEnum axis);
|
|
|
690 |
|
|
|
691 |
// Block until all buffered steps are executed / cleaned
|
|
|
692 |
static void synchronize();
|
|
|
693 |
|
|
|
694 |
// Wait for moves to finish and disable all steppers
|
|
|
695 |
static void finish_and_disable();
|
|
|
696 |
|
|
|
697 |
// Periodic tick to handle cleaning timeouts
|
|
|
698 |
// Called from the Temperature ISR at ~1kHz
|
|
|
699 |
static void tick() {
|
|
|
700 |
if (cleaning_buffer_counter) {
|
|
|
701 |
--cleaning_buffer_counter;
|
|
|
702 |
#if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
|
|
|
703 |
if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
|
|
|
704 |
#endif
|
|
|
705 |
}
|
|
|
706 |
}
|
|
|
707 |
|
|
|
708 |
/**
|
|
|
709 |
* Does the buffer have any blocks queued?
|
|
|
710 |
*/
|
|
|
711 |
FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
|
|
712 |
|
|
|
713 |
/**
|
|
|
714 |
* The current block. NULL if the buffer is empty.
|
|
|
715 |
* This also marks the block as busy.
|
|
|
716 |
* WARNING: Called from Stepper ISR context!
|
|
|
717 |
*/
|
|
|
718 |
static block_t* get_current_block() {
|
|
|
719 |
|
|
|
720 |
// Get the number of moves in the planner queue so far
|
|
|
721 |
const uint8_t nr_moves = movesplanned();
|
|
|
722 |
|
|
|
723 |
// If there are any moves queued ...
|
|
|
724 |
if (nr_moves) {
|
|
|
725 |
|
|
|
726 |
// If there is still delay of delivery of blocks running, decrement it
|
|
|
727 |
if (delay_before_delivering) {
|
|
|
728 |
--delay_before_delivering;
|
|
|
729 |
// If the number of movements queued is less than 3, and there is still time
|
|
|
730 |
// to wait, do not deliver anything
|
|
|
731 |
if (nr_moves < 3 && delay_before_delivering) return NULL;
|
|
|
732 |
delay_before_delivering = 0;
|
|
|
733 |
}
|
|
|
734 |
|
|
|
735 |
// If we are here, there is no excuse to deliver the block
|
|
|
736 |
block_t * const block = &block_buffer[block_buffer_tail];
|
|
|
737 |
|
|
|
738 |
// No trapezoid calculated? Don't execute yet.
|
|
|
739 |
if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return NULL;
|
|
|
740 |
|
|
|
741 |
#if ENABLED(ULTRA_LCD)
|
|
|
742 |
block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
|
|
|
743 |
#endif
|
|
|
744 |
|
|
|
745 |
// As this block is busy, advance the nonbusy block pointer
|
|
|
746 |
block_buffer_nonbusy = next_block_index(block_buffer_tail);
|
|
|
747 |
|
|
|
748 |
// Push block_buffer_planned pointer, if encountered.
|
|
|
749 |
if (block_buffer_tail == block_buffer_planned)
|
|
|
750 |
block_buffer_planned = block_buffer_nonbusy;
|
|
|
751 |
|
|
|
752 |
// Return the block
|
|
|
753 |
return block;
|
|
|
754 |
}
|
|
|
755 |
|
|
|
756 |
// The queue became empty
|
|
|
757 |
#if ENABLED(ULTRA_LCD)
|
|
|
758 |
clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
|
|
|
759 |
#endif
|
|
|
760 |
|
|
|
761 |
return NULL;
|
|
|
762 |
}
|
|
|
763 |
|
|
|
764 |
/**
|
|
|
765 |
* "Discard" the block and "release" the memory.
|
|
|
766 |
* Called when the current block is no longer needed.
|
|
|
767 |
* NB: There MUST be a current block to call this function!!
|
|
|
768 |
*/
|
|
|
769 |
FORCE_INLINE static void discard_current_block() {
|
|
|
770 |
if (has_blocks_queued())
|
|
|
771 |
block_buffer_tail = next_block_index(block_buffer_tail);
|
|
|
772 |
}
|
|
|
773 |
|
|
|
774 |
#if ENABLED(ULTRA_LCD)
|
|
|
775 |
|
|
|
776 |
static uint16_t block_buffer_runtime() {
|
|
|
777 |
bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
778 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
779 |
|
|
|
780 |
millis_t bbru = block_buffer_runtime_us;
|
|
|
781 |
|
|
|
782 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
783 |
|
|
|
784 |
// To translate µs to ms a division by 1000 would be required.
|
|
|
785 |
// We introduce 2.4% error here by dividing by 1024.
|
|
|
786 |
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
|
|
|
787 |
bbru >>= 10;
|
|
|
788 |
// limit to about a minute.
|
|
|
789 |
NOMORE(bbru, 0xFFFFul);
|
|
|
790 |
return bbru;
|
|
|
791 |
}
|
|
|
792 |
|
|
|
793 |
static void clear_block_buffer_runtime() {
|
|
|
794 |
bool was_enabled = STEPPER_ISR_ENABLED();
|
|
|
795 |
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
796 |
|
|
|
797 |
block_buffer_runtime_us = 0;
|
|
|
798 |
|
|
|
799 |
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
800 |
}
|
|
|
801 |
|
|
|
802 |
#endif
|
|
|
803 |
|
|
|
804 |
#if ENABLED(AUTOTEMP)
|
|
|
805 |
static float autotemp_min, autotemp_max, autotemp_factor;
|
|
|
806 |
static bool autotemp_enabled;
|
|
|
807 |
static void getHighESpeed();
|
|
|
808 |
static void autotemp_M104_M109();
|
|
|
809 |
#endif
|
|
|
810 |
|
|
|
811 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
812 |
FORCE_INLINE static void recalculate_max_e_jerk() {
|
|
|
813 |
#define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
|
|
|
814 |
#if ENABLED(LIN_ADVANCE)
|
|
|
815 |
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
816 |
for (uint8_t i = 0; i < EXTRUDERS; i++)
|
|
|
817 |
max_e_jerk[i] = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS + i]);
|
|
|
818 |
#else
|
|
|
819 |
max_e_jerk = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS]);
|
|
|
820 |
#endif
|
|
|
821 |
#endif
|
|
|
822 |
}
|
|
|
823 |
#endif
|
|
|
824 |
|
|
|
825 |
private:
|
|
|
826 |
|
|
|
827 |
/**
|
|
|
828 |
* Get the index of the next / previous block in the ring buffer
|
|
|
829 |
*/
|
|
|
830 |
static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
|
|
831 |
static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
|
|
832 |
|
|
|
833 |
/**
|
|
|
834 |
* Calculate the distance (not time) it takes to accelerate
|
|
|
835 |
* from initial_rate to target_rate using the given acceleration:
|
|
|
836 |
*/
|
|
|
837 |
static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
|
|
|
838 |
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
|
|
|
839 |
return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
|
|
|
840 |
}
|
|
|
841 |
|
|
|
842 |
/**
|
|
|
843 |
* Return the point at which you must start braking (at the rate of -'accel') if
|
|
|
844 |
* you start at 'initial_rate', accelerate (until reaching the point), and want to end at
|
|
|
845 |
* 'final_rate' after traveling 'distance'.
|
|
|
846 |
*
|
|
|
847 |
* This is used to compute the intersection point between acceleration and deceleration
|
|
|
848 |
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
|
|
|
849 |
*/
|
|
|
850 |
static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
|
|
|
851 |
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
|
|
|
852 |
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
|
|
|
853 |
}
|
|
|
854 |
|
|
|
855 |
/**
|
|
|
856 |
* Calculate the maximum allowable speed squared at this point, in order
|
|
|
857 |
* to reach 'target_velocity_sqr' using 'acceleration' within a given
|
|
|
858 |
* 'distance'.
|
|
|
859 |
*/
|
|
|
860 |
static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
|
|
|
861 |
return target_velocity_sqr - 2 * accel * distance;
|
|
|
862 |
}
|
|
|
863 |
|
|
|
864 |
#if ENABLED(S_CURVE_ACCELERATION)
|
|
|
865 |
/**
|
|
|
866 |
* Calculate the speed reached given initial speed, acceleration and distance
|
|
|
867 |
*/
|
|
|
868 |
static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
|
|
|
869 |
return SQRT(sq(initial_velocity) + 2 * accel * distance);
|
|
|
870 |
}
|
|
|
871 |
#endif
|
|
|
872 |
|
|
|
873 |
static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
|
|
|
874 |
|
|
|
875 |
static void reverse_pass_kernel(block_t* const current, const block_t * const next);
|
|
|
876 |
static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
|
|
|
877 |
|
|
|
878 |
static void reverse_pass();
|
|
|
879 |
static void forward_pass();
|
|
|
880 |
|
|
|
881 |
static void recalculate_trapezoids();
|
|
|
882 |
|
|
|
883 |
static void recalculate();
|
|
|
884 |
|
|
|
885 |
#if ENABLED(JUNCTION_DEVIATION)
|
|
|
886 |
|
|
|
887 |
FORCE_INLINE static void normalize_junction_vector(float (&vector)[XYZE]) {
|
|
|
888 |
float magnitude_sq = 0;
|
|
|
889 |
LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
|
|
|
890 |
const float inv_magnitude = RSQRT(magnitude_sq);
|
|
|
891 |
LOOP_XYZE(idx) vector[idx] *= inv_magnitude;
|
|
|
892 |
}
|
|
|
893 |
|
|
|
894 |
FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, float (&unit_vec)[XYZE]) {
|
|
|
895 |
float limit_value = max_value;
|
|
|
896 |
LOOP_XYZE(idx) if (unit_vec[idx]) // Avoid divide by zero
|
|
|
897 |
NOMORE(limit_value, ABS(max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
|
|
|
898 |
return limit_value;
|
|
|
899 |
}
|
|
|
900 |
|
|
|
901 |
#endif // JUNCTION_DEVIATION
|
|
|
902 |
};
|
|
|
903 |
|
|
|
904 |
#define PLANNER_XY_FEEDRATE() (MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
|
|
|
905 |
|
|
|
906 |
extern Planner planner;
|
|
|
907 |
|
|
|
908 |
#endif // PLANNER_H
|