1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* temperature.cpp - temperature control
|
|
|
25 |
*/
|
|
|
26 |
|
|
|
27 |
#include "Marlin.h"
|
|
|
28 |
#include "temperature.h"
|
|
|
29 |
#include "thermistortables.h"
|
|
|
30 |
#include "ultralcd.h"
|
|
|
31 |
#include "planner.h"
|
|
|
32 |
#include "language.h"
|
|
|
33 |
#include "printcounter.h"
|
|
|
34 |
#include "delay.h"
|
|
|
35 |
#include "endstops.h"
|
|
|
36 |
|
|
|
37 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
38 |
#include "MarlinSPI.h"
|
|
|
39 |
#endif
|
|
|
40 |
|
|
|
41 |
#if ENABLED(BABYSTEPPING)
|
|
|
42 |
#include "stepper.h"
|
|
|
43 |
#endif
|
|
|
44 |
|
|
|
45 |
#if ENABLED(USE_WATCHDOG)
|
|
|
46 |
#include "watchdog.h"
|
|
|
47 |
#endif
|
|
|
48 |
|
|
|
49 |
#if ENABLED(EMERGENCY_PARSER)
|
|
|
50 |
#include "emergency_parser.h"
|
|
|
51 |
#endif
|
|
|
52 |
|
|
|
53 |
#if HOTEND_USES_THERMISTOR
|
|
|
54 |
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
55 |
static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
|
|
|
56 |
static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
|
|
|
57 |
#else
|
|
|
58 |
static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
|
|
|
59 |
static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
|
|
|
60 |
#endif
|
|
|
61 |
#endif
|
|
|
62 |
|
|
|
63 |
Temperature thermalManager;
|
|
|
64 |
|
|
|
65 |
/**
|
|
|
66 |
* Macros to include the heater id in temp errors. The compiler's dead-code
|
|
|
67 |
* elimination should (hopefully) optimize out the unused strings.
|
|
|
68 |
*/
|
|
|
69 |
#if HAS_HEATED_BED
|
|
|
70 |
#define TEMP_ERR_PSTR(MSG, E) \
|
|
|
71 |
(E) == -1 ? PSTR(MSG ## _BED) : \
|
|
|
72 |
(HOTENDS > 1 && (E) == 1) ? PSTR(MSG_E2 " " MSG) : \
|
|
|
73 |
(HOTENDS > 2 && (E) == 2) ? PSTR(MSG_E3 " " MSG) : \
|
|
|
74 |
(HOTENDS > 3 && (E) == 3) ? PSTR(MSG_E4 " " MSG) : \
|
|
|
75 |
(HOTENDS > 4 && (E) == 4) ? PSTR(MSG_E5 " " MSG) : \
|
|
|
76 |
PSTR(MSG_E1 " " MSG)
|
|
|
77 |
#else
|
|
|
78 |
#define TEMP_ERR_PSTR(MSG, E) \
|
|
|
79 |
(HOTENDS > 1 && (E) == 1) ? PSTR(MSG_E2 " " MSG) : \
|
|
|
80 |
(HOTENDS > 2 && (E) == 2) ? PSTR(MSG_E3 " " MSG) : \
|
|
|
81 |
(HOTENDS > 3 && (E) == 3) ? PSTR(MSG_E4 " " MSG) : \
|
|
|
82 |
(HOTENDS > 4 && (E) == 4) ? PSTR(MSG_E5 " " MSG) : \
|
|
|
83 |
PSTR(MSG_E1 " " MSG)
|
|
|
84 |
#endif
|
|
|
85 |
|
|
|
86 |
// public:
|
|
|
87 |
|
|
|
88 |
float Temperature::current_temperature[HOTENDS] = { 0.0 };
|
|
|
89 |
int16_t Temperature::current_temperature_raw[HOTENDS] = { 0 },
|
|
|
90 |
Temperature::target_temperature[HOTENDS] = { 0 };
|
|
|
91 |
|
|
|
92 |
#if ENABLED(AUTO_POWER_E_FANS)
|
|
|
93 |
int16_t Temperature::autofan_speed[HOTENDS] = { 0 };
|
|
|
94 |
#endif
|
|
|
95 |
|
|
|
96 |
#if HAS_HEATED_BED
|
|
|
97 |
float Temperature::current_temperature_bed = 0.0;
|
|
|
98 |
int16_t Temperature::current_temperature_bed_raw = 0,
|
|
|
99 |
Temperature::target_temperature_bed = 0;
|
|
|
100 |
uint8_t Temperature::soft_pwm_amount_bed;
|
|
|
101 |
#ifdef BED_MINTEMP
|
|
|
102 |
int16_t Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
|
|
|
103 |
#endif
|
|
|
104 |
#ifdef BED_MAXTEMP
|
|
|
105 |
int16_t Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
|
106 |
#endif
|
|
|
107 |
#if WATCH_THE_BED
|
|
|
108 |
uint16_t Temperature::watch_target_bed_temp = 0;
|
|
|
109 |
millis_t Temperature::watch_bed_next_ms = 0;
|
|
|
110 |
#endif
|
|
|
111 |
#if ENABLED(PIDTEMPBED)
|
|
|
112 |
float Temperature::bedKp, Temperature::bedKi, Temperature::bedKd, // Initialized by settings.load()
|
|
|
113 |
Temperature::temp_iState_bed = { 0 },
|
|
|
114 |
Temperature::temp_dState_bed = { 0 },
|
|
|
115 |
Temperature::pTerm_bed,
|
|
|
116 |
Temperature::iTerm_bed,
|
|
|
117 |
Temperature::dTerm_bed,
|
|
|
118 |
Temperature::pid_error_bed;
|
|
|
119 |
#else
|
|
|
120 |
millis_t Temperature::next_bed_check_ms;
|
|
|
121 |
#endif
|
|
|
122 |
uint16_t Temperature::raw_temp_bed_value = 0;
|
|
|
123 |
#if HEATER_IDLE_HANDLER
|
|
|
124 |
millis_t Temperature::bed_idle_timeout_ms = 0;
|
|
|
125 |
bool Temperature::bed_idle_timeout_exceeded = false;
|
|
|
126 |
#endif
|
|
|
127 |
#endif // HAS_HEATED_BED
|
|
|
128 |
|
|
|
129 |
#if HAS_TEMP_CHAMBER
|
|
|
130 |
float Temperature::current_temperature_chamber = 0.0;
|
|
|
131 |
int16_t Temperature::current_temperature_chamber_raw = 0;
|
|
|
132 |
uint16_t Temperature::raw_temp_chamber_value = 0;
|
|
|
133 |
#endif
|
|
|
134 |
|
|
|
135 |
// Initialized by settings.load()
|
|
|
136 |
#if ENABLED(PIDTEMP)
|
|
|
137 |
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
|
|
|
138 |
float Temperature::Kp[HOTENDS], Temperature::Ki[HOTENDS], Temperature::Kd[HOTENDS];
|
|
|
139 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
140 |
float Temperature::Kc[HOTENDS];
|
|
|
141 |
#endif
|
|
|
142 |
#else
|
|
|
143 |
float Temperature::Kp, Temperature::Ki, Temperature::Kd;
|
|
|
144 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
145 |
float Temperature::Kc;
|
|
|
146 |
#endif
|
|
|
147 |
#endif
|
|
|
148 |
#endif
|
|
|
149 |
|
|
|
150 |
#if ENABLED(BABYSTEPPING)
|
|
|
151 |
volatile int Temperature::babystepsTodo[XYZ] = { 0 };
|
|
|
152 |
#endif
|
|
|
153 |
|
|
|
154 |
#if WATCH_HOTENDS
|
|
|
155 |
uint16_t Temperature::watch_target_temp[HOTENDS] = { 0 };
|
|
|
156 |
millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
|
|
|
157 |
#endif
|
|
|
158 |
|
|
|
159 |
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
160 |
bool Temperature::allow_cold_extrude = false;
|
|
|
161 |
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
|
|
|
162 |
#endif
|
|
|
163 |
|
|
|
164 |
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
165 |
uint16_t Temperature::redundant_temperature_raw = 0;
|
|
|
166 |
float Temperature::redundant_temperature = 0.0;
|
|
|
167 |
#endif
|
|
|
168 |
|
|
|
169 |
volatile bool Temperature::temp_meas_ready = false;
|
|
|
170 |
|
|
|
171 |
#if ENABLED(PIDTEMP)
|
|
|
172 |
float Temperature::temp_iState[HOTENDS] = { 0 },
|
|
|
173 |
Temperature::temp_dState[HOTENDS] = { 0 },
|
|
|
174 |
Temperature::pTerm[HOTENDS],
|
|
|
175 |
Temperature::iTerm[HOTENDS],
|
|
|
176 |
Temperature::dTerm[HOTENDS];
|
|
|
177 |
|
|
|
178 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
179 |
float Temperature::cTerm[HOTENDS];
|
|
|
180 |
long Temperature::last_e_position;
|
|
|
181 |
long Temperature::lpq[LPQ_MAX_LEN];
|
|
|
182 |
int Temperature::lpq_ptr = 0;
|
|
|
183 |
#endif
|
|
|
184 |
|
|
|
185 |
float Temperature::pid_error[HOTENDS];
|
|
|
186 |
bool Temperature::pid_reset[HOTENDS];
|
|
|
187 |
#endif
|
|
|
188 |
|
|
|
189 |
uint16_t Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
|
|
|
190 |
|
|
|
191 |
// Init min and max temp with extreme values to prevent false errors during startup
|
|
|
192 |
int16_t Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
|
|
|
193 |
Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
|
|
|
194 |
Temperature::minttemp[HOTENDS] = { 0 },
|
|
|
195 |
Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
|
|
|
196 |
|
|
|
197 |
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
198 |
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
|
|
|
199 |
#endif
|
|
|
200 |
|
|
|
201 |
#ifdef MILLISECONDS_PREHEAT_TIME
|
|
|
202 |
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
|
|
|
203 |
#endif
|
|
|
204 |
|
|
|
205 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
206 |
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
|
|
|
207 |
#endif
|
|
|
208 |
|
|
|
209 |
#if HAS_AUTO_FAN
|
|
|
210 |
millis_t Temperature::next_auto_fan_check_ms = 0;
|
|
|
211 |
#endif
|
|
|
212 |
|
|
|
213 |
uint8_t Temperature::soft_pwm_amount[HOTENDS];
|
|
|
214 |
|
|
|
215 |
#if ENABLED(FAN_SOFT_PWM)
|
|
|
216 |
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
|
|
|
217 |
Temperature::soft_pwm_count_fan[FAN_COUNT];
|
|
|
218 |
#endif
|
|
|
219 |
|
|
|
220 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
221 |
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
|
|
|
222 |
#endif
|
|
|
223 |
|
|
|
224 |
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
225 |
bool Temperature::paused;
|
|
|
226 |
#endif
|
|
|
227 |
|
|
|
228 |
#if HEATER_IDLE_HANDLER
|
|
|
229 |
millis_t Temperature::heater_idle_timeout_ms[HOTENDS] = { 0 };
|
|
|
230 |
bool Temperature::heater_idle_timeout_exceeded[HOTENDS] = { false };
|
|
|
231 |
#endif
|
|
|
232 |
|
|
|
233 |
#if ENABLED(ADC_KEYPAD)
|
|
|
234 |
uint32_t Temperature::current_ADCKey_raw = 0;
|
|
|
235 |
uint8_t Temperature::ADCKey_count = 0;
|
|
|
236 |
#endif
|
|
|
237 |
|
|
|
238 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
239 |
int16_t Temperature::lpq_len; // Initialized in configuration_store
|
|
|
240 |
#endif
|
|
|
241 |
|
|
|
242 |
#if HAS_PID_HEATING
|
|
|
243 |
|
|
|
244 |
/**
|
|
|
245 |
* PID Autotuning (M303)
|
|
|
246 |
*
|
|
|
247 |
* Alternately heat and cool the nozzle, observing its behavior to
|
|
|
248 |
* determine the best PID values to achieve a stable temperature.
|
|
|
249 |
*/
|
|
|
250 |
void Temperature::pid_autotune(const float &target, const int8_t hotend, const int8_t ncycles, const bool set_result/*=false*/) {
|
|
|
251 |
float current = 0.0;
|
|
|
252 |
int cycles = 0;
|
|
|
253 |
bool heating = true;
|
|
|
254 |
|
|
|
255 |
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
|
|
|
256 |
long t_high = 0, t_low = 0;
|
|
|
257 |
|
|
|
258 |
long bias, d;
|
|
|
259 |
float Ku, Tu,
|
|
|
260 |
workKp = 0, workKi = 0, workKd = 0,
|
|
|
261 |
max = 0, min = 10000;
|
|
|
262 |
|
|
|
263 |
#if HAS_PID_FOR_BOTH
|
|
|
264 |
#define GHV(B,H) (hotend < 0 ? (B) : (H))
|
|
|
265 |
#define SHV(S,B,H) if (hotend < 0) S##_bed = B; else S [hotend] = H;
|
|
|
266 |
#elif ENABLED(PIDTEMPBED)
|
|
|
267 |
#define GHV(B,H) B
|
|
|
268 |
#define SHV(S,B,H) (S##_bed = B)
|
|
|
269 |
#else
|
|
|
270 |
#define GHV(B,H) H
|
|
|
271 |
#define SHV(S,B,H) (S [hotend] = H)
|
|
|
272 |
#endif
|
|
|
273 |
|
|
|
274 |
#if WATCH_THE_BED || WATCH_HOTENDS
|
|
|
275 |
#define HAS_TP_BED (ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED))
|
|
|
276 |
#if HAS_TP_BED && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
|
|
|
277 |
#define GTV(B,H) (hotend < 0 ? (B) : (H))
|
|
|
278 |
#elif HAS_TP_BED
|
|
|
279 |
#define GTV(B,H) (B)
|
|
|
280 |
#else
|
|
|
281 |
#define GTV(B,H) (H)
|
|
|
282 |
#endif
|
|
|
283 |
const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
|
|
|
284 |
const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
|
|
|
285 |
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
|
|
|
286 |
millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL;
|
|
|
287 |
float next_watch_temp = 0.0;
|
|
|
288 |
bool heated = false;
|
|
|
289 |
#endif
|
|
|
290 |
|
|
|
291 |
#if HAS_AUTO_FAN
|
|
|
292 |
next_auto_fan_check_ms = next_temp_ms + 2500UL;
|
|
|
293 |
#endif
|
|
|
294 |
|
|
|
295 |
#if ENABLED(PIDTEMP)
|
|
|
296 |
#define _TOP_HOTEND HOTENDS - 1
|
|
|
297 |
#else
|
|
|
298 |
#define _TOP_HOTEND -1
|
|
|
299 |
#endif
|
|
|
300 |
#if ENABLED(PIDTEMPBED)
|
|
|
301 |
#define _BOT_HOTEND -1
|
|
|
302 |
#else
|
|
|
303 |
#define _BOT_HOTEND 0
|
|
|
304 |
#endif
|
|
|
305 |
|
|
|
306 |
if (!WITHIN(hotend, _BOT_HOTEND, _TOP_HOTEND)) {
|
|
|
307 |
SERIAL_ECHOLNPGM(MSG_PID_BAD_EXTRUDER_NUM);
|
|
|
308 |
return;
|
|
|
309 |
}
|
|
|
310 |
|
|
|
311 |
if (target > GHV(BED_MAXTEMP, maxttemp[hotend]) - 15) {
|
|
|
312 |
SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
|
|
|
313 |
return;
|
|
|
314 |
}
|
|
|
315 |
|
|
|
316 |
SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_START);
|
|
|
317 |
|
|
|
318 |
disable_all_heaters(); // switch off all heaters.
|
|
|
319 |
|
|
|
320 |
SHV(soft_pwm_amount, bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
|
|
|
321 |
|
|
|
322 |
wait_for_heatup = true; // Can be interrupted with M108
|
|
|
323 |
|
|
|
324 |
// PID Tuning loop
|
|
|
325 |
while (wait_for_heatup) {
|
|
|
326 |
|
|
|
327 |
const millis_t ms = millis();
|
|
|
328 |
|
|
|
329 |
if (temp_meas_ready) { // temp sample ready
|
|
|
330 |
calculate_celsius_temperatures();
|
|
|
331 |
|
|
|
332 |
// Get the current temperature and constrain it
|
|
|
333 |
current = GHV(current_temperature_bed, current_temperature[hotend]);
|
|
|
334 |
NOLESS(max, current);
|
|
|
335 |
NOMORE(min, current);
|
|
|
336 |
|
|
|
337 |
#if HAS_AUTO_FAN
|
|
|
338 |
if (ELAPSED(ms, next_auto_fan_check_ms)) {
|
|
|
339 |
check_extruder_auto_fans();
|
|
|
340 |
next_auto_fan_check_ms = ms + 2500UL;
|
|
|
341 |
}
|
|
|
342 |
#endif
|
|
|
343 |
|
|
|
344 |
if (heating && current > target) {
|
|
|
345 |
if (ELAPSED(ms, t2 + 5000UL)) {
|
|
|
346 |
heating = false;
|
|
|
347 |
SHV(soft_pwm_amount, (bias - d) >> 1, (bias - d) >> 1);
|
|
|
348 |
t1 = ms;
|
|
|
349 |
t_high = t1 - t2;
|
|
|
350 |
max = target;
|
|
|
351 |
}
|
|
|
352 |
}
|
|
|
353 |
|
|
|
354 |
if (!heating && current < target) {
|
|
|
355 |
if (ELAPSED(ms, t1 + 5000UL)) {
|
|
|
356 |
heating = true;
|
|
|
357 |
t2 = ms;
|
|
|
358 |
t_low = t2 - t1;
|
|
|
359 |
if (cycles > 0) {
|
|
|
360 |
const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
|
|
|
361 |
bias += (d * (t_high - t_low)) / (t_low + t_high);
|
|
|
362 |
bias = constrain(bias, 20, max_pow - 20);
|
|
|
363 |
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
|
|
|
364 |
|
|
|
365 |
SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
|
|
|
366 |
SERIAL_PROTOCOLPAIR(MSG_D, d);
|
|
|
367 |
SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
|
|
|
368 |
SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
|
|
|
369 |
if (cycles > 2) {
|
|
|
370 |
Ku = (4.0f * d) / (M_PI * (max - min) * 0.5f);
|
|
|
371 |
Tu = ((float)(t_low + t_high) * 0.001f);
|
|
|
372 |
SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
|
|
|
373 |
SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
|
|
|
374 |
workKp = 0.6f * Ku;
|
|
|
375 |
workKi = 2 * workKp / Tu;
|
|
|
376 |
workKd = workKp * Tu * 0.125f;
|
|
|
377 |
SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
|
|
|
378 |
SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
|
|
|
379 |
SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
|
|
|
380 |
SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
|
|
|
381 |
/**
|
|
|
382 |
workKp = 0.33*Ku;
|
|
|
383 |
workKi = workKp/Tu;
|
|
|
384 |
workKd = workKp*Tu/3;
|
|
|
385 |
SERIAL_PROTOCOLLNPGM(" Some overshoot");
|
|
|
386 |
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
|
|
|
387 |
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
|
|
|
388 |
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
|
|
|
389 |
workKp = 0.2*Ku;
|
|
|
390 |
workKi = 2*workKp/Tu;
|
|
|
391 |
workKd = workKp*Tu/3;
|
|
|
392 |
SERIAL_PROTOCOLLNPGM(" No overshoot");
|
|
|
393 |
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
|
|
|
394 |
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
|
|
|
395 |
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
|
|
|
396 |
*/
|
|
|
397 |
}
|
|
|
398 |
}
|
|
|
399 |
SHV(soft_pwm_amount, (bias + d) >> 1, (bias + d) >> 1);
|
|
|
400 |
cycles++;
|
|
|
401 |
min = target;
|
|
|
402 |
}
|
|
|
403 |
}
|
|
|
404 |
}
|
|
|
405 |
|
|
|
406 |
// Did the temperature overshoot very far?
|
|
|
407 |
#ifndef MAX_OVERSHOOT_PID_AUTOTUNE
|
|
|
408 |
#define MAX_OVERSHOOT_PID_AUTOTUNE 20
|
|
|
409 |
#endif
|
|
|
410 |
if (current > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
|
|
|
411 |
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
|
|
|
412 |
break;
|
|
|
413 |
}
|
|
|
414 |
|
|
|
415 |
// Report heater states every 2 seconds
|
|
|
416 |
if (ELAPSED(ms, next_temp_ms)) {
|
|
|
417 |
#if HAS_TEMP_SENSOR
|
|
|
418 |
print_heaterstates();
|
|
|
419 |
SERIAL_EOL();
|
|
|
420 |
#endif
|
|
|
421 |
next_temp_ms = ms + 2000UL;
|
|
|
422 |
|
|
|
423 |
// Make sure heating is actually working
|
|
|
424 |
#if WATCH_THE_BED || WATCH_HOTENDS
|
|
|
425 |
if (
|
|
|
426 |
#if WATCH_THE_BED && WATCH_HOTENDS
|
|
|
427 |
true
|
|
|
428 |
#elif WATCH_HOTENDS
|
|
|
429 |
hotend >= 0
|
|
|
430 |
#else
|
|
|
431 |
hotend < 0
|
|
|
432 |
#endif
|
|
|
433 |
) {
|
|
|
434 |
if (!heated) { // If not yet reached target...
|
|
|
435 |
if (current > next_watch_temp) { // Over the watch temp?
|
|
|
436 |
next_watch_temp = current + watch_temp_increase; // - set the next temp to watch for
|
|
|
437 |
temp_change_ms = ms + watch_temp_period * 1000UL; // - move the expiration timer up
|
|
|
438 |
if (current > watch_temp_target) heated = true; // - Flag if target temperature reached
|
|
|
439 |
}
|
|
|
440 |
else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
|
|
|
441 |
_temp_error(hotend, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, hotend));
|
|
|
442 |
}
|
|
|
443 |
else if (current < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
|
|
|
444 |
_temp_error(hotend, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, hotend));
|
|
|
445 |
}
|
|
|
446 |
#endif
|
|
|
447 |
} // every 2 seconds
|
|
|
448 |
|
|
|
449 |
// Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
|
|
|
450 |
#ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
|
|
|
451 |
#define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
|
|
|
452 |
#endif
|
|
|
453 |
if (((ms - t1) + (ms - t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
|
|
|
454 |
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
|
|
|
455 |
break;
|
|
|
456 |
}
|
|
|
457 |
|
|
|
458 |
if (cycles > ncycles) {
|
|
|
459 |
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
|
|
|
460 |
|
|
|
461 |
#if HAS_PID_FOR_BOTH
|
|
|
462 |
const char* estring = GHV("bed", "");
|
|
|
463 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL();
|
|
|
464 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL();
|
|
|
465 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL();
|
|
|
466 |
#elif ENABLED(PIDTEMP)
|
|
|
467 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL();
|
|
|
468 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL();
|
|
|
469 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL();
|
|
|
470 |
#else
|
|
|
471 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL();
|
|
|
472 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL();
|
|
|
473 |
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL();
|
|
|
474 |
#endif
|
|
|
475 |
|
|
|
476 |
#define _SET_BED_PID() do { \
|
|
|
477 |
bedKp = workKp; \
|
|
|
478 |
bedKi = scalePID_i(workKi); \
|
|
|
479 |
bedKd = scalePID_d(workKd); \
|
|
|
480 |
}while(0)
|
|
|
481 |
|
|
|
482 |
#define _SET_EXTRUDER_PID() do { \
|
|
|
483 |
PID_PARAM(Kp, hotend) = workKp; \
|
|
|
484 |
PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
|
|
|
485 |
PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
|
|
|
486 |
update_pid(); }while(0)
|
|
|
487 |
|
|
|
488 |
// Use the result? (As with "M303 U1")
|
|
|
489 |
if (set_result) {
|
|
|
490 |
#if HAS_PID_FOR_BOTH
|
|
|
491 |
if (hotend < 0)
|
|
|
492 |
_SET_BED_PID();
|
|
|
493 |
else
|
|
|
494 |
_SET_EXTRUDER_PID();
|
|
|
495 |
#elif ENABLED(PIDTEMP)
|
|
|
496 |
_SET_EXTRUDER_PID();
|
|
|
497 |
#else
|
|
|
498 |
_SET_BED_PID();
|
|
|
499 |
#endif
|
|
|
500 |
}
|
|
|
501 |
return;
|
|
|
502 |
}
|
|
|
503 |
lcd_update();
|
|
|
504 |
}
|
|
|
505 |
disable_all_heaters();
|
|
|
506 |
}
|
|
|
507 |
|
|
|
508 |
#endif // HAS_PID_HEATING
|
|
|
509 |
|
|
|
510 |
/**
|
|
|
511 |
* Class and Instance Methods
|
|
|
512 |
*/
|
|
|
513 |
|
|
|
514 |
Temperature::Temperature() { }
|
|
|
515 |
|
|
|
516 |
int Temperature::getHeaterPower(const int heater) {
|
|
|
517 |
return (
|
|
|
518 |
#if HAS_HEATED_BED
|
|
|
519 |
heater < 0 ? soft_pwm_amount_bed :
|
|
|
520 |
#endif
|
|
|
521 |
soft_pwm_amount[heater]
|
|
|
522 |
);
|
|
|
523 |
}
|
|
|
524 |
|
|
|
525 |
#if HAS_AUTO_FAN
|
|
|
526 |
|
|
|
527 |
void Temperature::check_extruder_auto_fans() {
|
|
|
528 |
static const pin_t fanPin[] PROGMEM = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN, CHAMBER_AUTO_FAN_PIN };
|
|
|
529 |
static const uint8_t fanBit[] PROGMEM = {
|
|
|
530 |
0,
|
|
|
531 |
AUTO_1_IS_0 ? 0 : 1,
|
|
|
532 |
AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
|
|
|
533 |
AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
|
|
|
534 |
AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4,
|
|
|
535 |
AUTO_CHAMBER_IS_0 ? 0 : AUTO_CHAMBER_IS_1 ? 1 : AUTO_CHAMBER_IS_2 ? 2 : AUTO_CHAMBER_IS_3 ? 3 : AUTO_CHAMBER_IS_4 ? 4 : 5
|
|
|
536 |
};
|
|
|
537 |
uint8_t fanState = 0;
|
|
|
538 |
|
|
|
539 |
HOTEND_LOOP()
|
|
|
540 |
if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
|
541 |
SBI(fanState, pgm_read_byte(&fanBit[e]));
|
|
|
542 |
|
|
|
543 |
#if HAS_TEMP_CHAMBER
|
|
|
544 |
if (current_temperature_chamber > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
|
545 |
SBI(fanState, pgm_read_byte(&fanBit[5]));
|
|
|
546 |
#endif
|
|
|
547 |
|
|
|
548 |
uint8_t fanDone = 0;
|
|
|
549 |
for (uint8_t f = 0; f < COUNT(fanPin); f++) {
|
|
|
550 |
const pin_t pin =
|
|
|
551 |
#ifdef ARDUINO
|
|
|
552 |
pgm_read_byte(&fanPin[f])
|
|
|
553 |
#else
|
|
|
554 |
fanPin[f]
|
|
|
555 |
#endif
|
|
|
556 |
;
|
|
|
557 |
const uint8_t bit = pgm_read_byte(&fanBit[f]);
|
|
|
558 |
if (pin >= 0 && !TEST(fanDone, bit)) {
|
|
|
559 |
uint8_t newFanSpeed = TEST(fanState, bit) ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
|
|
560 |
#if ENABLED(AUTO_POWER_E_FANS)
|
|
|
561 |
autofan_speed[f] = newFanSpeed;
|
|
|
562 |
#endif
|
|
|
563 |
// this idiom allows both digital and PWM fan outputs (see M42 handling).
|
|
|
564 |
digitalWrite(pin, newFanSpeed);
|
|
|
565 |
analogWrite(pin, newFanSpeed);
|
|
|
566 |
SBI(fanDone, bit);
|
|
|
567 |
}
|
|
|
568 |
}
|
|
|
569 |
}
|
|
|
570 |
|
|
|
571 |
#endif // HAS_AUTO_FAN
|
|
|
572 |
|
|
|
573 |
//
|
|
|
574 |
// Temperature Error Handlers
|
|
|
575 |
//
|
|
|
576 |
void Temperature::_temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg) {
|
|
|
577 |
if (IsRunning()) {
|
|
|
578 |
SERIAL_ERROR_START();
|
|
|
579 |
serialprintPGM(serial_msg);
|
|
|
580 |
SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
|
|
|
581 |
if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
|
|
|
582 |
}
|
|
|
583 |
#if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
|
|
|
584 |
static bool killed = false;
|
|
|
585 |
if (!killed) {
|
|
|
586 |
Running = false;
|
|
|
587 |
killed = true;
|
|
|
588 |
kill(lcd_msg);
|
|
|
589 |
}
|
|
|
590 |
else
|
|
|
591 |
disable_all_heaters(); // paranoia
|
|
|
592 |
#endif
|
|
|
593 |
}
|
|
|
594 |
|
|
|
595 |
void Temperature::max_temp_error(const int8_t e) {
|
|
|
596 |
_temp_error(e, PSTR(MSG_T_MAXTEMP), TEMP_ERR_PSTR(MSG_ERR_MAXTEMP, e));
|
|
|
597 |
}
|
|
|
598 |
|
|
|
599 |
void Temperature::min_temp_error(const int8_t e) {
|
|
|
600 |
_temp_error(e, PSTR(MSG_T_MINTEMP), TEMP_ERR_PSTR(MSG_ERR_MINTEMP, e));
|
|
|
601 |
}
|
|
|
602 |
|
|
|
603 |
float Temperature::get_pid_output(const int8_t e) {
|
|
|
604 |
#if HOTENDS == 1
|
|
|
605 |
UNUSED(e);
|
|
|
606 |
#define _HOTEND_TEST true
|
|
|
607 |
#else
|
|
|
608 |
#define _HOTEND_TEST e == active_extruder
|
|
|
609 |
#endif
|
|
|
610 |
float pid_output;
|
|
|
611 |
#if ENABLED(PIDTEMP)
|
|
|
612 |
#if DISABLED(PID_OPENLOOP)
|
|
|
613 |
pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
|
|
|
614 |
dTerm[HOTEND_INDEX] = PID_K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + float(PID_K1) * dTerm[HOTEND_INDEX];
|
|
|
615 |
temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
|
|
|
616 |
|
|
|
617 |
if (target_temperature[HOTEND_INDEX] == 0
|
|
|
618 |
|| pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE)
|
|
|
619 |
#if HEATER_IDLE_HANDLER
|
|
|
620 |
|| heater_idle_timeout_exceeded[HOTEND_INDEX]
|
|
|
621 |
#endif
|
|
|
622 |
) {
|
|
|
623 |
pid_output = 0;
|
|
|
624 |
pid_reset[HOTEND_INDEX] = true;
|
|
|
625 |
}
|
|
|
626 |
else if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
|
|
|
627 |
pid_output = BANG_MAX;
|
|
|
628 |
pid_reset[HOTEND_INDEX] = true;
|
|
|
629 |
}
|
|
|
630 |
else {
|
|
|
631 |
if (pid_reset[HOTEND_INDEX]) {
|
|
|
632 |
temp_iState[HOTEND_INDEX] = 0.0;
|
|
|
633 |
pid_reset[HOTEND_INDEX] = false;
|
|
|
634 |
}
|
|
|
635 |
pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
|
|
|
636 |
temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
|
|
|
637 |
iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
|
|
|
638 |
|
|
|
639 |
pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
|
|
|
640 |
|
|
|
641 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
642 |
cTerm[HOTEND_INDEX] = 0;
|
|
|
643 |
if (_HOTEND_TEST) {
|
|
|
644 |
const long e_position = stepper.position(E_AXIS);
|
|
|
645 |
if (e_position > last_e_position) {
|
|
|
646 |
lpq[lpq_ptr] = e_position - last_e_position;
|
|
|
647 |
last_e_position = e_position;
|
|
|
648 |
}
|
|
|
649 |
else
|
|
|
650 |
lpq[lpq_ptr] = 0;
|
|
|
651 |
|
|
|
652 |
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
|
|
|
653 |
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
|
|
|
654 |
pid_output += cTerm[HOTEND_INDEX];
|
|
|
655 |
}
|
|
|
656 |
#endif // PID_EXTRUSION_SCALING
|
|
|
657 |
|
|
|
658 |
if (pid_output > PID_MAX) {
|
|
|
659 |
if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
|
|
|
660 |
pid_output = PID_MAX;
|
|
|
661 |
}
|
|
|
662 |
else if (pid_output < 0) {
|
|
|
663 |
if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
|
|
|
664 |
pid_output = 0;
|
|
|
665 |
}
|
|
|
666 |
}
|
|
|
667 |
#else
|
|
|
668 |
pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
|
|
|
669 |
#endif // PID_OPENLOOP
|
|
|
670 |
|
|
|
671 |
#if ENABLED(PID_DEBUG)
|
|
|
672 |
SERIAL_ECHO_START();
|
|
|
673 |
SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
|
|
|
674 |
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
|
|
|
675 |
SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
|
|
|
676 |
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
|
|
|
677 |
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
|
|
|
678 |
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
|
|
|
679 |
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
680 |
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
|
|
|
681 |
#endif
|
|
|
682 |
SERIAL_EOL();
|
|
|
683 |
#endif // PID_DEBUG
|
|
|
684 |
|
|
|
685 |
#else /* PID off */
|
|
|
686 |
#if HEATER_IDLE_HANDLER
|
|
|
687 |
if (heater_idle_timeout_exceeded[HOTEND_INDEX])
|
|
|
688 |
pid_output = 0;
|
|
|
689 |
else
|
|
|
690 |
#endif
|
|
|
691 |
pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
|
|
|
692 |
#endif
|
|
|
693 |
|
|
|
694 |
return pid_output;
|
|
|
695 |
}
|
|
|
696 |
|
|
|
697 |
#if ENABLED(PIDTEMPBED)
|
|
|
698 |
float Temperature::get_pid_output_bed() {
|
|
|
699 |
float pid_output;
|
|
|
700 |
#if DISABLED(PID_OPENLOOP)
|
|
|
701 |
pid_error_bed = target_temperature_bed - current_temperature_bed;
|
|
|
702 |
pTerm_bed = bedKp * pid_error_bed;
|
|
|
703 |
temp_iState_bed += pid_error_bed;
|
|
|
704 |
iTerm_bed = bedKi * temp_iState_bed;
|
|
|
705 |
|
|
|
706 |
dTerm_bed = PID_K2 * bedKd * (current_temperature_bed - temp_dState_bed) + PID_K1 * dTerm_bed;
|
|
|
707 |
temp_dState_bed = current_temperature_bed;
|
|
|
708 |
|
|
|
709 |
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
|
|
710 |
if (pid_output > MAX_BED_POWER) {
|
|
|
711 |
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
712 |
pid_output = MAX_BED_POWER;
|
|
|
713 |
}
|
|
|
714 |
else if (pid_output < 0) {
|
|
|
715 |
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
716 |
pid_output = 0;
|
|
|
717 |
}
|
|
|
718 |
#else
|
|
|
719 |
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
|
|
720 |
#endif // PID_OPENLOOP
|
|
|
721 |
|
|
|
722 |
#if ENABLED(PID_BED_DEBUG)
|
|
|
723 |
SERIAL_ECHO_START();
|
|
|
724 |
SERIAL_ECHOPGM(" PID_BED_DEBUG ");
|
|
|
725 |
SERIAL_ECHOPGM(": Input ");
|
|
|
726 |
SERIAL_ECHO(current_temperature_bed);
|
|
|
727 |
SERIAL_ECHOPGM(" Output ");
|
|
|
728 |
SERIAL_ECHO(pid_output);
|
|
|
729 |
SERIAL_ECHOPGM(" pTerm ");
|
|
|
730 |
SERIAL_ECHO(pTerm_bed);
|
|
|
731 |
SERIAL_ECHOPGM(" iTerm ");
|
|
|
732 |
SERIAL_ECHO(iTerm_bed);
|
|
|
733 |
SERIAL_ECHOPGM(" dTerm ");
|
|
|
734 |
SERIAL_ECHOLN(dTerm_bed);
|
|
|
735 |
#endif // PID_BED_DEBUG
|
|
|
736 |
|
|
|
737 |
return pid_output;
|
|
|
738 |
}
|
|
|
739 |
#endif // PIDTEMPBED
|
|
|
740 |
|
|
|
741 |
/**
|
|
|
742 |
* Manage heating activities for extruder hot-ends and a heated bed
|
|
|
743 |
* - Acquire updated temperature readings
|
|
|
744 |
* - Also resets the watchdog timer
|
|
|
745 |
* - Invoke thermal runaway protection
|
|
|
746 |
* - Manage extruder auto-fan
|
|
|
747 |
* - Apply filament width to the extrusion rate (may move)
|
|
|
748 |
* - Update the heated bed PID output value
|
|
|
749 |
*/
|
|
|
750 |
void Temperature::manage_heater() {
|
|
|
751 |
|
|
|
752 |
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
|
753 |
static bool last_pause_state;
|
|
|
754 |
#endif
|
|
|
755 |
|
|
|
756 |
#if ENABLED(EMERGENCY_PARSER)
|
|
|
757 |
if (emergency_parser.killed_by_M112) kill(PSTR(MSG_KILLED));
|
|
|
758 |
#endif
|
|
|
759 |
|
|
|
760 |
if (!temp_meas_ready) return;
|
|
|
761 |
|
|
|
762 |
calculate_celsius_temperatures(); // also resets the watchdog
|
|
|
763 |
|
|
|
764 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
765 |
if (current_temperature[0] > MIN(HEATER_0_MAXTEMP, MAX6675_TMAX - 1.0)) max_temp_error(0);
|
|
|
766 |
if (current_temperature[0] < MAX(HEATER_0_MINTEMP, MAX6675_TMIN + .01)) min_temp_error(0);
|
|
|
767 |
#endif
|
|
|
768 |
|
|
|
769 |
#if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER
|
|
|
770 |
millis_t ms = millis();
|
|
|
771 |
#endif
|
|
|
772 |
|
|
|
773 |
HOTEND_LOOP() {
|
|
|
774 |
|
|
|
775 |
#if HEATER_IDLE_HANDLER
|
|
|
776 |
if (!heater_idle_timeout_exceeded[e] && heater_idle_timeout_ms[e] && ELAPSED(ms, heater_idle_timeout_ms[e]))
|
|
|
777 |
heater_idle_timeout_exceeded[e] = true;
|
|
|
778 |
#endif
|
|
|
779 |
|
|
|
780 |
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
|
781 |
// Check for thermal runaway
|
|
|
782 |
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
|
|
|
783 |
#endif
|
|
|
784 |
|
|
|
785 |
soft_pwm_amount[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)get_pid_output(e) >> 1 : 0;
|
|
|
786 |
|
|
|
787 |
#if WATCH_HOTENDS
|
|
|
788 |
// Make sure temperature is increasing
|
|
|
789 |
if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) { // Time to check this extruder?
|
|
|
790 |
if (degHotend(e) < watch_target_temp[e]) // Failed to increase enough?
|
|
|
791 |
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, e));
|
|
|
792 |
else // Start again if the target is still far off
|
|
|
793 |
start_watching_heater(e);
|
|
|
794 |
}
|
|
|
795 |
#endif
|
|
|
796 |
|
|
|
797 |
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
798 |
// Make sure measured temperatures are close together
|
|
|
799 |
if (ABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
|
|
|
800 |
_temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
|
|
|
801 |
#endif
|
|
|
802 |
|
|
|
803 |
} // HOTEND_LOOP
|
|
|
804 |
|
|
|
805 |
#if HAS_AUTO_FAN
|
|
|
806 |
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
|
|
|
807 |
check_extruder_auto_fans();
|
|
|
808 |
next_auto_fan_check_ms = ms + 2500UL;
|
|
|
809 |
}
|
|
|
810 |
#endif
|
|
|
811 |
|
|
|
812 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
813 |
/**
|
|
|
814 |
* Filament Width Sensor dynamically sets the volumetric multiplier
|
|
|
815 |
* based on a delayed measurement of the filament diameter.
|
|
|
816 |
*/
|
|
|
817 |
if (filament_sensor) {
|
|
|
818 |
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
|
|
|
819 |
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
|
|
820 |
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
|
|
821 |
planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]);
|
|
|
822 |
}
|
|
|
823 |
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
824 |
|
|
|
825 |
#if HAS_HEATED_BED
|
|
|
826 |
|
|
|
827 |
#if WATCH_THE_BED
|
|
|
828 |
// Make sure temperature is increasing
|
|
|
829 |
if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) { // Time to check the bed?
|
|
|
830 |
if (degBed() < watch_target_bed_temp) // Failed to increase enough?
|
|
|
831 |
_temp_error(-1, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -1));
|
|
|
832 |
else // Start again if the target is still far off
|
|
|
833 |
start_watching_bed();
|
|
|
834 |
}
|
|
|
835 |
#endif // WATCH_THE_BED
|
|
|
836 |
|
|
|
837 |
#if DISABLED(PIDTEMPBED)
|
|
|
838 |
if (PENDING(ms, next_bed_check_ms)
|
|
|
839 |
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
|
840 |
&& paused == last_pause_state
|
|
|
841 |
#endif
|
|
|
842 |
) return;
|
|
|
843 |
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
|
|
|
844 |
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
|
845 |
last_pause_state = paused;
|
|
|
846 |
#endif
|
|
|
847 |
#endif
|
|
|
848 |
|
|
|
849 |
#if HEATER_IDLE_HANDLER
|
|
|
850 |
if (!bed_idle_timeout_exceeded && bed_idle_timeout_ms && ELAPSED(ms, bed_idle_timeout_ms))
|
|
|
851 |
bed_idle_timeout_exceeded = true;
|
|
|
852 |
#endif
|
|
|
853 |
|
|
|
854 |
#if HAS_THERMALLY_PROTECTED_BED
|
|
|
855 |
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
|
|
|
856 |
#endif
|
|
|
857 |
|
|
|
858 |
#if HEATER_IDLE_HANDLER
|
|
|
859 |
if (bed_idle_timeout_exceeded) {
|
|
|
860 |
soft_pwm_amount_bed = 0;
|
|
|
861 |
#if DISABLED(PIDTEMPBED)
|
|
|
862 |
WRITE_HEATER_BED(LOW);
|
|
|
863 |
#endif
|
|
|
864 |
}
|
|
|
865 |
else
|
|
|
866 |
#endif
|
|
|
867 |
{
|
|
|
868 |
#if ENABLED(PIDTEMPBED)
|
|
|
869 |
soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
|
|
|
870 |
#else
|
|
|
871 |
// Check if temperature is within the correct band
|
|
|
872 |
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
|
|
|
873 |
#if ENABLED(BED_LIMIT_SWITCHING)
|
|
|
874 |
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
|
|
|
875 |
soft_pwm_amount_bed = 0;
|
|
|
876 |
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
|
|
|
877 |
soft_pwm_amount_bed = MAX_BED_POWER >> 1;
|
|
|
878 |
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
|
|
|
879 |
soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
|
|
|
880 |
#endif
|
|
|
881 |
}
|
|
|
882 |
else {
|
|
|
883 |
soft_pwm_amount_bed = 0;
|
|
|
884 |
WRITE_HEATER_BED(LOW);
|
|
|
885 |
}
|
|
|
886 |
#endif
|
|
|
887 |
}
|
|
|
888 |
#endif // HAS_HEATED_BED
|
|
|
889 |
}
|
|
|
890 |
|
|
|
891 |
#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
|
|
|
892 |
#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
|
|
|
893 |
|
|
|
894 |
/**
|
|
|
895 |
* Bisect search for the range of the 'raw' value, then interpolate
|
|
|
896 |
* proportionally between the under and over values.
|
|
|
897 |
*/
|
|
|
898 |
#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
|
|
|
899 |
uint8_t l = 0, r = LEN, m; \
|
|
|
900 |
for (;;) { \
|
|
|
901 |
m = (l + r) >> 1; \
|
|
|
902 |
if (m == l || m == r) return (short)pgm_read_word(&TBL[LEN-1][1]); \
|
|
|
903 |
short v00 = pgm_read_word(&TBL[m-1][0]), \
|
|
|
904 |
v10 = pgm_read_word(&TBL[m-0][0]); \
|
|
|
905 |
if (raw < v00) r = m; \
|
|
|
906 |
else if (raw > v10) l = m; \
|
|
|
907 |
else { \
|
|
|
908 |
const short v01 = (short)pgm_read_word(&TBL[m-1][1]), \
|
|
|
909 |
v11 = (short)pgm_read_word(&TBL[m-0][1]); \
|
|
|
910 |
return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
|
|
|
911 |
} \
|
|
|
912 |
} \
|
|
|
913 |
}while(0)
|
|
|
914 |
|
|
|
915 |
// Derived from RepRap FiveD extruder::getTemperature()
|
|
|
916 |
// For hot end temperature measurement.
|
|
|
917 |
float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
|
|
|
918 |
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
919 |
if (e > HOTENDS)
|
|
|
920 |
#else
|
|
|
921 |
if (e >= HOTENDS)
|
|
|
922 |
#endif
|
|
|
923 |
{
|
|
|
924 |
SERIAL_ERROR_START();
|
|
|
925 |
SERIAL_ERROR((int)e);
|
|
|
926 |
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
|
|
|
927 |
kill(PSTR(MSG_KILLED));
|
|
|
928 |
return 0.0;
|
|
|
929 |
}
|
|
|
930 |
|
|
|
931 |
switch (e) {
|
|
|
932 |
case 0:
|
|
|
933 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
934 |
return raw * 0.25;
|
|
|
935 |
#elif ENABLED(HEATER_0_USES_AD595)
|
|
|
936 |
return TEMP_AD595(raw);
|
|
|
937 |
#elif ENABLED(HEATER_0_USES_AD8495)
|
|
|
938 |
return TEMP_AD8495(raw);
|
|
|
939 |
#else
|
|
|
940 |
break;
|
|
|
941 |
#endif
|
|
|
942 |
case 1:
|
|
|
943 |
#if ENABLED(HEATER_1_USES_AD595)
|
|
|
944 |
return TEMP_AD595(raw);
|
|
|
945 |
#elif ENABLED(HEATER_1_USES_AD8495)
|
|
|
946 |
return TEMP_AD8495(raw);
|
|
|
947 |
#else
|
|
|
948 |
break;
|
|
|
949 |
#endif
|
|
|
950 |
case 2:
|
|
|
951 |
#if ENABLED(HEATER_2_USES_AD595)
|
|
|
952 |
return TEMP_AD595(raw);
|
|
|
953 |
#elif ENABLED(HEATER_2_USES_AD8495)
|
|
|
954 |
return TEMP_AD8495(raw);
|
|
|
955 |
#else
|
|
|
956 |
break;
|
|
|
957 |
#endif
|
|
|
958 |
case 3:
|
|
|
959 |
#if ENABLED(HEATER_3_USES_AD595)
|
|
|
960 |
return TEMP_AD595(raw);
|
|
|
961 |
#elif ENABLED(HEATER_3_USES_AD8495)
|
|
|
962 |
return TEMP_AD8495(raw);
|
|
|
963 |
#else
|
|
|
964 |
break;
|
|
|
965 |
#endif
|
|
|
966 |
case 4:
|
|
|
967 |
#if ENABLED(HEATER_4_USES_AD595)
|
|
|
968 |
return TEMP_AD595(raw);
|
|
|
969 |
#elif ENABLED(HEATER_4_USES_AD8495)
|
|
|
970 |
return TEMP_AD8495(raw);
|
|
|
971 |
#else
|
|
|
972 |
break;
|
|
|
973 |
#endif
|
|
|
974 |
default: break;
|
|
|
975 |
}
|
|
|
976 |
|
|
|
977 |
#if HOTEND_USES_THERMISTOR
|
|
|
978 |
// Thermistor with conversion table?
|
|
|
979 |
const short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
|
|
|
980 |
SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
|
|
|
981 |
#endif
|
|
|
982 |
|
|
|
983 |
return 0;
|
|
|
984 |
}
|
|
|
985 |
|
|
|
986 |
#if HAS_HEATED_BED
|
|
|
987 |
// Derived from RepRap FiveD extruder::getTemperature()
|
|
|
988 |
// For bed temperature measurement.
|
|
|
989 |
float Temperature::analog_to_celsius_bed(const int raw) {
|
|
|
990 |
#if ENABLED(HEATER_BED_USES_THERMISTOR)
|
|
|
991 |
SCAN_THERMISTOR_TABLE(BEDTEMPTABLE, BEDTEMPTABLE_LEN);
|
|
|
992 |
#elif ENABLED(HEATER_BED_USES_AD595)
|
|
|
993 |
return TEMP_AD595(raw);
|
|
|
994 |
#elif ENABLED(HEATER_BED_USES_AD8495)
|
|
|
995 |
return TEMP_AD8495(raw);
|
|
|
996 |
#else
|
|
|
997 |
return 0;
|
|
|
998 |
#endif
|
|
|
999 |
}
|
|
|
1000 |
#endif // HAS_HEATED_BED
|
|
|
1001 |
|
|
|
1002 |
#if HAS_TEMP_CHAMBER
|
|
|
1003 |
// Derived from RepRap FiveD extruder::getTemperature()
|
|
|
1004 |
// For chamber temperature measurement.
|
|
|
1005 |
float Temperature::analog_to_celsius_chamber(const int raw) {
|
|
|
1006 |
#if ENABLED(HEATER_CHAMBER_USES_THERMISTOR)
|
|
|
1007 |
SCAN_THERMISTOR_TABLE(CHAMBERTEMPTABLE, CHAMBERTEMPTABLE_LEN);
|
|
|
1008 |
#elif ENABLED(HEATER_CHAMBER_USES_AD595)
|
|
|
1009 |
return TEMP_AD595(raw);
|
|
|
1010 |
#elif ENABLED(HEATER_CHAMBER_USES_AD8495)
|
|
|
1011 |
return TEMP_AD8495(raw);
|
|
|
1012 |
#else
|
|
|
1013 |
return 0;
|
|
|
1014 |
#endif
|
|
|
1015 |
}
|
|
|
1016 |
#endif // HAS_TEMP_CHAMBER
|
|
|
1017 |
|
|
|
1018 |
/**
|
|
|
1019 |
* Get the raw values into the actual temperatures.
|
|
|
1020 |
* The raw values are created in interrupt context,
|
|
|
1021 |
* and this function is called from normal context
|
|
|
1022 |
* as it would block the stepper routine.
|
|
|
1023 |
*/
|
|
|
1024 |
void Temperature::calculate_celsius_temperatures() {
|
|
|
1025 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
1026 |
current_temperature_raw[0] = read_max6675();
|
|
|
1027 |
#endif
|
|
|
1028 |
HOTEND_LOOP() current_temperature[e] = analog_to_celsius_hotend(current_temperature_raw[e], e);
|
|
|
1029 |
#if HAS_HEATED_BED
|
|
|
1030 |
current_temperature_bed = analog_to_celsius_bed(current_temperature_bed_raw);
|
|
|
1031 |
#endif
|
|
|
1032 |
#if HAS_TEMP_CHAMBER
|
|
|
1033 |
current_temperature_chamber = analog_to_celsius_chamber(current_temperature_chamber_raw);
|
|
|
1034 |
#endif
|
|
|
1035 |
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
1036 |
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
|
|
|
1037 |
#endif
|
|
|
1038 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
1039 |
filament_width_meas = analog_to_mm_fil_width();
|
|
|
1040 |
#endif
|
|
|
1041 |
|
|
|
1042 |
#if ENABLED(USE_WATCHDOG)
|
|
|
1043 |
// Reset the watchdog after we know we have a temperature measurement.
|
|
|
1044 |
watchdog_reset();
|
|
|
1045 |
#endif
|
|
|
1046 |
|
|
|
1047 |
temp_meas_ready = false;
|
|
|
1048 |
}
|
|
|
1049 |
|
|
|
1050 |
|
|
|
1051 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
1052 |
|
|
|
1053 |
// Convert raw Filament Width to millimeters
|
|
|
1054 |
float Temperature::analog_to_mm_fil_width() {
|
|
|
1055 |
return current_raw_filwidth * 5.0f * (1.0f / 16383.0);
|
|
|
1056 |
}
|
|
|
1057 |
|
|
|
1058 |
/**
|
|
|
1059 |
* Convert Filament Width (mm) to a simple ratio
|
|
|
1060 |
* and reduce to an 8 bit value.
|
|
|
1061 |
*
|
|
|
1062 |
* A nominal width of 1.75 and measured width of 1.73
|
|
|
1063 |
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
|
|
|
1064 |
* a return value of 1.
|
|
|
1065 |
*/
|
|
|
1066 |
int8_t Temperature::widthFil_to_size_ratio() {
|
|
|
1067 |
if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN)
|
|
|
1068 |
return int(100.0f * filament_width_nominal / filament_width_meas) - 100;
|
|
|
1069 |
return 0;
|
|
|
1070 |
}
|
|
|
1071 |
|
|
|
1072 |
#endif
|
|
|
1073 |
|
|
|
1074 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
1075 |
#ifndef MAX6675_SCK_PIN
|
|
|
1076 |
#define MAX6675_SCK_PIN SCK_PIN
|
|
|
1077 |
#endif
|
|
|
1078 |
#ifndef MAX6675_DO_PIN
|
|
|
1079 |
#define MAX6675_DO_PIN MISO_PIN
|
|
|
1080 |
#endif
|
|
|
1081 |
SPI<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
|
|
1082 |
#endif
|
|
|
1083 |
|
|
|
1084 |
/**
|
|
|
1085 |
* Initialize the temperature manager
|
|
|
1086 |
* The manager is implemented by periodic calls to manage_heater()
|
|
|
1087 |
*/
|
|
|
1088 |
void Temperature::init() {
|
|
|
1089 |
|
|
|
1090 |
#if MB(RUMBA) && ( \
|
|
|
1091 |
ENABLED(HEATER_0_USES_AD595) || ENABLED(HEATER_1_USES_AD595) || ENABLED(HEATER_2_USES_AD595) || ENABLED(HEATER_3_USES_AD595) || ENABLED(HEATER_4_USES_AD595) || ENABLED(HEATER_BED_USES_AD595) || ENABLED(HEATER_CHAMBER_USES_AD595) \
|
|
|
1092 |
|| ENABLED(HEATER_0_USES_AD8495) || ENABLED(HEATER_1_USES_AD8495) || ENABLED(HEATER_2_USES_AD8495) || ENABLED(HEATER_3_USES_AD8495) || ENABLED(HEATER_4_USES_AD8495) || ENABLED(HEATER_BED_USES_AD8495) || ENABLED(HEATER_CHAMBER_USES_AD8495))
|
|
|
1093 |
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
|
1094 |
MCUCR = _BV(JTD);
|
|
|
1095 |
MCUCR = _BV(JTD);
|
|
|
1096 |
#endif
|
|
|
1097 |
|
|
|
1098 |
// Finish init of mult hotend arrays
|
|
|
1099 |
HOTEND_LOOP() maxttemp[e] = maxttemp[0];
|
|
|
1100 |
|
|
|
1101 |
#if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
|
|
|
1102 |
last_e_position = 0;
|
|
|
1103 |
#endif
|
|
|
1104 |
|
|
|
1105 |
#if HAS_HEATER_0
|
|
|
1106 |
SET_OUTPUT(HEATER_0_PIN);
|
|
|
1107 |
#endif
|
|
|
1108 |
#if HAS_HEATER_1
|
|
|
1109 |
SET_OUTPUT(HEATER_1_PIN);
|
|
|
1110 |
#endif
|
|
|
1111 |
#if HAS_HEATER_2
|
|
|
1112 |
SET_OUTPUT(HEATER_2_PIN);
|
|
|
1113 |
#endif
|
|
|
1114 |
#if HAS_HEATER_3
|
|
|
1115 |
SET_OUTPUT(HEATER_3_PIN);
|
|
|
1116 |
#endif
|
|
|
1117 |
#if HAS_HEATER_4
|
|
|
1118 |
SET_OUTPUT(HEATER_3_PIN);
|
|
|
1119 |
#endif
|
|
|
1120 |
#if HAS_HEATED_BED
|
|
|
1121 |
SET_OUTPUT(HEATER_BED_PIN);
|
|
|
1122 |
#endif
|
|
|
1123 |
|
|
|
1124 |
#if HAS_FAN0
|
|
|
1125 |
SET_OUTPUT(FAN_PIN);
|
|
|
1126 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1127 |
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1128 |
#endif
|
|
|
1129 |
#endif
|
|
|
1130 |
|
|
|
1131 |
#if HAS_FAN1
|
|
|
1132 |
SET_OUTPUT(FAN1_PIN);
|
|
|
1133 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1134 |
setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1135 |
#endif
|
|
|
1136 |
#endif
|
|
|
1137 |
|
|
|
1138 |
#if HAS_FAN2
|
|
|
1139 |
SET_OUTPUT(FAN2_PIN);
|
|
|
1140 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1141 |
setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1142 |
#endif
|
|
|
1143 |
#endif
|
|
|
1144 |
|
|
|
1145 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
1146 |
|
|
|
1147 |
OUT_WRITE(SCK_PIN, LOW);
|
|
|
1148 |
OUT_WRITE(MOSI_PIN, HIGH);
|
|
|
1149 |
SET_INPUT_PULLUP(MISO_PIN);
|
|
|
1150 |
|
|
|
1151 |
max6675_spi.init();
|
|
|
1152 |
|
|
|
1153 |
OUT_WRITE(SS_PIN, HIGH);
|
|
|
1154 |
OUT_WRITE(MAX6675_SS, HIGH);
|
|
|
1155 |
|
|
|
1156 |
#endif // HEATER_0_USES_MAX6675
|
|
|
1157 |
|
|
|
1158 |
HAL_adc_init();
|
|
|
1159 |
|
|
|
1160 |
#if HAS_TEMP_ADC_0
|
|
|
1161 |
HAL_ANALOG_SELECT(TEMP_0_PIN);
|
|
|
1162 |
#endif
|
|
|
1163 |
#if HAS_TEMP_ADC_1
|
|
|
1164 |
HAL_ANALOG_SELECT(TEMP_1_PIN);
|
|
|
1165 |
#endif
|
|
|
1166 |
#if HAS_TEMP_ADC_2
|
|
|
1167 |
HAL_ANALOG_SELECT(TEMP_2_PIN);
|
|
|
1168 |
#endif
|
|
|
1169 |
#if HAS_TEMP_ADC_3
|
|
|
1170 |
HAL_ANALOG_SELECT(TEMP_3_PIN);
|
|
|
1171 |
#endif
|
|
|
1172 |
#if HAS_TEMP_ADC_4
|
|
|
1173 |
HAL_ANALOG_SELECT(TEMP_4_PIN);
|
|
|
1174 |
#endif
|
|
|
1175 |
#if HAS_HEATED_BED
|
|
|
1176 |
HAL_ANALOG_SELECT(TEMP_BED_PIN);
|
|
|
1177 |
#endif
|
|
|
1178 |
#if HAS_TEMP_CHAMBER
|
|
|
1179 |
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
|
|
|
1180 |
#endif
|
|
|
1181 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
1182 |
HAL_ANALOG_SELECT(FILWIDTH_PIN);
|
|
|
1183 |
#endif
|
|
|
1184 |
|
|
|
1185 |
HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
|
|
|
1186 |
ENABLE_TEMPERATURE_INTERRUPT();
|
|
|
1187 |
|
|
|
1188 |
#if HAS_AUTO_FAN_0
|
|
|
1189 |
#if E0_AUTO_FAN_PIN == FAN1_PIN
|
|
|
1190 |
SET_OUTPUT(E0_AUTO_FAN_PIN);
|
|
|
1191 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1192 |
setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1193 |
#endif
|
|
|
1194 |
#else
|
|
|
1195 |
SET_OUTPUT(E0_AUTO_FAN_PIN);
|
|
|
1196 |
#endif
|
|
|
1197 |
#endif
|
|
|
1198 |
#if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
|
|
|
1199 |
#if E1_AUTO_FAN_PIN == FAN1_PIN
|
|
|
1200 |
SET_OUTPUT(E1_AUTO_FAN_PIN);
|
|
|
1201 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1202 |
setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1203 |
#endif
|
|
|
1204 |
#else
|
|
|
1205 |
SET_OUTPUT(E1_AUTO_FAN_PIN);
|
|
|
1206 |
#endif
|
|
|
1207 |
#endif
|
|
|
1208 |
#if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
|
|
|
1209 |
#if E2_AUTO_FAN_PIN == FAN1_PIN
|
|
|
1210 |
SET_OUTPUT(E2_AUTO_FAN_PIN);
|
|
|
1211 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1212 |
setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1213 |
#endif
|
|
|
1214 |
#else
|
|
|
1215 |
SET_OUTPUT(E2_AUTO_FAN_PIN);
|
|
|
1216 |
#endif
|
|
|
1217 |
#endif
|
|
|
1218 |
#if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
|
|
|
1219 |
#if E3_AUTO_FAN_PIN == FAN1_PIN
|
|
|
1220 |
SET_OUTPUT(E3_AUTO_FAN_PIN);
|
|
|
1221 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1222 |
setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1223 |
#endif
|
|
|
1224 |
#else
|
|
|
1225 |
SET_OUTPUT(E3_AUTO_FAN_PIN);
|
|
|
1226 |
#endif
|
|
|
1227 |
#endif
|
|
|
1228 |
#if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
|
|
|
1229 |
#if E4_AUTO_FAN_PIN == FAN1_PIN
|
|
|
1230 |
SET_OUTPUT(E4_AUTO_FAN_PIN);
|
|
|
1231 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1232 |
setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1233 |
#endif
|
|
|
1234 |
#else
|
|
|
1235 |
SET_OUTPUT(E4_AUTO_FAN_PIN);
|
|
|
1236 |
#endif
|
|
|
1237 |
#endif
|
|
|
1238 |
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_0 && !AUTO_CHAMBER_IS_1 && !AUTO_CHAMBER_IS_2 && !AUTO_CHAMBER_IS_3 && ! AUTO_CHAMBER_IS_4
|
|
|
1239 |
#if CHAMBER_AUTO_FAN_PIN == FAN1_PIN
|
|
|
1240 |
SET_OUTPUT(CHAMBER_AUTO_FAN_PIN);
|
|
|
1241 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1242 |
setPwmFrequency(CHAMBER_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
|
1243 |
#endif
|
|
|
1244 |
#else
|
|
|
1245 |
SET_OUTPUT(CHAMBER_AUTO_FAN_PIN);
|
|
|
1246 |
#endif
|
|
|
1247 |
#endif
|
|
|
1248 |
|
|
|
1249 |
// Wait for temperature measurement to settle
|
|
|
1250 |
delay(250);
|
|
|
1251 |
|
|
|
1252 |
#define TEMP_MIN_ROUTINE(NR) \
|
|
|
1253 |
minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
|
|
|
1254 |
while (analog_to_celsius_hotend(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
|
|
|
1255 |
if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
|
|
|
1256 |
minttemp_raw[NR] += OVERSAMPLENR; \
|
|
|
1257 |
else \
|
|
|
1258 |
minttemp_raw[NR] -= OVERSAMPLENR; \
|
|
|
1259 |
}
|
|
|
1260 |
#define TEMP_MAX_ROUTINE(NR) \
|
|
|
1261 |
maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
|
|
|
1262 |
while (analog_to_celsius_hotend(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
|
|
|
1263 |
if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
|
|
|
1264 |
maxttemp_raw[NR] -= OVERSAMPLENR; \
|
|
|
1265 |
else \
|
|
|
1266 |
maxttemp_raw[NR] += OVERSAMPLENR; \
|
|
|
1267 |
}
|
|
|
1268 |
|
|
|
1269 |
#ifdef HEATER_0_MINTEMP
|
|
|
1270 |
TEMP_MIN_ROUTINE(0);
|
|
|
1271 |
#endif
|
|
|
1272 |
#ifdef HEATER_0_MAXTEMP
|
|
|
1273 |
TEMP_MAX_ROUTINE(0);
|
|
|
1274 |
#endif
|
|
|
1275 |
#if HOTENDS > 1
|
|
|
1276 |
#ifdef HEATER_1_MINTEMP
|
|
|
1277 |
TEMP_MIN_ROUTINE(1);
|
|
|
1278 |
#endif
|
|
|
1279 |
#ifdef HEATER_1_MAXTEMP
|
|
|
1280 |
TEMP_MAX_ROUTINE(1);
|
|
|
1281 |
#endif
|
|
|
1282 |
#if HOTENDS > 2
|
|
|
1283 |
#ifdef HEATER_2_MINTEMP
|
|
|
1284 |
TEMP_MIN_ROUTINE(2);
|
|
|
1285 |
#endif
|
|
|
1286 |
#ifdef HEATER_2_MAXTEMP
|
|
|
1287 |
TEMP_MAX_ROUTINE(2);
|
|
|
1288 |
#endif
|
|
|
1289 |
#if HOTENDS > 3
|
|
|
1290 |
#ifdef HEATER_3_MINTEMP
|
|
|
1291 |
TEMP_MIN_ROUTINE(3);
|
|
|
1292 |
#endif
|
|
|
1293 |
#ifdef HEATER_3_MAXTEMP
|
|
|
1294 |
TEMP_MAX_ROUTINE(3);
|
|
|
1295 |
#endif
|
|
|
1296 |
#if HOTENDS > 4
|
|
|
1297 |
#ifdef HEATER_4_MINTEMP
|
|
|
1298 |
TEMP_MIN_ROUTINE(4);
|
|
|
1299 |
#endif
|
|
|
1300 |
#ifdef HEATER_4_MAXTEMP
|
|
|
1301 |
TEMP_MAX_ROUTINE(4);
|
|
|
1302 |
#endif
|
|
|
1303 |
#endif // HOTENDS > 4
|
|
|
1304 |
#endif // HOTENDS > 3
|
|
|
1305 |
#endif // HOTENDS > 2
|
|
|
1306 |
#endif // HOTENDS > 1
|
|
|
1307 |
|
|
|
1308 |
#if HAS_HEATED_BED
|
|
|
1309 |
#ifdef BED_MINTEMP
|
|
|
1310 |
while (analog_to_celsius_bed(bed_minttemp_raw) < BED_MINTEMP) {
|
|
|
1311 |
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
|
1312 |
bed_minttemp_raw += OVERSAMPLENR;
|
|
|
1313 |
#else
|
|
|
1314 |
bed_minttemp_raw -= OVERSAMPLENR;
|
|
|
1315 |
#endif
|
|
|
1316 |
}
|
|
|
1317 |
#endif // BED_MINTEMP
|
|
|
1318 |
#ifdef BED_MAXTEMP
|
|
|
1319 |
while (analog_to_celsius_bed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
|
|
1320 |
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
|
1321 |
bed_maxttemp_raw -= OVERSAMPLENR;
|
|
|
1322 |
#else
|
|
|
1323 |
bed_maxttemp_raw += OVERSAMPLENR;
|
|
|
1324 |
#endif
|
|
|
1325 |
}
|
|
|
1326 |
#endif // BED_MAXTEMP
|
|
|
1327 |
#endif // HAS_HEATED_BED
|
|
|
1328 |
|
|
|
1329 |
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
1330 |
paused = false;
|
|
|
1331 |
#endif
|
|
|
1332 |
}
|
|
|
1333 |
|
|
|
1334 |
#if ENABLED(FAST_PWM_FAN)
|
|
|
1335 |
|
|
|
1336 |
void Temperature::setPwmFrequency(const pin_t pin, int val) {
|
|
|
1337 |
val &= 0x07;
|
|
|
1338 |
switch (digitalPinToTimer(pin)) {
|
|
|
1339 |
#ifdef TCCR0A
|
|
|
1340 |
#if !AVR_AT90USB1286_FAMILY
|
|
|
1341 |
case TIMER0A:
|
|
|
1342 |
#endif
|
|
|
1343 |
case TIMER0B: //_SET_CS(0, val);
|
|
|
1344 |
break;
|
|
|
1345 |
#endif
|
|
|
1346 |
#ifdef TCCR1A
|
|
|
1347 |
case TIMER1A: case TIMER1B: //_SET_CS(1, val);
|
|
|
1348 |
break;
|
|
|
1349 |
#endif
|
|
|
1350 |
#if defined(TCCR2) || defined(TCCR2A)
|
|
|
1351 |
#ifdef TCCR2
|
|
|
1352 |
case TIMER2:
|
|
|
1353 |
#endif
|
|
|
1354 |
#ifdef TCCR2A
|
|
|
1355 |
case TIMER2A: case TIMER2B:
|
|
|
1356 |
#endif
|
|
|
1357 |
_SET_CS(2, val); break;
|
|
|
1358 |
#endif
|
|
|
1359 |
#ifdef TCCR3A
|
|
|
1360 |
case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
|
|
|
1361 |
#endif
|
|
|
1362 |
#ifdef TCCR4A
|
|
|
1363 |
case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
|
|
|
1364 |
#endif
|
|
|
1365 |
#ifdef TCCR5A
|
|
|
1366 |
case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
|
|
|
1367 |
#endif
|
|
|
1368 |
}
|
|
|
1369 |
}
|
|
|
1370 |
|
|
|
1371 |
#endif // FAST_PWM_FAN
|
|
|
1372 |
|
|
|
1373 |
#if WATCH_HOTENDS
|
|
|
1374 |
/**
|
|
|
1375 |
* Start Heating Sanity Check for hotends that are below
|
|
|
1376 |
* their target temperature by a configurable margin.
|
|
|
1377 |
* This is called when the temperature is set. (M104, M109)
|
|
|
1378 |
*/
|
|
|
1379 |
void Temperature::start_watching_heater(const uint8_t e) {
|
|
|
1380 |
#if HOTENDS == 1
|
|
|
1381 |
UNUSED(e);
|
|
|
1382 |
#endif
|
|
|
1383 |
if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
|
|
|
1384 |
watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
|
|
|
1385 |
watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
|
|
|
1386 |
}
|
|
|
1387 |
else
|
|
|
1388 |
watch_heater_next_ms[HOTEND_INDEX] = 0;
|
|
|
1389 |
}
|
|
|
1390 |
#endif
|
|
|
1391 |
|
|
|
1392 |
#if WATCH_THE_BED
|
|
|
1393 |
/**
|
|
|
1394 |
* Start Heating Sanity Check for hotends that are below
|
|
|
1395 |
* their target temperature by a configurable margin.
|
|
|
1396 |
* This is called when the temperature is set. (M140, M190)
|
|
|
1397 |
*/
|
|
|
1398 |
void Temperature::start_watching_bed() {
|
|
|
1399 |
if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
|
|
|
1400 |
watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
|
|
|
1401 |
watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
|
|
|
1402 |
}
|
|
|
1403 |
else
|
|
|
1404 |
watch_bed_next_ms = 0;
|
|
|
1405 |
}
|
|
|
1406 |
#endif
|
|
|
1407 |
|
|
|
1408 |
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
|
|
|
1409 |
|
|
|
1410 |
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
|
1411 |
Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
|
|
|
1412 |
millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
|
|
|
1413 |
#endif
|
|
|
1414 |
|
|
|
1415 |
#if HAS_THERMALLY_PROTECTED_BED
|
|
|
1416 |
Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
|
|
|
1417 |
millis_t Temperature::thermal_runaway_bed_timer;
|
|
|
1418 |
#endif
|
|
|
1419 |
|
|
|
1420 |
void Temperature::thermal_runaway_protection(Temperature::TRState * const state, millis_t * const timer, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
|
|
|
1421 |
|
|
|
1422 |
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
|
|
|
1423 |
|
|
|
1424 |
/**
|
|
|
1425 |
SERIAL_ECHO_START();
|
|
|
1426 |
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
|
|
|
1427 |
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
|
|
|
1428 |
SERIAL_ECHOPAIR(" ; State:", *state);
|
|
|
1429 |
SERIAL_ECHOPAIR(" ; Timer:", *timer);
|
|
|
1430 |
SERIAL_ECHOPAIR(" ; Temperature:", current);
|
|
|
1431 |
SERIAL_ECHOPAIR(" ; Target Temp:", target);
|
|
|
1432 |
if (heater_id >= 0)
|
|
|
1433 |
SERIAL_ECHOPAIR(" ; Idle Timeout:", heater_idle_timeout_exceeded[heater_id]);
|
|
|
1434 |
else
|
|
|
1435 |
SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle_timeout_exceeded);
|
|
|
1436 |
SERIAL_EOL();
|
|
|
1437 |
*/
|
|
|
1438 |
|
|
|
1439 |
const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
|
|
|
1440 |
|
|
|
1441 |
#if HEATER_IDLE_HANDLER
|
|
|
1442 |
// If the heater idle timeout expires, restart
|
|
|
1443 |
if ((heater_id >= 0 && heater_idle_timeout_exceeded[heater_id])
|
|
|
1444 |
#if HAS_HEATED_BED
|
|
|
1445 |
|| (heater_id < 0 && bed_idle_timeout_exceeded)
|
|
|
1446 |
#endif
|
|
|
1447 |
) {
|
|
|
1448 |
*state = TRInactive;
|
|
|
1449 |
tr_target_temperature[heater_index] = 0;
|
|
|
1450 |
}
|
|
|
1451 |
else
|
|
|
1452 |
#endif
|
|
|
1453 |
{
|
|
|
1454 |
// If the target temperature changes, restart
|
|
|
1455 |
if (tr_target_temperature[heater_index] != target) {
|
|
|
1456 |
tr_target_temperature[heater_index] = target;
|
|
|
1457 |
*state = target > 0 ? TRFirstHeating : TRInactive;
|
|
|
1458 |
}
|
|
|
1459 |
}
|
|
|
1460 |
|
|
|
1461 |
switch (*state) {
|
|
|
1462 |
// Inactive state waits for a target temperature to be set
|
|
|
1463 |
case TRInactive: break;
|
|
|
1464 |
// When first heating, wait for the temperature to be reached then go to Stable state
|
|
|
1465 |
case TRFirstHeating:
|
|
|
1466 |
if (current < tr_target_temperature[heater_index]) break;
|
|
|
1467 |
*state = TRStable;
|
|
|
1468 |
// While the temperature is stable watch for a bad temperature
|
|
|
1469 |
case TRStable:
|
|
|
1470 |
if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
|
|
|
1471 |
*timer = millis() + period_seconds * 1000UL;
|
|
|
1472 |
break;
|
|
|
1473 |
}
|
|
|
1474 |
else if (PENDING(millis(), *timer)) break;
|
|
|
1475 |
*state = TRRunaway;
|
|
|
1476 |
case TRRunaway:
|
|
|
1477 |
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater_id));
|
|
|
1478 |
}
|
|
|
1479 |
}
|
|
|
1480 |
|
|
|
1481 |
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
|
|
|
1482 |
|
|
|
1483 |
void Temperature::disable_all_heaters() {
|
|
|
1484 |
|
|
|
1485 |
#if ENABLED(AUTOTEMP)
|
|
|
1486 |
planner.autotemp_enabled = false;
|
|
|
1487 |
#endif
|
|
|
1488 |
|
|
|
1489 |
HOTEND_LOOP() setTargetHotend(0, e);
|
|
|
1490 |
|
|
|
1491 |
#if HAS_HEATED_BED
|
|
|
1492 |
setTargetBed(0);
|
|
|
1493 |
#endif
|
|
|
1494 |
|
|
|
1495 |
// Unpause and reset everything
|
|
|
1496 |
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
1497 |
pause(false);
|
|
|
1498 |
#endif
|
|
|
1499 |
|
|
|
1500 |
// If all heaters go down then for sure our print job has stopped
|
|
|
1501 |
print_job_timer.stop();
|
|
|
1502 |
|
|
|
1503 |
#define DISABLE_HEATER(NR) { \
|
|
|
1504 |
setTargetHotend(0, NR); \
|
|
|
1505 |
soft_pwm_amount[NR] = 0; \
|
|
|
1506 |
WRITE_HEATER_ ##NR (LOW); \
|
|
|
1507 |
}
|
|
|
1508 |
|
|
|
1509 |
#if HAS_TEMP_HOTEND
|
|
|
1510 |
DISABLE_HEATER(0);
|
|
|
1511 |
#if HOTENDS > 1
|
|
|
1512 |
DISABLE_HEATER(1);
|
|
|
1513 |
#if HOTENDS > 2
|
|
|
1514 |
DISABLE_HEATER(2);
|
|
|
1515 |
#if HOTENDS > 3
|
|
|
1516 |
DISABLE_HEATER(3);
|
|
|
1517 |
#if HOTENDS > 4
|
|
|
1518 |
DISABLE_HEATER(4);
|
|
|
1519 |
#endif // HOTENDS > 4
|
|
|
1520 |
#endif // HOTENDS > 3
|
|
|
1521 |
#endif // HOTENDS > 2
|
|
|
1522 |
#endif // HOTENDS > 1
|
|
|
1523 |
#endif
|
|
|
1524 |
|
|
|
1525 |
#if HAS_HEATED_BED
|
|
|
1526 |
target_temperature_bed = 0;
|
|
|
1527 |
soft_pwm_amount_bed = 0;
|
|
|
1528 |
#if HAS_HEATED_BED
|
|
|
1529 |
WRITE_HEATER_BED(LOW);
|
|
|
1530 |
#endif
|
|
|
1531 |
#endif
|
|
|
1532 |
}
|
|
|
1533 |
|
|
|
1534 |
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
1535 |
|
|
|
1536 |
void Temperature::pause(const bool p) {
|
|
|
1537 |
if (p != paused) {
|
|
|
1538 |
paused = p;
|
|
|
1539 |
if (p) {
|
|
|
1540 |
HOTEND_LOOP() start_heater_idle_timer(e, 0); // timeout immediately
|
|
|
1541 |
#if HAS_HEATED_BED
|
|
|
1542 |
start_bed_idle_timer(0); // timeout immediately
|
|
|
1543 |
#endif
|
|
|
1544 |
}
|
|
|
1545 |
else {
|
|
|
1546 |
HOTEND_LOOP() reset_heater_idle_timer(e);
|
|
|
1547 |
#if HAS_HEATED_BED
|
|
|
1548 |
reset_bed_idle_timer();
|
|
|
1549 |
#endif
|
|
|
1550 |
}
|
|
|
1551 |
}
|
|
|
1552 |
}
|
|
|
1553 |
|
|
|
1554 |
#endif // PROBING_HEATERS_OFF
|
|
|
1555 |
|
|
|
1556 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
1557 |
|
|
|
1558 |
#define MAX6675_HEAT_INTERVAL 250u
|
|
|
1559 |
|
|
|
1560 |
#if ENABLED(MAX6675_IS_MAX31855)
|
|
|
1561 |
uint32_t max6675_temp = 2000;
|
|
|
1562 |
#define MAX6675_ERROR_MASK 7
|
|
|
1563 |
#define MAX6675_DISCARD_BITS 18
|
|
|
1564 |
#define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
|
|
|
1565 |
#else
|
|
|
1566 |
uint16_t max6675_temp = 2000;
|
|
|
1567 |
#define MAX6675_ERROR_MASK 4
|
|
|
1568 |
#define MAX6675_DISCARD_BITS 3
|
|
|
1569 |
#define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
|
|
|
1570 |
#endif
|
|
|
1571 |
|
|
|
1572 |
int Temperature::read_max6675() {
|
|
|
1573 |
|
|
|
1574 |
static millis_t next_max6675_ms = 0;
|
|
|
1575 |
|
|
|
1576 |
millis_t ms = millis();
|
|
|
1577 |
|
|
|
1578 |
if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
|
|
|
1579 |
|
|
|
1580 |
next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
|
|
|
1581 |
|
|
|
1582 |
CBI(
|
|
|
1583 |
#ifdef PRR
|
|
|
1584 |
PRR
|
|
|
1585 |
#elif defined(PRR0)
|
|
|
1586 |
PRR0
|
|
|
1587 |
#endif
|
|
|
1588 |
, PRSPI);
|
|
|
1589 |
SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
|
|
|
1590 |
|
|
|
1591 |
WRITE(MAX6675_SS, 0); // enable TT_MAX6675
|
|
|
1592 |
|
|
|
1593 |
DELAY_NS(100); // Ensure 100ns delay
|
|
|
1594 |
|
|
|
1595 |
// Read a big-endian temperature value
|
|
|
1596 |
max6675_temp = 0;
|
|
|
1597 |
for (uint8_t i = sizeof(max6675_temp); i--;) {
|
|
|
1598 |
max6675_temp |= max6675_spi.receive();
|
|
|
1599 |
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
|
|
|
1600 |
}
|
|
|
1601 |
|
|
|
1602 |
WRITE(MAX6675_SS, 1); // disable TT_MAX6675
|
|
|
1603 |
|
|
|
1604 |
if (max6675_temp & MAX6675_ERROR_MASK) {
|
|
|
1605 |
SERIAL_ERROR_START();
|
|
|
1606 |
SERIAL_ERRORPGM("Temp measurement error! ");
|
|
|
1607 |
#if MAX6675_ERROR_MASK == 7
|
|
|
1608 |
SERIAL_ERRORPGM("MAX31855 ");
|
|
|
1609 |
if (max6675_temp & 1)
|
|
|
1610 |
SERIAL_ERRORLNPGM("Open Circuit");
|
|
|
1611 |
else if (max6675_temp & 2)
|
|
|
1612 |
SERIAL_ERRORLNPGM("Short to GND");
|
|
|
1613 |
else if (max6675_temp & 4)
|
|
|
1614 |
SERIAL_ERRORLNPGM("Short to VCC");
|
|
|
1615 |
#else
|
|
|
1616 |
SERIAL_ERRORLNPGM("MAX6675");
|
|
|
1617 |
#endif
|
|
|
1618 |
max6675_temp = MAX6675_TMAX * 4; // thermocouple open
|
|
|
1619 |
}
|
|
|
1620 |
else
|
|
|
1621 |
max6675_temp >>= MAX6675_DISCARD_BITS;
|
|
|
1622 |
#if ENABLED(MAX6675_IS_MAX31855)
|
|
|
1623 |
// Support negative temperature
|
|
|
1624 |
if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000;
|
|
|
1625 |
#endif
|
|
|
1626 |
|
|
|
1627 |
return (int)max6675_temp;
|
|
|
1628 |
}
|
|
|
1629 |
|
|
|
1630 |
#endif // HEATER_0_USES_MAX6675
|
|
|
1631 |
|
|
|
1632 |
/**
|
|
|
1633 |
* Get raw temperatures
|
|
|
1634 |
*/
|
|
|
1635 |
void Temperature::set_current_temp_raw() {
|
|
|
1636 |
#if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675)
|
|
|
1637 |
current_temperature_raw[0] = raw_temp_value[0];
|
|
|
1638 |
#endif
|
|
|
1639 |
#if HAS_TEMP_ADC_1
|
|
|
1640 |
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
1641 |
redundant_temperature_raw = raw_temp_value[1];
|
|
|
1642 |
#else
|
|
|
1643 |
current_temperature_raw[1] = raw_temp_value[1];
|
|
|
1644 |
#endif
|
|
|
1645 |
#if HAS_TEMP_ADC_2
|
|
|
1646 |
current_temperature_raw[2] = raw_temp_value[2];
|
|
|
1647 |
#if HAS_TEMP_ADC_3
|
|
|
1648 |
current_temperature_raw[3] = raw_temp_value[3];
|
|
|
1649 |
#if HAS_TEMP_ADC_4
|
|
|
1650 |
current_temperature_raw[4] = raw_temp_value[4];
|
|
|
1651 |
#endif
|
|
|
1652 |
#endif
|
|
|
1653 |
#endif
|
|
|
1654 |
#endif
|
|
|
1655 |
|
|
|
1656 |
#if HAS_HEATED_BED
|
|
|
1657 |
current_temperature_bed_raw = raw_temp_bed_value;
|
|
|
1658 |
#endif
|
|
|
1659 |
#if HAS_TEMP_CHAMBER
|
|
|
1660 |
current_temperature_chamber_raw = raw_temp_chamber_value;
|
|
|
1661 |
#endif
|
|
|
1662 |
temp_meas_ready = true;
|
|
|
1663 |
}
|
|
|
1664 |
|
|
|
1665 |
#if ENABLED(PINS_DEBUGGING)
|
|
|
1666 |
/**
|
|
|
1667 |
* monitors endstops & Z probe for changes
|
|
|
1668 |
*
|
|
|
1669 |
* If a change is detected then the LED is toggled and
|
|
|
1670 |
* a message is sent out the serial port
|
|
|
1671 |
*
|
|
|
1672 |
* Yes, we could miss a rapid back & forth change but
|
|
|
1673 |
* that won't matter because this is all manual.
|
|
|
1674 |
*
|
|
|
1675 |
*/
|
|
|
1676 |
void endstop_monitor() {
|
|
|
1677 |
static uint16_t old_live_state_local = 0;
|
|
|
1678 |
static uint8_t local_LED_status = 0;
|
|
|
1679 |
uint16_t live_state_local = 0;
|
|
|
1680 |
#if HAS_X_MIN
|
|
|
1681 |
if (READ(X_MIN_PIN)) SBI(live_state_local, X_MIN);
|
|
|
1682 |
#endif
|
|
|
1683 |
#if HAS_X_MAX
|
|
|
1684 |
if (READ(X_MAX_PIN)) SBI(live_state_local, X_MAX);
|
|
|
1685 |
#endif
|
|
|
1686 |
#if HAS_Y_MIN
|
|
|
1687 |
if (READ(Y_MIN_PIN)) SBI(live_state_local, Y_MIN);
|
|
|
1688 |
#endif
|
|
|
1689 |
#if HAS_Y_MAX
|
|
|
1690 |
if (READ(Y_MAX_PIN)) SBI(live_state_local, Y_MAX);
|
|
|
1691 |
#endif
|
|
|
1692 |
#if HAS_Z_MIN
|
|
|
1693 |
if (READ(Z_MIN_PIN)) SBI(live_state_local, Z_MIN);
|
|
|
1694 |
#endif
|
|
|
1695 |
#if HAS_Z_MAX
|
|
|
1696 |
if (READ(Z_MAX_PIN)) SBI(live_state_local, Z_MAX);
|
|
|
1697 |
#endif
|
|
|
1698 |
#if HAS_Z_MIN_PROBE_PIN
|
|
|
1699 |
if (READ(Z_MIN_PROBE_PIN)) SBI(live_state_local, Z_MIN_PROBE);
|
|
|
1700 |
#endif
|
|
|
1701 |
#if HAS_Z2_MIN
|
|
|
1702 |
if (READ(Z2_MIN_PIN)) SBI(live_state_local, Z2_MIN);
|
|
|
1703 |
#endif
|
|
|
1704 |
#if HAS_Z2_MAX
|
|
|
1705 |
if (READ(Z2_MAX_PIN)) SBI(live_state_local, Z2_MAX);
|
|
|
1706 |
#endif
|
|
|
1707 |
|
|
|
1708 |
uint16_t endstop_change = live_state_local ^ old_live_state_local;
|
|
|
1709 |
|
|
|
1710 |
if (endstop_change) {
|
|
|
1711 |
#if HAS_X_MIN
|
|
|
1712 |
if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR(" X_MIN:", !!TEST(live_state_local, X_MIN));
|
|
|
1713 |
#endif
|
|
|
1714 |
#if HAS_X_MAX
|
|
|
1715 |
if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(live_state_local, X_MAX));
|
|
|
1716 |
#endif
|
|
|
1717 |
#if HAS_Y_MIN
|
|
|
1718 |
if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(live_state_local, Y_MIN));
|
|
|
1719 |
#endif
|
|
|
1720 |
#if HAS_Y_MAX
|
|
|
1721 |
if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(live_state_local, Y_MAX));
|
|
|
1722 |
#endif
|
|
|
1723 |
#if HAS_Z_MIN
|
|
|
1724 |
if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(live_state_local, Z_MIN));
|
|
|
1725 |
#endif
|
|
|
1726 |
#if HAS_Z_MAX
|
|
|
1727 |
if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(live_state_local, Z_MAX));
|
|
|
1728 |
#endif
|
|
|
1729 |
#if HAS_Z_MIN_PROBE_PIN
|
|
|
1730 |
if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(live_state_local, Z_MIN_PROBE));
|
|
|
1731 |
#endif
|
|
|
1732 |
#if HAS_Z2_MIN
|
|
|
1733 |
if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(live_state_local, Z2_MIN));
|
|
|
1734 |
#endif
|
|
|
1735 |
#if HAS_Z2_MAX
|
|
|
1736 |
if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(live_state_local, Z2_MAX));
|
|
|
1737 |
#endif
|
|
|
1738 |
SERIAL_PROTOCOLPGM("\n\n");
|
|
|
1739 |
analogWrite(LED_PIN, local_LED_status);
|
|
|
1740 |
local_LED_status ^= 255;
|
|
|
1741 |
old_live_state_local = live_state_local;
|
|
|
1742 |
}
|
|
|
1743 |
}
|
|
|
1744 |
#endif // PINS_DEBUGGING
|
|
|
1745 |
|
|
|
1746 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
1747 |
uint32_t raw_filwidth_value; // = 0
|
|
|
1748 |
#endif
|
|
|
1749 |
|
|
|
1750 |
void Temperature::readings_ready() {
|
|
|
1751 |
// Update the raw values if they've been read. Else we could be updating them during reading.
|
|
|
1752 |
if (!temp_meas_ready) set_current_temp_raw();
|
|
|
1753 |
|
|
|
1754 |
// Filament Sensor - can be read any time since IIR filtering is used
|
|
|
1755 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
1756 |
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
|
|
1757 |
#endif
|
|
|
1758 |
|
|
|
1759 |
ZERO(raw_temp_value);
|
|
|
1760 |
|
|
|
1761 |
#if HAS_HEATED_BED
|
|
|
1762 |
raw_temp_bed_value = 0;
|
|
|
1763 |
#endif
|
|
|
1764 |
|
|
|
1765 |
#if HAS_TEMP_CHAMBER
|
|
|
1766 |
raw_temp_chamber_value = 0;
|
|
|
1767 |
#endif
|
|
|
1768 |
|
|
|
1769 |
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
|
|
|
1770 |
|
|
|
1771 |
int constexpr temp_dir[] = {
|
|
|
1772 |
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
1773 |
|
|
|
1774 |
#else
|
|
|
1775 |
TEMPDIR(0)
|
|
|
1776 |
#endif
|
|
|
1777 |
#if HOTENDS > 1
|
|
|
1778 |
, TEMPDIR(1)
|
|
|
1779 |
#if HOTENDS > 2
|
|
|
1780 |
, TEMPDIR(2)
|
|
|
1781 |
#if HOTENDS > 3
|
|
|
1782 |
, TEMPDIR(3)
|
|
|
1783 |
#if HOTENDS > 4
|
|
|
1784 |
, TEMPDIR(4)
|
|
|
1785 |
#endif // HOTENDS > 4
|
|
|
1786 |
#endif // HOTENDS > 3
|
|
|
1787 |
#endif // HOTENDS > 2
|
|
|
1788 |
#endif // HOTENDS > 1
|
|
|
1789 |
};
|
|
|
1790 |
|
|
|
1791 |
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
|
|
|
1792 |
const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
|
|
|
1793 |
const bool heater_on = (target_temperature[e] > 0)
|
|
|
1794 |
#if ENABLED(PIDTEMP)
|
|
|
1795 |
|| (soft_pwm_amount[e] > 0)
|
|
|
1796 |
#endif
|
|
|
1797 |
;
|
|
|
1798 |
if (rawtemp > maxttemp_raw[e] * tdir) max_temp_error(e);
|
|
|
1799 |
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && heater_on) {
|
|
|
1800 |
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
1801 |
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
|
1802 |
#endif
|
|
|
1803 |
min_temp_error(e);
|
|
|
1804 |
}
|
|
|
1805 |
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
1806 |
else
|
|
|
1807 |
consecutive_low_temperature_error[e] = 0;
|
|
|
1808 |
#endif
|
|
|
1809 |
}
|
|
|
1810 |
|
|
|
1811 |
#if HAS_HEATED_BED
|
|
|
1812 |
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
|
1813 |
#define GEBED <=
|
|
|
1814 |
#else
|
|
|
1815 |
#define GEBED >=
|
|
|
1816 |
#endif
|
|
|
1817 |
const bool bed_on = (target_temperature_bed > 0)
|
|
|
1818 |
#if ENABLED(PIDTEMPBED)
|
|
|
1819 |
|| (soft_pwm_amount_bed > 0)
|
|
|
1820 |
#endif
|
|
|
1821 |
;
|
|
|
1822 |
if (current_temperature_bed_raw GEBED bed_maxttemp_raw) max_temp_error(-1);
|
|
|
1823 |
if (bed_minttemp_raw GEBED current_temperature_bed_raw && bed_on) min_temp_error(-1);
|
|
|
1824 |
#endif
|
|
|
1825 |
}
|
|
|
1826 |
|
|
|
1827 |
/**
|
|
|
1828 |
* Timer 0 is shared with millis so don't change the prescaler.
|
|
|
1829 |
*
|
|
|
1830 |
* This ISR uses the compare method so it runs at the base
|
|
|
1831 |
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
|
|
|
1832 |
* in OCR0B above (128 or halfway between OVFs).
|
|
|
1833 |
*
|
|
|
1834 |
* - Manage PWM to all the heaters and fan
|
|
|
1835 |
* - Prepare or Measure one of the raw ADC sensor values
|
|
|
1836 |
* - Check new temperature values for MIN/MAX errors (kill on error)
|
|
|
1837 |
* - Step the babysteps value for each axis towards 0
|
|
|
1838 |
* - For PINS_DEBUGGING, monitor and report endstop pins
|
|
|
1839 |
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
|
|
|
1840 |
* - Call planner.tick to count down its "ignore" time
|
|
|
1841 |
*/
|
|
|
1842 |
HAL_TEMP_TIMER_ISR {
|
|
|
1843 |
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
|
|
|
1844 |
|
|
|
1845 |
Temperature::isr();
|
|
|
1846 |
|
|
|
1847 |
HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
|
|
|
1848 |
}
|
|
|
1849 |
|
|
|
1850 |
void Temperature::isr() {
|
|
|
1851 |
|
|
|
1852 |
static int8_t temp_count = -1;
|
|
|
1853 |
static ADCSensorState adc_sensor_state = StartupDelay;
|
|
|
1854 |
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
|
|
|
1855 |
// avoid multiple loads of pwm_count
|
|
|
1856 |
uint8_t pwm_count_tmp = pwm_count;
|
|
|
1857 |
#if ENABLED(ADC_KEYPAD)
|
|
|
1858 |
static unsigned int raw_ADCKey_value = 0;
|
|
|
1859 |
#endif
|
|
|
1860 |
|
|
|
1861 |
// Static members for each heater
|
|
|
1862 |
#if ENABLED(SLOW_PWM_HEATERS)
|
|
|
1863 |
static uint8_t slow_pwm_count = 0;
|
|
|
1864 |
#define ISR_STATICS(n) \
|
|
|
1865 |
static uint8_t soft_pwm_count_ ## n, \
|
|
|
1866 |
state_heater_ ## n = 0, \
|
|
|
1867 |
state_timer_heater_ ## n = 0
|
|
|
1868 |
#else
|
|
|
1869 |
#define ISR_STATICS(n) static uint8_t soft_pwm_count_ ## n = 0
|
|
|
1870 |
#endif
|
|
|
1871 |
|
|
|
1872 |
// Statics per heater
|
|
|
1873 |
ISR_STATICS(0);
|
|
|
1874 |
#if HOTENDS > 1
|
|
|
1875 |
ISR_STATICS(1);
|
|
|
1876 |
#if HOTENDS > 2
|
|
|
1877 |
ISR_STATICS(2);
|
|
|
1878 |
#if HOTENDS > 3
|
|
|
1879 |
ISR_STATICS(3);
|
|
|
1880 |
#if HOTENDS > 4
|
|
|
1881 |
ISR_STATICS(4);
|
|
|
1882 |
#endif // HOTENDS > 4
|
|
|
1883 |
#endif // HOTENDS > 3
|
|
|
1884 |
#endif // HOTENDS > 2
|
|
|
1885 |
#endif // HOTENDS > 1
|
|
|
1886 |
#if HAS_HEATED_BED
|
|
|
1887 |
ISR_STATICS(BED);
|
|
|
1888 |
#endif
|
|
|
1889 |
|
|
|
1890 |
#if DISABLED(SLOW_PWM_HEATERS)
|
|
|
1891 |
constexpr uint8_t pwm_mask =
|
|
|
1892 |
#if ENABLED(SOFT_PWM_DITHER)
|
|
|
1893 |
_BV(SOFT_PWM_SCALE) - 1
|
|
|
1894 |
#else
|
|
|
1895 |
|
|
|
1896 |
#endif
|
|
|
1897 |
;
|
|
|
1898 |
|
|
|
1899 |
/**
|
|
|
1900 |
* Standard PWM modulation
|
|
|
1901 |
*/
|
|
|
1902 |
if (pwm_count_tmp >= 127) {
|
|
|
1903 |
pwm_count_tmp -= 127;
|
|
|
1904 |
soft_pwm_count_0 = (soft_pwm_count_0 & pwm_mask) + soft_pwm_amount[0];
|
|
|
1905 |
WRITE_HEATER_0(soft_pwm_count_0 > pwm_mask ? HIGH : LOW);
|
|
|
1906 |
#if HOTENDS > 1
|
|
|
1907 |
soft_pwm_count_1 = (soft_pwm_count_1 & pwm_mask) + soft_pwm_amount[1];
|
|
|
1908 |
WRITE_HEATER_1(soft_pwm_count_1 > pwm_mask ? HIGH : LOW);
|
|
|
1909 |
#if HOTENDS > 2
|
|
|
1910 |
soft_pwm_count_2 = (soft_pwm_count_2 & pwm_mask) + soft_pwm_amount[2];
|
|
|
1911 |
WRITE_HEATER_2(soft_pwm_count_2 > pwm_mask ? HIGH : LOW);
|
|
|
1912 |
#if HOTENDS > 3
|
|
|
1913 |
soft_pwm_count_3 = (soft_pwm_count_3 & pwm_mask) + soft_pwm_amount[3];
|
|
|
1914 |
WRITE_HEATER_3(soft_pwm_count_3 > pwm_mask ? HIGH : LOW);
|
|
|
1915 |
#if HOTENDS > 4
|
|
|
1916 |
soft_pwm_count_4 = (soft_pwm_count_4 & pwm_mask) + soft_pwm_amount[4];
|
|
|
1917 |
WRITE_HEATER_4(soft_pwm_count_4 > pwm_mask ? HIGH : LOW);
|
|
|
1918 |
#endif // HOTENDS > 4
|
|
|
1919 |
#endif // HOTENDS > 3
|
|
|
1920 |
#endif // HOTENDS > 2
|
|
|
1921 |
#endif // HOTENDS > 1
|
|
|
1922 |
|
|
|
1923 |
#if HAS_HEATED_BED
|
|
|
1924 |
soft_pwm_count_BED = (soft_pwm_count_BED & pwm_mask) + soft_pwm_amount_bed;
|
|
|
1925 |
WRITE_HEATER_BED(soft_pwm_count_BED > pwm_mask ? HIGH : LOW);
|
|
|
1926 |
#endif
|
|
|
1927 |
|
|
|
1928 |
#if ENABLED(FAN_SOFT_PWM)
|
|
|
1929 |
#if HAS_FAN0
|
|
|
1930 |
soft_pwm_count_fan[0] = (soft_pwm_count_fan[0] & pwm_mask) + (soft_pwm_amount_fan[0] >> 1);
|
|
|
1931 |
WRITE_FAN(soft_pwm_count_fan[0] > pwm_mask ? HIGH : LOW);
|
|
|
1932 |
#endif
|
|
|
1933 |
#if HAS_FAN1
|
|
|
1934 |
soft_pwm_count_fan[1] = (soft_pwm_count_fan[1] & pwm_mask) + (soft_pwm_amount_fan[1] >> 1);
|
|
|
1935 |
WRITE_FAN1(soft_pwm_count_fan[1] > pwm_mask ? HIGH : LOW);
|
|
|
1936 |
#endif
|
|
|
1937 |
#if HAS_FAN2
|
|
|
1938 |
soft_pwm_count_fan[2] = (soft_pwm_count_fan[2] & pwm_mask) + (soft_pwm_amount_fan[2] >> 1);
|
|
|
1939 |
WRITE_FAN2(soft_pwm_count_fan[2] > pwm_mask ? HIGH : LOW);
|
|
|
1940 |
#endif
|
|
|
1941 |
#endif
|
|
|
1942 |
}
|
|
|
1943 |
else {
|
|
|
1944 |
if (soft_pwm_count_0 <= pwm_count_tmp) WRITE_HEATER_0(LOW);
|
|
|
1945 |
#if HOTENDS > 1
|
|
|
1946 |
if (soft_pwm_count_1 <= pwm_count_tmp) WRITE_HEATER_1(LOW);
|
|
|
1947 |
#if HOTENDS > 2
|
|
|
1948 |
if (soft_pwm_count_2 <= pwm_count_tmp) WRITE_HEATER_2(LOW);
|
|
|
1949 |
#if HOTENDS > 3
|
|
|
1950 |
if (soft_pwm_count_3 <= pwm_count_tmp) WRITE_HEATER_3(LOW);
|
|
|
1951 |
#if HOTENDS > 4
|
|
|
1952 |
if (soft_pwm_count_4 <= pwm_count_tmp) WRITE_HEATER_4(LOW);
|
|
|
1953 |
#endif // HOTENDS > 4
|
|
|
1954 |
#endif // HOTENDS > 3
|
|
|
1955 |
#endif // HOTENDS > 2
|
|
|
1956 |
#endif // HOTENDS > 1
|
|
|
1957 |
|
|
|
1958 |
#if HAS_HEATED_BED
|
|
|
1959 |
if (soft_pwm_count_BED <= pwm_count_tmp) WRITE_HEATER_BED(LOW);
|
|
|
1960 |
#endif
|
|
|
1961 |
|
|
|
1962 |
#if ENABLED(FAN_SOFT_PWM)
|
|
|
1963 |
#if HAS_FAN0
|
|
|
1964 |
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
|
|
|
1965 |
#endif
|
|
|
1966 |
#if HAS_FAN1
|
|
|
1967 |
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
|
|
|
1968 |
#endif
|
|
|
1969 |
#if HAS_FAN2
|
|
|
1970 |
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
|
|
|
1971 |
#endif
|
|
|
1972 |
#endif
|
|
|
1973 |
}
|
|
|
1974 |
|
|
|
1975 |
// SOFT_PWM_SCALE to frequency:
|
|
|
1976 |
//
|
|
|
1977 |
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
|
1978 |
// 1: / 64 = 15.2588 Hz
|
|
|
1979 |
// 2: / 32 = 30.5176 Hz
|
|
|
1980 |
// 3: / 16 = 61.0352 Hz
|
|
|
1981 |
// 4: / 8 = 122.0703 Hz
|
|
|
1982 |
// 5: / 4 = 244.1406 Hz
|
|
|
1983 |
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
1984 |
|
|
|
1985 |
#else // SLOW_PWM_HEATERS
|
|
|
1986 |
|
|
|
1987 |
/**
|
|
|
1988 |
* SLOW PWM HEATERS
|
|
|
1989 |
*
|
|
|
1990 |
* For relay-driven heaters
|
|
|
1991 |
*/
|
|
|
1992 |
#ifndef MIN_STATE_TIME
|
|
|
1993 |
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
|
|
1994 |
#endif
|
|
|
1995 |
|
|
|
1996 |
// Macros for Slow PWM timer logic
|
|
|
1997 |
#define _SLOW_PWM_ROUTINE(NR, src) \
|
|
|
1998 |
soft_pwm_count_ ##NR = src; \
|
|
|
1999 |
if (soft_pwm_count_ ##NR > 0) { \
|
|
|
2000 |
if (state_timer_heater_ ##NR == 0) { \
|
|
|
2001 |
if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
|
|
|
2002 |
state_heater_ ##NR = 1; \
|
|
|
2003 |
WRITE_HEATER_ ##NR(1); \
|
|
|
2004 |
} \
|
|
|
2005 |
} \
|
|
|
2006 |
else { \
|
|
|
2007 |
if (state_timer_heater_ ##NR == 0) { \
|
|
|
2008 |
if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
|
|
|
2009 |
state_heater_ ##NR = 0; \
|
|
|
2010 |
WRITE_HEATER_ ##NR(0); \
|
|
|
2011 |
} \
|
|
|
2012 |
}
|
|
|
2013 |
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n])
|
|
|
2014 |
|
|
|
2015 |
#define PWM_OFF_ROUTINE(NR) \
|
|
|
2016 |
if (soft_pwm_count_ ##NR < slow_pwm_count) { \
|
|
|
2017 |
if (state_timer_heater_ ##NR == 0) { \
|
|
|
2018 |
if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
|
|
|
2019 |
state_heater_ ##NR = 0; \
|
|
|
2020 |
WRITE_HEATER_ ##NR (0); \
|
|
|
2021 |
} \
|
|
|
2022 |
}
|
|
|
2023 |
|
|
|
2024 |
if (slow_pwm_count == 0) {
|
|
|
2025 |
|
|
|
2026 |
SLOW_PWM_ROUTINE(0);
|
|
|
2027 |
#if HOTENDS > 1
|
|
|
2028 |
SLOW_PWM_ROUTINE(1);
|
|
|
2029 |
#if HOTENDS > 2
|
|
|
2030 |
SLOW_PWM_ROUTINE(2);
|
|
|
2031 |
#if HOTENDS > 3
|
|
|
2032 |
SLOW_PWM_ROUTINE(3);
|
|
|
2033 |
#if HOTENDS > 4
|
|
|
2034 |
SLOW_PWM_ROUTINE(4);
|
|
|
2035 |
#endif // HOTENDS > 4
|
|
|
2036 |
#endif // HOTENDS > 3
|
|
|
2037 |
#endif // HOTENDS > 2
|
|
|
2038 |
#endif // HOTENDS > 1
|
|
|
2039 |
#if HAS_HEATED_BED
|
|
|
2040 |
_SLOW_PWM_ROUTINE(BED, soft_pwm_amount_bed); // BED
|
|
|
2041 |
#endif
|
|
|
2042 |
|
|
|
2043 |
} // slow_pwm_count == 0
|
|
|
2044 |
|
|
|
2045 |
PWM_OFF_ROUTINE(0);
|
|
|
2046 |
#if HOTENDS > 1
|
|
|
2047 |
PWM_OFF_ROUTINE(1);
|
|
|
2048 |
#if HOTENDS > 2
|
|
|
2049 |
PWM_OFF_ROUTINE(2);
|
|
|
2050 |
#if HOTENDS > 3
|
|
|
2051 |
PWM_OFF_ROUTINE(3);
|
|
|
2052 |
#if HOTENDS > 4
|
|
|
2053 |
PWM_OFF_ROUTINE(4);
|
|
|
2054 |
#endif // HOTENDS > 4
|
|
|
2055 |
#endif // HOTENDS > 3
|
|
|
2056 |
#endif // HOTENDS > 2
|
|
|
2057 |
#endif // HOTENDS > 1
|
|
|
2058 |
#if HAS_HEATED_BED
|
|
|
2059 |
PWM_OFF_ROUTINE(BED); // BED
|
|
|
2060 |
#endif
|
|
|
2061 |
|
|
|
2062 |
#if ENABLED(FAN_SOFT_PWM)
|
|
|
2063 |
if (pwm_count_tmp >= 127) {
|
|
|
2064 |
pwm_count_tmp = 0;
|
|
|
2065 |
#if HAS_FAN0
|
|
|
2066 |
soft_pwm_count_fan[0] = soft_pwm_amount_fan[0] >> 1;
|
|
|
2067 |
WRITE_FAN(soft_pwm_count_fan[0] > 0 ? HIGH : LOW);
|
|
|
2068 |
#endif
|
|
|
2069 |
#if HAS_FAN1
|
|
|
2070 |
soft_pwm_count_fan[1] = soft_pwm_amount_fan[1] >> 1;
|
|
|
2071 |
WRITE_FAN1(soft_pwm_count_fan[1] > 0 ? HIGH : LOW);
|
|
|
2072 |
#endif
|
|
|
2073 |
#if HAS_FAN2
|
|
|
2074 |
soft_pwm_count_fan[2] = soft_pwm_amount_fan[2] >> 1;
|
|
|
2075 |
WRITE_FAN2(soft_pwm_count_fan[2] > 0 ? HIGH : LOW);
|
|
|
2076 |
#endif
|
|
|
2077 |
}
|
|
|
2078 |
#if HAS_FAN0
|
|
|
2079 |
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
|
|
|
2080 |
#endif
|
|
|
2081 |
#if HAS_FAN1
|
|
|
2082 |
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
|
|
|
2083 |
#endif
|
|
|
2084 |
#if HAS_FAN2
|
|
|
2085 |
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
|
|
|
2086 |
#endif
|
|
|
2087 |
#endif // FAN_SOFT_PWM
|
|
|
2088 |
|
|
|
2089 |
// SOFT_PWM_SCALE to frequency:
|
|
|
2090 |
//
|
|
|
2091 |
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
|
2092 |
// 1: / 64 = 15.2588 Hz
|
|
|
2093 |
// 2: / 32 = 30.5176 Hz
|
|
|
2094 |
// 3: / 16 = 61.0352 Hz
|
|
|
2095 |
// 4: / 8 = 122.0703 Hz
|
|
|
2096 |
// 5: / 4 = 244.1406 Hz
|
|
|
2097 |
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
2098 |
|
|
|
2099 |
// increment slow_pwm_count only every 64th pwm_count,
|
|
|
2100 |
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
|
|
|
2101 |
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
|
|
|
2102 |
slow_pwm_count++;
|
|
|
2103 |
slow_pwm_count &= 0x7F;
|
|
|
2104 |
|
|
|
2105 |
if (state_timer_heater_0 > 0) state_timer_heater_0--;
|
|
|
2106 |
#if HOTENDS > 1
|
|
|
2107 |
if (state_timer_heater_1 > 0) state_timer_heater_1--;
|
|
|
2108 |
#if HOTENDS > 2
|
|
|
2109 |
if (state_timer_heater_2 > 0) state_timer_heater_2--;
|
|
|
2110 |
#if HOTENDS > 3
|
|
|
2111 |
if (state_timer_heater_3 > 0) state_timer_heater_3--;
|
|
|
2112 |
#if HOTENDS > 4
|
|
|
2113 |
if (state_timer_heater_4 > 0) state_timer_heater_4--;
|
|
|
2114 |
#endif // HOTENDS > 4
|
|
|
2115 |
#endif // HOTENDS > 3
|
|
|
2116 |
#endif // HOTENDS > 2
|
|
|
2117 |
#endif // HOTENDS > 1
|
|
|
2118 |
#if HAS_HEATED_BED
|
|
|
2119 |
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
|
|
|
2120 |
#endif
|
|
|
2121 |
} // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
|
|
|
2122 |
|
|
|
2123 |
#endif // SLOW_PWM_HEATERS
|
|
|
2124 |
|
|
|
2125 |
//
|
|
|
2126 |
// Update lcd buttons 488 times per second
|
|
|
2127 |
//
|
|
|
2128 |
static bool do_buttons;
|
|
|
2129 |
if ((do_buttons ^= true)) lcd_buttons_update();
|
|
|
2130 |
|
|
|
2131 |
/**
|
|
|
2132 |
* One sensor is sampled on every other call of the ISR.
|
|
|
2133 |
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
|
|
|
2134 |
*
|
|
|
2135 |
* On each Prepare pass, ADC is started for a sensor pin.
|
|
|
2136 |
* On the next pass, the ADC value is read and accumulated.
|
|
|
2137 |
*
|
|
|
2138 |
* This gives each ADC 0.9765ms to charge up.
|
|
|
2139 |
*/
|
|
|
2140 |
#define ACCUMULATE_ADC(var) do{ \
|
|
|
2141 |
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
|
|
|
2142 |
else var += HAL_READ_ADC(); \
|
|
|
2143 |
}while(0)
|
|
|
2144 |
|
|
|
2145 |
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
|
|
|
2146 |
|
|
|
2147 |
switch (adc_sensor_state) {
|
|
|
2148 |
|
|
|
2149 |
case SensorsReady: {
|
|
|
2150 |
// All sensors have been read. Stay in this state for a few
|
|
|
2151 |
// ISRs to save on calls to temp update/checking code below.
|
|
|
2152 |
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
|
|
|
2153 |
static uint8_t delay_count = 0;
|
|
|
2154 |
if (extra_loops > 0) {
|
|
|
2155 |
if (delay_count == 0) delay_count = extra_loops; // Init this delay
|
|
|
2156 |
if (--delay_count) // While delaying...
|
|
|
2157 |
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
|
|
|
2158 |
break;
|
|
|
2159 |
}
|
|
|
2160 |
else {
|
|
|
2161 |
adc_sensor_state = StartSampling; // Fall-through to start sampling
|
|
|
2162 |
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
|
|
|
2163 |
}
|
|
|
2164 |
}
|
|
|
2165 |
|
|
|
2166 |
case StartSampling: // Start of sampling loops. Do updates/checks.
|
|
|
2167 |
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
|
|
2168 |
temp_count = 0;
|
|
|
2169 |
readings_ready();
|
|
|
2170 |
}
|
|
|
2171 |
break;
|
|
|
2172 |
|
|
|
2173 |
#if HAS_TEMP_ADC_0
|
|
|
2174 |
case PrepareTemp_0:
|
|
|
2175 |
HAL_START_ADC(TEMP_0_PIN);
|
|
|
2176 |
break;
|
|
|
2177 |
case MeasureTemp_0:
|
|
|
2178 |
ACCUMULATE_ADC(raw_temp_value[0]);
|
|
|
2179 |
break;
|
|
|
2180 |
#endif
|
|
|
2181 |
|
|
|
2182 |
#if HAS_HEATED_BED
|
|
|
2183 |
case PrepareTemp_BED:
|
|
|
2184 |
HAL_START_ADC(TEMP_BED_PIN);
|
|
|
2185 |
break;
|
|
|
2186 |
case MeasureTemp_BED:
|
|
|
2187 |
ACCUMULATE_ADC(raw_temp_bed_value);
|
|
|
2188 |
break;
|
|
|
2189 |
#endif
|
|
|
2190 |
|
|
|
2191 |
#if HAS_TEMP_CHAMBER
|
|
|
2192 |
case PrepareTemp_CHAMBER:
|
|
|
2193 |
HAL_START_ADC(TEMP_CHAMBER_PIN);
|
|
|
2194 |
break;
|
|
|
2195 |
case MeasureTemp_CHAMBER:
|
|
|
2196 |
ACCUMULATE_ADC(raw_temp_chamber_value);
|
|
|
2197 |
break;
|
|
|
2198 |
#endif
|
|
|
2199 |
|
|
|
2200 |
#if HAS_TEMP_ADC_1
|
|
|
2201 |
case PrepareTemp_1:
|
|
|
2202 |
HAL_START_ADC(TEMP_1_PIN);
|
|
|
2203 |
break;
|
|
|
2204 |
case MeasureTemp_1:
|
|
|
2205 |
ACCUMULATE_ADC(raw_temp_value[1]);
|
|
|
2206 |
break;
|
|
|
2207 |
#endif
|
|
|
2208 |
|
|
|
2209 |
#if HAS_TEMP_ADC_2
|
|
|
2210 |
case PrepareTemp_2:
|
|
|
2211 |
HAL_START_ADC(TEMP_2_PIN);
|
|
|
2212 |
break;
|
|
|
2213 |
case MeasureTemp_2:
|
|
|
2214 |
ACCUMULATE_ADC(raw_temp_value[2]);
|
|
|
2215 |
break;
|
|
|
2216 |
#endif
|
|
|
2217 |
|
|
|
2218 |
#if HAS_TEMP_ADC_3
|
|
|
2219 |
case PrepareTemp_3:
|
|
|
2220 |
HAL_START_ADC(TEMP_3_PIN);
|
|
|
2221 |
break;
|
|
|
2222 |
case MeasureTemp_3:
|
|
|
2223 |
ACCUMULATE_ADC(raw_temp_value[3]);
|
|
|
2224 |
break;
|
|
|
2225 |
#endif
|
|
|
2226 |
|
|
|
2227 |
#if HAS_TEMP_ADC_4
|
|
|
2228 |
case PrepareTemp_4:
|
|
|
2229 |
HAL_START_ADC(TEMP_4_PIN);
|
|
|
2230 |
break;
|
|
|
2231 |
case MeasureTemp_4:
|
|
|
2232 |
ACCUMULATE_ADC(raw_temp_value[4]);
|
|
|
2233 |
break;
|
|
|
2234 |
#endif
|
|
|
2235 |
|
|
|
2236 |
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
2237 |
case Prepare_FILWIDTH:
|
|
|
2238 |
HAL_START_ADC(FILWIDTH_PIN);
|
|
|
2239 |
break;
|
|
|
2240 |
case Measure_FILWIDTH:
|
|
|
2241 |
if (!HAL_ADC_READY())
|
|
|
2242 |
next_sensor_state = adc_sensor_state; // redo this state
|
|
|
2243 |
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
|
|
|
2244 |
raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value
|
|
|
2245 |
raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
|
|
|
2246 |
}
|
|
|
2247 |
break;
|
|
|
2248 |
#endif
|
|
|
2249 |
|
|
|
2250 |
#if ENABLED(ADC_KEYPAD)
|
|
|
2251 |
case Prepare_ADC_KEY:
|
|
|
2252 |
HAL_START_ADC(ADC_KEYPAD_PIN);
|
|
|
2253 |
break;
|
|
|
2254 |
case Measure_ADC_KEY:
|
|
|
2255 |
if (!HAL_ADC_READY())
|
|
|
2256 |
next_sensor_state = adc_sensor_state; // redo this state
|
|
|
2257 |
else if (ADCKey_count < 16) {
|
|
|
2258 |
raw_ADCKey_value = HAL_READ_ADC();
|
|
|
2259 |
if (raw_ADCKey_value > 900) {
|
|
|
2260 |
//ADC Key release
|
|
|
2261 |
ADCKey_count = 0;
|
|
|
2262 |
current_ADCKey_raw = 0;
|
|
|
2263 |
}
|
|
|
2264 |
else {
|
|
|
2265 |
current_ADCKey_raw += raw_ADCKey_value;
|
|
|
2266 |
ADCKey_count++;
|
|
|
2267 |
}
|
|
|
2268 |
}
|
|
|
2269 |
break;
|
|
|
2270 |
#endif // ADC_KEYPAD
|
|
|
2271 |
|
|
|
2272 |
case StartupDelay: break;
|
|
|
2273 |
|
|
|
2274 |
} // switch(adc_sensor_state)
|
|
|
2275 |
|
|
|
2276 |
// Go to the next state
|
|
|
2277 |
adc_sensor_state = next_sensor_state;
|
|
|
2278 |
|
|
|
2279 |
//
|
|
|
2280 |
// Additional ~1KHz Tasks
|
|
|
2281 |
//
|
|
|
2282 |
|
|
|
2283 |
#if ENABLED(BABYSTEPPING)
|
|
|
2284 |
LOOP_XYZ(axis) {
|
|
|
2285 |
const int curTodo = babystepsTodo[axis]; // get rid of volatile for performance
|
|
|
2286 |
if (curTodo) {
|
|
|
2287 |
stepper.babystep((AxisEnum)axis, curTodo > 0);
|
|
|
2288 |
if (curTodo > 0) babystepsTodo[axis]--;
|
|
|
2289 |
else babystepsTodo[axis]++;
|
|
|
2290 |
}
|
|
|
2291 |
}
|
|
|
2292 |
#endif // BABYSTEPPING
|
|
|
2293 |
|
|
|
2294 |
// Poll endstops state, if required
|
|
|
2295 |
endstops.poll();
|
|
|
2296 |
|
|
|
2297 |
// Periodically call the planner timer
|
|
|
2298 |
planner.tick();
|
|
|
2299 |
}
|
|
|
2300 |
|
|
|
2301 |
#if HAS_TEMP_SENSOR
|
|
|
2302 |
|
|
|
2303 |
void print_heater_state(const float &c, const float &t,
|
|
|
2304 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
2305 |
const float r,
|
|
|
2306 |
#endif
|
|
|
2307 |
const int8_t e=-3
|
|
|
2308 |
) {
|
|
|
2309 |
#if !(HAS_HEATED_BED && HAS_TEMP_HOTEND && HAS_TEMP_CHAMBER) && HOTENDS <= 1
|
|
|
2310 |
UNUSED(e);
|
|
|
2311 |
#endif
|
|
|
2312 |
|
|
|
2313 |
SERIAL_PROTOCOLCHAR(' ');
|
|
|
2314 |
SERIAL_PROTOCOLCHAR(
|
|
|
2315 |
#if HAS_TEMP_CHAMBER && HAS_HEATED_BED && HAS_TEMP_HOTEND
|
|
|
2316 |
e == -2 ? 'C' : e == -1 ? 'B' : 'T'
|
|
|
2317 |
#elif HAS_HEATED_BED && HAS_TEMP_HOTEND
|
|
|
2318 |
e == -1 ? 'B' : 'T'
|
|
|
2319 |
#elif HAS_TEMP_HOTEND
|
|
|
2320 |
'T'
|
|
|
2321 |
#else
|
|
|
2322 |
'B'
|
|
|
2323 |
#endif
|
|
|
2324 |
);
|
|
|
2325 |
#if HOTENDS > 1
|
|
|
2326 |
if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
|
|
|
2327 |
#endif
|
|
|
2328 |
SERIAL_PROTOCOLCHAR(':');
|
|
|
2329 |
SERIAL_PROTOCOL(c);
|
|
|
2330 |
SERIAL_PROTOCOLPAIR(" /" , t);
|
|
|
2331 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
2332 |
SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
|
|
|
2333 |
SERIAL_PROTOCOLCHAR(')');
|
|
|
2334 |
#endif
|
|
|
2335 |
delay(2);
|
|
|
2336 |
}
|
|
|
2337 |
|
|
|
2338 |
extern uint8_t target_extruder;
|
|
|
2339 |
|
|
|
2340 |
void Temperature::print_heaterstates() {
|
|
|
2341 |
#if HAS_TEMP_HOTEND
|
|
|
2342 |
print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
|
|
|
2343 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
2344 |
, rawHotendTemp(target_extruder)
|
|
|
2345 |
#endif
|
|
|
2346 |
);
|
|
|
2347 |
#endif
|
|
|
2348 |
#if HAS_HEATED_BED
|
|
|
2349 |
print_heater_state(degBed(), degTargetBed()
|
|
|
2350 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
2351 |
, rawBedTemp()
|
|
|
2352 |
#endif
|
|
|
2353 |
, -1 // BED
|
|
|
2354 |
);
|
|
|
2355 |
#endif
|
|
|
2356 |
#if HAS_TEMP_CHAMBER
|
|
|
2357 |
print_heater_state(degChamber(), 0
|
|
|
2358 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
2359 |
, rawChamberTemp()
|
|
|
2360 |
#endif
|
|
|
2361 |
, -2 // CHAMBER
|
|
|
2362 |
);
|
|
|
2363 |
#endif
|
|
|
2364 |
#if HOTENDS > 1
|
|
|
2365 |
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
|
|
|
2366 |
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
2367 |
, rawHotendTemp(e)
|
|
|
2368 |
#endif
|
|
|
2369 |
, e
|
|
|
2370 |
);
|
|
|
2371 |
#endif
|
|
|
2372 |
SERIAL_PROTOCOLPGM(" @:");
|
|
|
2373 |
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
|
|
|
2374 |
#if HAS_HEATED_BED
|
|
|
2375 |
SERIAL_PROTOCOLPGM(" B@:");
|
|
|
2376 |
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
|
2377 |
#endif
|
|
|
2378 |
#if HOTENDS > 1
|
|
|
2379 |
HOTEND_LOOP() {
|
|
|
2380 |
SERIAL_PROTOCOLPAIR(" @", e);
|
|
|
2381 |
SERIAL_PROTOCOLCHAR(':');
|
|
|
2382 |
SERIAL_PROTOCOL(getHeaterPower(e));
|
|
|
2383 |
}
|
|
|
2384 |
#endif
|
|
|
2385 |
}
|
|
|
2386 |
|
|
|
2387 |
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
2388 |
|
|
|
2389 |
uint8_t Temperature::auto_report_temp_interval;
|
|
|
2390 |
millis_t Temperature::next_temp_report_ms;
|
|
|
2391 |
|
|
|
2392 |
void Temperature::auto_report_temperatures() {
|
|
|
2393 |
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
|
|
|
2394 |
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
|
|
2395 |
print_heaterstates();
|
|
|
2396 |
SERIAL_EOL();
|
|
|
2397 |
}
|
|
|
2398 |
}
|
|
|
2399 |
|
|
|
2400 |
#endif // AUTO_REPORT_TEMPERATURES
|
|
|
2401 |
|
|
|
2402 |
#endif // HAS_TEMP_SENSOR
|