Subversion Repositories MK-Marlin

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 ron 1
/**
2
 * Marlin 3D Printer Firmware
3
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
4
 *
5
 * Based on Sprinter and grbl.
6
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
7
 *
8
 * This program is free software: you can redistribute it and/or modify
9
 * it under the terms of the GNU General Public License as published by
10
 * the Free Software Foundation, either version 3 of the License, or
11
 * (at your option) any later version.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License
19
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20
 *
21
 */
22
 
23
/**
24
 * servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
25
 * Copyright (c) 2009 Michael Margolis.  All right reserved.
26
 */
27
 
28
/**
29
 * A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
30
 * The servos are pulsed in the background using the value most recently written using the write() method
31
 *
32
 * Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
33
 * Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
34
 *
35
 * The methods are:
36
 *
37
 * Servo - Class for manipulating servo motors connected to Arduino pins.
38
 *
39
 * attach(pin)           - Attach a servo motor to an i/o pin.
40
 * attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds
41
 *                         Default min is 544, max is 2400
42
 *
43
 * write()               - Set the servo angle in degrees. (Invalid angles —over MIN_PULSE_WIDTH— are treated as µs.)
44
 * writeMicroseconds()   - Set the servo pulse width in microseconds.
45
 * move(pin, angle)      - Sequence of attach(pin), write(angle), delay(SERVO_DELAY).
46
 *                         With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after SERVO_DELAY.
47
 * read()                - Get the last-written servo pulse width as an angle between 0 and 180.
48
 * readMicroseconds()    - Get the last-written servo pulse width in microseconds.
49
 * attached()            - Return true if a servo is attached.
50
 * detach()              - Stop an attached servo from pulsing its i/o pin.
51
 *
52
 */
53
#include "MarlinConfig.h"
54
 
55
#if HAS_SERVOS
56
 
57
#include <avr/interrupt.h>
58
#include <Arduino.h>
59
 
60
#include "servo.h"
61
#include "utility.h"
62
 
63
#define usToTicks(_us)    (( clockCyclesPerMicrosecond()* _us) / 8)     // converts microseconds to tick (assumes prescale of 8)  // 12 Aug 2009
64
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
65
 
66
#define TRIM_DURATION       2                               // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
67
 
68
//#define NBR_TIMERS        ((MAX_SERVOS) / (SERVOS_PER_TIMER))
69
 
70
static ServoInfo_t servo_info[MAX_SERVOS];                  // static array of servo info structures
71
static volatile int8_t Channel[_Nbr_16timers ];             // counter for the servo being pulsed for each timer (or -1 if refresh interval)
72
 
73
uint8_t ServoCount = 0;                                     // the total number of attached servos
74
 
75
 
76
// convenience macros
77
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / (SERVOS_PER_TIMER))) // returns the timer controlling this servo
78
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % (SERVOS_PER_TIMER))       // returns the index of the servo on this timer
79
#define SERVO_INDEX(_timer,_channel)  ((_timer*(SERVOS_PER_TIMER)) + _channel)     // macro to access servo index by timer and channel
80
#define SERVO(_timer,_channel)  (servo_info[SERVO_INDEX(_timer,_channel)])       // macro to access servo class by timer and channel
81
 
82
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4)  // minimum value in uS for this servo
83
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4)  // maximum value in uS for this servo
84
 
85
/************ static functions common to all instances ***********************/
86
 
87
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) {
88
  if (Channel[timer] < 0)
89
    *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
90
  else {
91
    if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && SERVO(timer, Channel[timer]).Pin.isActive)
92
      digitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
93
  }
94
 
95
  Channel[timer]++;    // increment to the next channel
96
  if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
97
    *OCRnA = *TCNTn + SERVO(timer, Channel[timer]).ticks;
98
    if (SERVO(timer, Channel[timer]).Pin.isActive)    // check if activated
99
      digitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
100
  }
101
  else {
102
    // finished all channels so wait for the refresh period to expire before starting over
103
    if (((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL))    // allow a few ticks to ensure the next OCR1A not missed
104
      *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
105
    else
106
      *OCRnA = *TCNTn + 4;  // at least REFRESH_INTERVAL has elapsed
107
    Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
108
  }
109
}
110
 
111
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
112
 
113
  // Interrupt handlers for Arduino
114
  #if ENABLED(_useTimer1)
115
    SIGNAL (TIMER1_COMPA_vect) { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
116
  #endif
117
 
118
  #if ENABLED(_useTimer3)
119
    SIGNAL (TIMER3_COMPA_vect) { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
120
  #endif
121
 
122
  #if ENABLED(_useTimer4)
123
    SIGNAL (TIMER4_COMPA_vect) { handle_interrupts(_timer4, &TCNT4, &OCR4A); }
124
  #endif
125
 
126
  #if ENABLED(_useTimer5)
127
    SIGNAL (TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); }
128
  #endif
129
 
130
#else // WIRING
131
 
132
  // Interrupt handlers for Wiring
133
  #if ENABLED(_useTimer1)
134
    void Timer1Service() { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
135
  #endif
136
  #if ENABLED(_useTimer3)
137
    void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
138
  #endif
139
 
140
#endif // WIRING
141
 
142
 
143
static void initISR(timer16_Sequence_t timer) {
144
  #if ENABLED(_useTimer1)
145
    if (timer == _timer1) {
146
      TCCR1A = 0;             // normal counting mode
147
      TCCR1B = _BV(CS11);     // set prescaler of 8
148
      TCNT1 = 0;              // clear the timer count
149
      #if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
150
        SBI(TIFR, OCF1A);      // clear any pending interrupts;
151
        SBI(TIMSK, OCIE1A);    // enable the output compare interrupt
152
      #else
153
        // here if not ATmega8 or ATmega128
154
        SBI(TIFR1, OCF1A);     // clear any pending interrupts;
155
        SBI(TIMSK1, OCIE1A);   // enable the output compare interrupt
156
      #endif
157
      #ifdef WIRING
158
        timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
159
      #endif
160
    }
161
  #endif
162
 
163
  #if ENABLED(_useTimer3)
164
    if (timer == _timer3) {
165
      TCCR3A = 0;             // normal counting mode
166
      TCCR3B = _BV(CS31);     // set prescaler of 8
167
      TCNT3 = 0;              // clear the timer count
168
      #ifdef __AVR_ATmega128__
169
        SBI(TIFR, OCF3A);     // clear any pending interrupts;
170
        SBI(ETIMSK, OCIE3A);  // enable the output compare interrupt
171
      #else
172
        SBI(TIFR3, OCF3A);   // clear any pending interrupts;
173
        SBI(TIMSK3, OCIE3A); // enable the output compare interrupt
174
      #endif
175
      #ifdef WIRING
176
        timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);  // for Wiring platform only
177
      #endif
178
    }
179
  #endif
180
 
181
  #if ENABLED(_useTimer4)
182
    if (timer == _timer4) {
183
      TCCR4A = 0;             // normal counting mode
184
      TCCR4B = _BV(CS41);     // set prescaler of 8
185
      TCNT4 = 0;              // clear the timer count
186
      TIFR4 = _BV(OCF4A);     // clear any pending interrupts;
187
      TIMSK4 = _BV(OCIE4A);   // enable the output compare interrupt
188
    }
189
  #endif
190
 
191
  #if ENABLED(_useTimer5)
192
    if (timer == _timer5) {
193
      TCCR5A = 0;             // normal counting mode
194
      TCCR5B = _BV(CS51);     // set prescaler of 8
195
      TCNT5 = 0;              // clear the timer count
196
      TIFR5 = _BV(OCF5A);     // clear any pending interrupts;
197
      TIMSK5 = _BV(OCIE5A);   // enable the output compare interrupt
198
    }
199
  #endif
200
}
201
 
202
static void finISR(timer16_Sequence_t timer) {
203
  // Disable use of the given timer
204
  #ifdef WIRING
205
    if (timer == _timer1) {
206
      CBI(
207
        #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
208
          TIMSK1
209
        #else
210
          TIMSK
211
        #endif
212
          , OCIE1A);    // disable timer 1 output compare interrupt
213
      timerDetach(TIMER1OUTCOMPAREA_INT);
214
    }
215
    else if (timer == _timer3) {
216
      CBI(
217
        #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
218
          TIMSK3
219
        #else
220
          ETIMSK
221
        #endif
222
          , OCIE3A);    // disable the timer3 output compare A interrupt
223
      timerDetach(TIMER3OUTCOMPAREA_INT);
224
    }
225
  #else // !WIRING
226
    // For arduino - in future: call here to a currently undefined function to reset the timer
227
    UNUSED(timer);
228
  #endif
229
}
230
 
231
static bool isTimerActive(timer16_Sequence_t timer) {
232
  // returns true if any servo is active on this timer
233
  for (uint8_t channel = 0; channel < SERVOS_PER_TIMER; channel++) {
234
    if (SERVO(timer, channel).Pin.isActive)
235
      return true;
236
  }
237
  return false;
238
}
239
 
240
/****************** end of static functions ******************************/
241
 
242
Servo::Servo() {
243
  if (ServoCount < MAX_SERVOS) {
244
    this->servoIndex = ServoCount++;                    // assign a servo index to this instance
245
    servo_info[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH);   // store default values  - 12 Aug 2009
246
  }
247
  else
248
    this->servoIndex = INVALID_SERVO;  // too many servos
249
}
250
 
251
int8_t Servo::attach(const int pin) {
252
  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
253
}
254
 
255
int8_t Servo::attach(const int pin, const int min, const int max) {
256
 
257
  if (this->servoIndex >= MAX_SERVOS) return -1;
258
 
259
  if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin;
260
  pinMode(servo_info[this->servoIndex].Pin.nbr, OUTPUT); // set servo pin to output
261
 
262
  // todo min/max check: ABS(min - MIN_PULSE_WIDTH) /4 < 128
263
  this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS
264
  this->max = (MAX_PULSE_WIDTH - max) / 4;
265
 
266
  // initialize the timer if it has not already been initialized
267
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
268
  if (!isTimerActive(timer)) initISR(timer);
269
  servo_info[this->servoIndex].Pin.isActive = true;  // this must be set after the check for isTimerActive
270
 
271
  return this->servoIndex;
272
}
273
 
274
void Servo::detach() {
275
  servo_info[this->servoIndex].Pin.isActive = false;
276
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
277
  if (!isTimerActive(timer)) finISR(timer);
278
}
279
 
280
void Servo::write(int value) {
281
  if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
282
    value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX());
283
  }
284
  this->writeMicroseconds(value);
285
}
286
 
287
void Servo::writeMicroseconds(int value) {
288
  // calculate and store the values for the given channel
289
  byte channel = this->servoIndex;
290
  if (channel < MAX_SERVOS) {  // ensure channel is valid
291
    // ensure pulse width is valid
292
    value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION);
293
    value = usToTicks(value);  // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
294
 
295
    CRITICAL_SECTION_START;
296
    servo_info[channel].ticks = value;
297
    CRITICAL_SECTION_END;
298
  }
299
}
300
 
301
// return the value as degrees
302
int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); }
303
 
304
int Servo::readMicroseconds() {
305
  return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + TRIM_DURATION;
306
}
307
 
308
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }
309
 
310
void Servo::move(const int value) {
311
  constexpr uint16_t servo_delay[] = SERVO_DELAY;
312
  static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
313
  if (this->attach(0) >= 0) {
314
    this->write(value);
315
    safe_delay(servo_delay[this->servoIndex]);
316
    #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
317
      this->detach();
318
    #endif
319
  }
320
}
321
 
322
#endif // HAS_SERVOS