1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
|
|
|
23 |
#ifndef UNIFIED_BED_LEVELING_H
|
|
|
24 |
#define UNIFIED_BED_LEVELING_H
|
|
|
25 |
|
|
|
26 |
#include "MarlinConfig.h"
|
|
|
27 |
|
|
|
28 |
//#define UBL_DEVEL_DEBUGGING
|
|
|
29 |
|
|
|
30 |
#include "Marlin.h"
|
|
|
31 |
#include "planner.h"
|
|
|
32 |
#include "math.h"
|
|
|
33 |
#include "configuration_store.h"
|
|
|
34 |
|
|
|
35 |
#define UBL_VERSION "1.01"
|
|
|
36 |
#define UBL_OK false
|
|
|
37 |
#define UBL_ERR true
|
|
|
38 |
|
|
|
39 |
#define USE_NOZZLE_AS_REFERENCE 0
|
|
|
40 |
#define USE_PROBE_AS_REFERENCE 1
|
|
|
41 |
|
|
|
42 |
// ubl_motion.cpp
|
|
|
43 |
|
|
|
44 |
#if ENABLED(UBL_DEVEL_DEBUGGING)
|
|
|
45 |
void debug_current_and_destination(const char * const title);
|
|
|
46 |
#else
|
|
|
47 |
FORCE_INLINE void debug_current_and_destination(const char * const title) { UNUSED(title); }
|
|
|
48 |
#endif
|
|
|
49 |
|
|
|
50 |
// ubl_G29.cpp
|
|
|
51 |
|
|
|
52 |
enum MeshPointType : char { INVALID, REAL, SET_IN_BITMAP };
|
|
|
53 |
|
|
|
54 |
// External references
|
|
|
55 |
|
|
|
56 |
char *ftostr43sign(const float&, char);
|
|
|
57 |
|
|
|
58 |
extern uint8_t ubl_cnt;
|
|
|
59 |
|
|
|
60 |
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
61 |
|
|
|
62 |
#if ENABLED(ULTRA_LCD)
|
|
|
63 |
void lcd_quick_feedback(const bool clear_buttons);
|
|
|
64 |
#endif
|
|
|
65 |
|
|
|
66 |
#define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
|
|
|
67 |
#define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
|
|
|
68 |
|
|
|
69 |
class unified_bed_leveling {
|
|
|
70 |
private:
|
|
|
71 |
|
|
|
72 |
static int g29_verbose_level,
|
|
|
73 |
g29_phase_value,
|
|
|
74 |
g29_repetition_cnt,
|
|
|
75 |
g29_storage_slot,
|
|
|
76 |
g29_map_type;
|
|
|
77 |
static bool g29_c_flag, g29_x_flag, g29_y_flag;
|
|
|
78 |
static float g29_x_pos, g29_y_pos,
|
|
|
79 |
g29_card_thickness,
|
|
|
80 |
g29_constant;
|
|
|
81 |
|
|
|
82 |
#if HAS_BED_PROBE
|
|
|
83 |
static int g29_grid_size;
|
|
|
84 |
#endif
|
|
|
85 |
|
|
|
86 |
#if ENABLED(NEWPANEL)
|
|
|
87 |
static void move_z_with_encoder(const float &multiplier);
|
|
|
88 |
static float measure_point_with_encoder();
|
|
|
89 |
static float measure_business_card_thickness(float in_height);
|
|
|
90 |
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool) _O0;
|
|
|
91 |
static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) _O0;
|
|
|
92 |
#endif
|
|
|
93 |
|
|
|
94 |
static bool g29_parameter_parsing() _O0;
|
|
|
95 |
static void shift_mesh_height();
|
|
|
96 |
static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) _O0;
|
|
|
97 |
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
|
|
|
98 |
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
|
|
99 |
static void g29_what_command();
|
|
|
100 |
static void g29_eeprom_dump();
|
|
|
101 |
static void g29_compare_current_mesh_to_stored_mesh();
|
|
|
102 |
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
|
|
|
103 |
static void smart_fill_mesh();
|
|
|
104 |
|
|
|
105 |
public:
|
|
|
106 |
|
|
|
107 |
static void echo_name();
|
|
|
108 |
static void report_current_mesh();
|
|
|
109 |
static void report_state();
|
|
|
110 |
static void save_ubl_active_state_and_disable();
|
|
|
111 |
static void restore_ubl_active_state_and_leave();
|
|
|
112 |
static void display_map(const int) _O0;
|
|
|
113 |
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]) _O0;
|
|
|
114 |
static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
|
|
|
115 |
static void reset();
|
|
|
116 |
static void invalidate();
|
|
|
117 |
static void set_all_mesh_points_to_value(const float value);
|
|
|
118 |
static void adjust_mesh_to_mean(const bool cflag, const float value);
|
|
|
119 |
static bool sanity_check();
|
|
|
120 |
|
|
|
121 |
static void G29() _O0; // O0 for no optimization
|
|
|
122 |
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
|
|
123 |
|
|
|
124 |
static int8_t storage_slot;
|
|
|
125 |
|
|
|
126 |
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
127 |
|
|
|
128 |
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
|
|
|
129 |
// until determinism prevails
|
|
|
130 |
static constexpr float _mesh_index_to_xpos[16] PROGMEM = {
|
|
|
131 |
MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST),
|
|
|
132 |
MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST),
|
|
|
133 |
MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST),
|
|
|
134 |
MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST),
|
|
|
135 |
MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST),
|
|
|
136 |
MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST),
|
|
|
137 |
MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST),
|
|
|
138 |
MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST)
|
|
|
139 |
};
|
|
|
140 |
|
|
|
141 |
static constexpr float _mesh_index_to_ypos[16] PROGMEM = {
|
|
|
142 |
MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST),
|
|
|
143 |
MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST),
|
|
|
144 |
MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST),
|
|
|
145 |
MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST),
|
|
|
146 |
MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST),
|
|
|
147 |
MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST),
|
|
|
148 |
MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST),
|
|
|
149 |
MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
|
|
|
150 |
};
|
|
|
151 |
|
|
|
152 |
#if ENABLED(ULTIPANEL)
|
|
|
153 |
static bool lcd_map_control;
|
|
|
154 |
#endif
|
|
|
155 |
|
|
|
156 |
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
|
|
157 |
|
|
|
158 |
unified_bed_leveling();
|
|
|
159 |
|
|
|
160 |
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
|
|
161 |
|
|
|
162 |
static int8_t get_cell_index_x(const float &x) {
|
|
|
163 |
const int8_t cx = (x - (MESH_MIN_X)) * (1.0f / (MESH_X_DIST));
|
|
|
164 |
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
|
|
165 |
} // position. But with this defined this way, it is possible
|
|
|
166 |
// to extrapolate off of this point even further out. Probably
|
|
|
167 |
// that is OK because something else should be keeping that from
|
|
|
168 |
// happening and should not be worried about at this level.
|
|
|
169 |
static int8_t get_cell_index_y(const float &y) {
|
|
|
170 |
const int8_t cy = (y - (MESH_MIN_Y)) * (1.0f / (MESH_Y_DIST));
|
|
|
171 |
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
|
|
172 |
} // position. But with this defined this way, it is possible
|
|
|
173 |
// to extrapolate off of this point even further out. Probably
|
|
|
174 |
// that is OK because something else should be keeping that from
|
|
|
175 |
// happening and should not be worried about at this level.
|
|
|
176 |
|
|
|
177 |
static int8_t find_closest_x_index(const float &x) {
|
|
|
178 |
const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5f) * (1.0f / (MESH_X_DIST));
|
|
|
179 |
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
|
|
180 |
}
|
|
|
181 |
|
|
|
182 |
static int8_t find_closest_y_index(const float &y) {
|
|
|
183 |
const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5f) * (1.0f / (MESH_Y_DIST));
|
|
|
184 |
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
|
|
185 |
}
|
|
|
186 |
|
|
|
187 |
/**
|
|
|
188 |
* z2 --|
|
|
|
189 |
* z0 | |
|
|
|
190 |
* | | + (z2-z1)
|
|
|
191 |
* z1 | | |
|
|
|
192 |
* ---+-------------+--------+-- --|
|
|
|
193 |
* a1 a0 a2
|
|
|
194 |
* |<---delta_a---------->|
|
|
|
195 |
*
|
|
|
196 |
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
|
|
197 |
* find the expected Z Height at a position between two known Z-Height locations.
|
|
|
198 |
*
|
|
|
199 |
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
|
|
200 |
* multiplications.
|
|
|
201 |
*/
|
|
|
202 |
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
|
|
203 |
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
|
|
204 |
}
|
|
|
205 |
|
|
|
206 |
/**
|
|
|
207 |
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
|
|
208 |
* the case where the printer is making a vertical line that only crosses horizontal mesh lines.
|
|
|
209 |
*/
|
|
|
210 |
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
|
|
|
211 |
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
212 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
213 |
if (DEBUGGING(LEVELING)) {
|
|
|
214 |
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1_i") : PSTR("yi") );
|
|
|
215 |
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0);
|
|
|
216 |
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
|
|
217 |
SERIAL_ECHOPAIR(",yi=", yi);
|
|
|
218 |
SERIAL_CHAR(')');
|
|
|
219 |
SERIAL_EOL();
|
|
|
220 |
}
|
|
|
221 |
#endif
|
|
|
222 |
|
|
|
223 |
// The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
|
|
|
224 |
return (
|
|
|
225 |
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
226 |
UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
227 |
#else
|
|
|
228 |
NAN
|
|
|
229 |
#endif
|
|
|
230 |
);
|
|
|
231 |
}
|
|
|
232 |
|
|
|
233 |
const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
|
|
|
234 |
z1 = z_values[x1_i][yi];
|
|
|
235 |
|
|
|
236 |
return z1 + xratio * (z_values[MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
|
|
|
237 |
// If it is, it is clamped to the last element of the
|
|
|
238 |
// z_values[][] array and no correction is applied.
|
|
|
239 |
}
|
|
|
240 |
|
|
|
241 |
//
|
|
|
242 |
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
|
|
243 |
//
|
|
|
244 |
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
|
|
|
245 |
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
246 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
247 |
if (DEBUGGING(LEVELING)) {
|
|
|
248 |
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("y1_i") );
|
|
|
249 |
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0);
|
|
|
250 |
SERIAL_ECHOPAIR(", xi=", xi);
|
|
|
251 |
SERIAL_ECHOPAIR(", y1_i=", y1_i);
|
|
|
252 |
SERIAL_CHAR(')');
|
|
|
253 |
SERIAL_EOL();
|
|
|
254 |
}
|
|
|
255 |
#endif
|
|
|
256 |
|
|
|
257 |
// The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
|
|
|
258 |
return (
|
|
|
259 |
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
260 |
UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
261 |
#else
|
|
|
262 |
NAN
|
|
|
263 |
#endif
|
|
|
264 |
);
|
|
|
265 |
}
|
|
|
266 |
|
|
|
267 |
const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
|
|
|
268 |
z1 = z_values[xi][y1_i];
|
|
|
269 |
|
|
|
270 |
return z1 + yratio * (z_values[xi][MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
|
|
|
271 |
// If it is, it is clamped to the last element of the
|
|
|
272 |
// z_values[][] array and no correction is applied.
|
|
|
273 |
}
|
|
|
274 |
|
|
|
275 |
/**
|
|
|
276 |
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
|
|
277 |
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
|
|
278 |
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
|
|
279 |
* on the Y position within the cell.
|
|
|
280 |
*/
|
|
|
281 |
static float get_z_correction(const float &rx0, const float &ry0) {
|
|
|
282 |
const int8_t cx = get_cell_index_x(rx0),
|
|
|
283 |
cy = get_cell_index_y(ry0); // return values are clamped
|
|
|
284 |
|
|
|
285 |
/**
|
|
|
286 |
* Check if the requested location is off the mesh. If so, and
|
|
|
287 |
* UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned.
|
|
|
288 |
*/
|
|
|
289 |
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
290 |
if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y))
|
|
|
291 |
return UBL_Z_RAISE_WHEN_OFF_MESH;
|
|
|
292 |
#endif
|
|
|
293 |
|
|
|
294 |
const float z1 = calc_z0(rx0,
|
|
|
295 |
mesh_index_to_xpos(cx), z_values[cx][cy],
|
|
|
296 |
mesh_index_to_xpos(cx + 1), z_values[MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
|
|
|
297 |
|
|
|
298 |
const float z2 = calc_z0(rx0,
|
|
|
299 |
mesh_index_to_xpos(cx), z_values[cx][MIN(cy, GRID_MAX_POINTS_Y - 2) + 1],
|
|
|
300 |
mesh_index_to_xpos(cx + 1), z_values[MIN(cx, GRID_MAX_POINTS_X - 2) + 1][MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]);
|
|
|
301 |
|
|
|
302 |
float z0 = calc_z0(ry0,
|
|
|
303 |
mesh_index_to_ypos(cy), z1,
|
|
|
304 |
mesh_index_to_ypos(cy + 1), z2);
|
|
|
305 |
|
|
|
306 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
307 |
if (DEBUGGING(MESH_ADJUST)) {
|
|
|
308 |
SERIAL_ECHOPAIR(" raw get_z_correction(", rx0);
|
|
|
309 |
SERIAL_CHAR(',');
|
|
|
310 |
SERIAL_ECHO(ry0);
|
|
|
311 |
SERIAL_ECHOPGM(") = ");
|
|
|
312 |
SERIAL_ECHO_F(z0, 6);
|
|
|
313 |
}
|
|
|
314 |
#endif
|
|
|
315 |
|
|
|
316 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
317 |
if (DEBUGGING(MESH_ADJUST)) {
|
|
|
318 |
SERIAL_ECHOPGM(" >>>---> ");
|
|
|
319 |
SERIAL_ECHO_F(z0, 6);
|
|
|
320 |
SERIAL_EOL();
|
|
|
321 |
}
|
|
|
322 |
#endif
|
|
|
323 |
|
|
|
324 |
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|
|
325 |
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
|
|
326 |
// calculations. If our correction is NAN, we throw it out
|
|
|
327 |
// because part of the Mesh is undefined and we don't have the
|
|
|
328 |
// information we need to complete the height correction.
|
|
|
329 |
|
|
|
330 |
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
331 |
if (DEBUGGING(MESH_ADJUST)) {
|
|
|
332 |
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
|
|
|
333 |
SERIAL_CHAR(',');
|
|
|
334 |
SERIAL_ECHO(ry0);
|
|
|
335 |
SERIAL_CHAR(')');
|
|
|
336 |
SERIAL_EOL();
|
|
|
337 |
}
|
|
|
338 |
#endif
|
|
|
339 |
}
|
|
|
340 |
return z0;
|
|
|
341 |
}
|
|
|
342 |
|
|
|
343 |
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
|
|
|
344 |
return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
|
|
|
345 |
}
|
|
|
346 |
|
|
|
347 |
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
|
|
|
348 |
return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
|
|
|
349 |
}
|
|
|
350 |
|
|
|
351 |
#if UBL_SEGMENTED
|
|
|
352 |
static bool prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate);
|
|
|
353 |
#else
|
|
|
354 |
static void line_to_destination_cartesian(const float &fr, const uint8_t e);
|
|
|
355 |
#endif
|
|
|
356 |
|
|
|
357 |
inline static bool mesh_is_valid() {
|
|
|
358 |
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
359 |
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
360 |
if (isnan(z_values[x][y])) return false;
|
|
|
361 |
return true;
|
|
|
362 |
}
|
|
|
363 |
|
|
|
364 |
}; // class unified_bed_leveling
|
|
|
365 |
|
|
|
366 |
extern unified_bed_leveling ubl;
|
|
|
367 |
|
|
|
368 |
FORCE_INLINE void gcode_G29() { ubl.G29(); }
|
|
|
369 |
|
|
|
370 |
#endif // UNIFIED_BED_LEVELING_H
|