1 |
ron |
1 |
/**
|
|
|
2 |
* Marlin 3D Printer Firmware
|
|
|
3 |
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
4 |
*
|
|
|
5 |
* Based on Sprinter and grbl.
|
|
|
6 |
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
7 |
*
|
|
|
8 |
* This program is free software: you can redistribute it and/or modify
|
|
|
9 |
* it under the terms of the GNU General Public License as published by
|
|
|
10 |
* the Free Software Foundation, either version 3 of the License, or
|
|
|
11 |
* (at your option) any later version.
|
|
|
12 |
*
|
|
|
13 |
* This program is distributed in the hope that it will be useful,
|
|
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
16 |
* GNU General Public License for more details.
|
|
|
17 |
*
|
|
|
18 |
* You should have received a copy of the GNU General Public License
|
|
|
19 |
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
20 |
*
|
|
|
21 |
*/
|
|
|
22 |
#include "MarlinConfig.h"
|
|
|
23 |
|
|
|
24 |
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
25 |
|
|
|
26 |
#include "Marlin.h"
|
|
|
27 |
#include "ubl.h"
|
|
|
28 |
#include "planner.h"
|
|
|
29 |
#include "stepper.h"
|
|
|
30 |
#include <avr/io.h>
|
|
|
31 |
#include <math.h>
|
|
|
32 |
|
|
|
33 |
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
|
34 |
inline void set_current_from_destination() { COPY(current_position, destination); }
|
|
|
35 |
#else
|
|
|
36 |
extern void set_current_from_destination();
|
|
|
37 |
#endif
|
|
|
38 |
|
|
|
39 |
#if !UBL_SEGMENTED
|
|
|
40 |
|
|
|
41 |
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
|
|
|
42 |
/**
|
|
|
43 |
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
|
|
44 |
* as possible to determine if this is the case. If this move is within the same cell, we will
|
|
|
45 |
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
|
|
46 |
*/
|
|
|
47 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
48 |
// For skew correction just adjust the destination point and we're done
|
|
|
49 |
float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART] },
|
|
|
50 |
end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_CART] };
|
|
|
51 |
planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);
|
|
|
52 |
planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);
|
|
|
53 |
#else
|
|
|
54 |
const float (&start)[XYZE] = current_position,
|
|
|
55 |
(&end)[XYZE] = destination;
|
|
|
56 |
#endif
|
|
|
57 |
|
|
|
58 |
const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
|
|
|
59 |
cell_start_yi = get_cell_index_y(start[Y_AXIS]),
|
|
|
60 |
cell_dest_xi = get_cell_index_x(end[X_AXIS]),
|
|
|
61 |
cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
|
|
|
62 |
|
|
|
63 |
if (g26_debug_flag) {
|
|
|
64 |
SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);
|
|
|
65 |
SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);
|
|
|
66 |
SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);
|
|
|
67 |
SERIAL_ECHOPAIR(", ee=", destination[E_CART]);
|
|
|
68 |
SERIAL_CHAR(')');
|
|
|
69 |
SERIAL_EOL();
|
|
|
70 |
debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
|
|
|
71 |
}
|
|
|
72 |
|
|
|
73 |
// A move within the same cell needs no splitting
|
|
|
74 |
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) {
|
|
|
75 |
|
|
|
76 |
// For a move off the bed, use a constant Z raise
|
|
|
77 |
if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
78 |
|
|
|
79 |
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
|
|
80 |
// a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
81 |
// value, that will be used instead of a calculated (Bi-Linear interpolation) correction.
|
|
|
82 |
|
|
|
83 |
const float z_raise = 0.0
|
|
|
84 |
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
85 |
+ UBL_Z_RAISE_WHEN_OFF_MESH
|
|
|
86 |
#endif
|
|
|
87 |
;
|
|
|
88 |
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z_raise, end[E_CART], feed_rate, extruder);
|
|
|
89 |
set_current_from_destination();
|
|
|
90 |
|
|
|
91 |
if (g26_debug_flag)
|
|
|
92 |
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));
|
|
|
93 |
|
|
|
94 |
return;
|
|
|
95 |
}
|
|
|
96 |
|
|
|
97 |
FINAL_MOVE:
|
|
|
98 |
|
|
|
99 |
// The distance is always MESH_X_DIST so multiply by the constant reciprocal.
|
|
|
100 |
const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0f / (MESH_X_DIST));
|
|
|
101 |
|
|
|
102 |
float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
|
|
103 |
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
|
|
|
104 |
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
|
|
105 |
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
|
|
|
106 |
|
|
|
107 |
if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
|
|
|
108 |
|
|
|
109 |
// X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
|
|
|
110 |
const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0f / (MESH_Y_DIST)),
|
|
|
111 |
z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
|
|
|
112 |
|
|
|
113 |
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
|
114 |
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
|
115 |
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + (isnan(z0) ? 0.0 : z0), end[E_CART], feed_rate, extruder);
|
|
|
116 |
|
|
|
117 |
if (g26_debug_flag)
|
|
|
118 |
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
|
|
|
119 |
|
|
|
120 |
set_current_from_destination();
|
|
|
121 |
return;
|
|
|
122 |
}
|
|
|
123 |
|
|
|
124 |
/**
|
|
|
125 |
* Past this point the move is known to cross one or more mesh lines. Check for the most common
|
|
|
126 |
* case - crossing only one X or Y line - after details are worked out to reduce computation.
|
|
|
127 |
*/
|
|
|
128 |
|
|
|
129 |
const float dx = end[X_AXIS] - start[X_AXIS],
|
|
|
130 |
dy = end[Y_AXIS] - start[Y_AXIS];
|
|
|
131 |
|
|
|
132 |
const int left_flag = dx < 0.0 ? 1 : 0,
|
|
|
133 |
down_flag = dy < 0.0 ? 1 : 0;
|
|
|
134 |
|
|
|
135 |
const float adx = left_flag ? -dx : dx,
|
|
|
136 |
ady = down_flag ? -dy : dy;
|
|
|
137 |
|
|
|
138 |
const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
|
|
|
139 |
dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
|
|
|
140 |
|
|
|
141 |
/**
|
|
|
142 |
* Compute the extruder scaling factor for each partial move, checking for
|
|
|
143 |
* zero-length moves that would result in an infinite scaling factor.
|
|
|
144 |
* A float divide is required for this, but then it just multiplies.
|
|
|
145 |
* Also select a scaling factor based on the larger of the X and Y
|
|
|
146 |
* components. The larger of the two is used to preserve precision.
|
|
|
147 |
*/
|
|
|
148 |
|
|
|
149 |
const bool use_x_dist = adx > ady;
|
|
|
150 |
|
|
|
151 |
float on_axis_distance = use_x_dist ? dx : dy,
|
|
|
152 |
e_position = end[E_CART] - start[E_CART],
|
|
|
153 |
z_position = end[Z_AXIS] - start[Z_AXIS];
|
|
|
154 |
|
|
|
155 |
const float e_normalized_dist = e_position / on_axis_distance,
|
|
|
156 |
z_normalized_dist = z_position / on_axis_distance;
|
|
|
157 |
|
|
|
158 |
int current_xi = cell_start_xi,
|
|
|
159 |
current_yi = cell_start_yi;
|
|
|
160 |
|
|
|
161 |
const float m = dy / dx,
|
|
|
162 |
c = start[Y_AXIS] - m * start[X_AXIS];
|
|
|
163 |
|
|
|
164 |
const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
|
|
|
165 |
inf_m_flag = (isinf(m) != 0);
|
|
|
166 |
|
|
|
167 |
/**
|
|
|
168 |
* Handle vertical lines that stay within one column.
|
|
|
169 |
* These need not be perfectly vertical.
|
|
|
170 |
*/
|
|
|
171 |
if (dxi == 0) { // Vertical line?
|
|
|
172 |
current_yi += down_flag; // Line going down? Just go to the bottom.
|
|
|
173 |
while (current_yi != cell_dest_yi + down_flag) {
|
|
|
174 |
current_yi += dyi;
|
|
|
175 |
const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
|
|
|
176 |
|
|
|
177 |
/**
|
|
|
178 |
* Skip the calculations for an infinite slope.
|
|
|
179 |
* For others the next X is the same so this can continue.
|
|
|
180 |
* Calculate X at the next Y mesh line.
|
|
|
181 |
*/
|
|
|
182 |
const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
|
|
183 |
|
|
|
184 |
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
|
|
|
185 |
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
186 |
|
|
|
187 |
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
|
188 |
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
|
189 |
if (isnan(z0)) z0 = 0.0;
|
|
|
190 |
|
|
|
191 |
const float ry = mesh_index_to_ypos(current_yi);
|
|
|
192 |
|
|
|
193 |
/**
|
|
|
194 |
* Without this check, it's possible to generate a zero length move, as in the case where
|
|
|
195 |
* the line is heading down, starting exactly on a mesh line boundary. Since this is rare
|
|
|
196 |
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
|
|
197 |
*/
|
|
|
198 |
if (ry != start[Y_AXIS]) {
|
|
|
199 |
if (!inf_normalized_flag) {
|
|
|
200 |
on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
|
|
|
201 |
e_position = start[E_CART] + on_axis_distance * e_normalized_dist;
|
|
|
202 |
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
203 |
}
|
|
|
204 |
else {
|
|
|
205 |
e_position = end[E_CART];
|
|
|
206 |
z_position = end[Z_AXIS];
|
|
|
207 |
}
|
|
|
208 |
|
|
|
209 |
planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
210 |
} //else printf("FIRST MOVE PRUNED ");
|
|
|
211 |
}
|
|
|
212 |
|
|
|
213 |
if (g26_debug_flag)
|
|
|
214 |
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
|
|
|
215 |
|
|
|
216 |
// At the final destination? Usually not, but when on a Y Mesh Line it's completed.
|
|
|
217 |
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
|
218 |
goto FINAL_MOVE;
|
|
|
219 |
|
|
|
220 |
set_current_from_destination();
|
|
|
221 |
return;
|
|
|
222 |
}
|
|
|
223 |
|
|
|
224 |
/**
|
|
|
225 |
* Handle horizontal lines that stay within one row.
|
|
|
226 |
* These need not be perfectly horizontal.
|
|
|
227 |
*/
|
|
|
228 |
if (dyi == 0) { // Horizontal line?
|
|
|
229 |
current_xi += left_flag; // Heading left? Just go to the left edge of the cell for the first move.
|
|
|
230 |
while (current_xi != cell_dest_xi + left_flag) {
|
|
|
231 |
current_xi += dxi;
|
|
|
232 |
const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
|
|
|
233 |
ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
|
|
234 |
|
|
|
235 |
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
|
|
|
236 |
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
237 |
|
|
|
238 |
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
|
239 |
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
|
240 |
if (isnan(z0)) z0 = 0.0;
|
|
|
241 |
|
|
|
242 |
const float rx = mesh_index_to_xpos(current_xi);
|
|
|
243 |
|
|
|
244 |
/**
|
|
|
245 |
* Without this check, it's possible to generate a zero length move, as in the case where
|
|
|
246 |
* the line is heading left, starting exactly on a mesh line boundary. Since this is rare
|
|
|
247 |
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
|
|
248 |
*/
|
|
|
249 |
if (rx != start[X_AXIS]) {
|
|
|
250 |
if (!inf_normalized_flag) {
|
|
|
251 |
on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
|
|
|
252 |
e_position = start[E_CART] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
|
|
253 |
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
254 |
}
|
|
|
255 |
else {
|
|
|
256 |
e_position = end[E_CART];
|
|
|
257 |
z_position = end[Z_AXIS];
|
|
|
258 |
}
|
|
|
259 |
|
|
|
260 |
if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder))
|
|
|
261 |
break;
|
|
|
262 |
} //else printf("FIRST MOVE PRUNED ");
|
|
|
263 |
}
|
|
|
264 |
|
|
|
265 |
if (g26_debug_flag)
|
|
|
266 |
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));
|
|
|
267 |
|
|
|
268 |
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
|
269 |
goto FINAL_MOVE;
|
|
|
270 |
|
|
|
271 |
set_current_from_destination();
|
|
|
272 |
return;
|
|
|
273 |
}
|
|
|
274 |
|
|
|
275 |
/**
|
|
|
276 |
*
|
|
|
277 |
* Handle the generic case of a line crossing both X and Y Mesh lines.
|
|
|
278 |
*
|
|
|
279 |
*/
|
|
|
280 |
|
|
|
281 |
int xi_cnt = cell_start_xi - cell_dest_xi,
|
|
|
282 |
yi_cnt = cell_start_yi - cell_dest_yi;
|
|
|
283 |
|
|
|
284 |
if (xi_cnt < 0) xi_cnt = -xi_cnt;
|
|
|
285 |
if (yi_cnt < 0) yi_cnt = -yi_cnt;
|
|
|
286 |
|
|
|
287 |
current_xi += left_flag;
|
|
|
288 |
current_yi += down_flag;
|
|
|
289 |
|
|
|
290 |
while (xi_cnt || yi_cnt) {
|
|
|
291 |
|
|
|
292 |
const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
|
|
|
293 |
next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
|
|
|
294 |
ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
|
|
295 |
rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
|
|
296 |
// (No need to worry about m being zero.
|
|
|
297 |
// If that was the case, it was already detected
|
|
|
298 |
// as a vertical line move above.)
|
|
|
299 |
|
|
|
300 |
if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
|
|
|
301 |
// Yes! Crossing a Y Mesh Line next
|
|
|
302 |
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
|
|
|
303 |
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
304 |
|
|
|
305 |
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
|
306 |
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
|
307 |
if (isnan(z0)) z0 = 0.0;
|
|
|
308 |
|
|
|
309 |
if (!inf_normalized_flag) {
|
|
|
310 |
on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
|
|
|
311 |
e_position = start[E_CART] + on_axis_distance * e_normalized_dist;
|
|
|
312 |
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
313 |
}
|
|
|
314 |
else {
|
|
|
315 |
e_position = end[E_CART];
|
|
|
316 |
z_position = end[Z_AXIS];
|
|
|
317 |
}
|
|
|
318 |
if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder))
|
|
|
319 |
break;
|
|
|
320 |
current_yi += dyi;
|
|
|
321 |
yi_cnt--;
|
|
|
322 |
}
|
|
|
323 |
else {
|
|
|
324 |
// Yes! Crossing a X Mesh Line next
|
|
|
325 |
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
|
|
|
326 |
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
327 |
|
|
|
328 |
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
|
329 |
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
|
330 |
if (isnan(z0)) z0 = 0.0;
|
|
|
331 |
|
|
|
332 |
if (!inf_normalized_flag) {
|
|
|
333 |
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
|
|
|
334 |
e_position = start[E_CART] + on_axis_distance * e_normalized_dist;
|
|
|
335 |
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
336 |
}
|
|
|
337 |
else {
|
|
|
338 |
e_position = end[E_CART];
|
|
|
339 |
z_position = end[Z_AXIS];
|
|
|
340 |
}
|
|
|
341 |
|
|
|
342 |
if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder))
|
|
|
343 |
break;
|
|
|
344 |
current_xi += dxi;
|
|
|
345 |
xi_cnt--;
|
|
|
346 |
}
|
|
|
347 |
|
|
|
348 |
if (xi_cnt < 0 || yi_cnt < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
|
|
|
349 |
}
|
|
|
350 |
|
|
|
351 |
if (g26_debug_flag)
|
|
|
352 |
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));
|
|
|
353 |
|
|
|
354 |
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
|
355 |
goto FINAL_MOVE;
|
|
|
356 |
|
|
|
357 |
set_current_from_destination();
|
|
|
358 |
}
|
|
|
359 |
|
|
|
360 |
#else // UBL_SEGMENTED
|
|
|
361 |
|
|
|
362 |
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
363 |
static float scara_feed_factor, scara_oldA, scara_oldB;
|
|
|
364 |
#endif
|
|
|
365 |
|
|
|
366 |
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
367 |
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
|
368 |
|
|
|
369 |
inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
|
|
|
370 |
|
|
|
371 |
#if ENABLED(SKEW_CORRECTION)
|
|
|
372 |
float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
|
|
|
373 |
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
|
|
|
374 |
#else
|
|
|
375 |
const float (&raw)[XYZE] = in_raw;
|
|
|
376 |
#endif
|
|
|
377 |
|
|
|
378 |
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
379 |
|
|
|
380 |
DELTA_IK(raw);
|
|
|
381 |
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_CART], fr, active_extruder);
|
|
|
382 |
|
|
|
383 |
#elif ENABLED(HANGPRINTER) // apply hangprinter inverse_kinematics
|
|
|
384 |
|
|
|
385 |
HANGPRINTER_IK(raw);
|
|
|
386 |
planner.buffer_segment(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], in_raw[E_CART], fr, active_extruder);
|
|
|
387 |
|
|
|
388 |
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
389 |
|
|
|
390 |
inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
|
|
|
391 |
// should move the feedrate scaling to scara inverse_kinematics
|
|
|
392 |
|
|
|
393 |
const float adiff = ABS(delta[A_AXIS] - scara_oldA),
|
|
|
394 |
bdiff = ABS(delta[B_AXIS] - scara_oldB);
|
|
|
395 |
scara_oldA = delta[A_AXIS];
|
|
|
396 |
scara_oldB = delta[B_AXIS];
|
|
|
397 |
float s_feedrate = MAX(adiff, bdiff) * scara_feed_factor;
|
|
|
398 |
|
|
|
399 |
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_CART], s_feedrate, active_extruder);
|
|
|
400 |
|
|
|
401 |
#else // CARTESIAN
|
|
|
402 |
|
|
|
403 |
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_CART], fr, active_extruder);
|
|
|
404 |
|
|
|
405 |
#endif
|
|
|
406 |
}
|
|
|
407 |
|
|
|
408 |
#if IS_SCARA
|
|
|
409 |
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
|
|
410 |
#elif ENABLED(DELTA)
|
|
|
411 |
#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
|
|
|
412 |
#else // CARTESIAN
|
|
|
413 |
#ifdef LEVELED_SEGMENT_LENGTH
|
|
|
414 |
#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
|
|
|
415 |
#else
|
|
|
416 |
#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
|
|
|
417 |
#endif
|
|
|
418 |
#endif
|
|
|
419 |
|
|
|
420 |
/**
|
|
|
421 |
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
|
|
422 |
* This calls planner.buffer_segment multiple times for small incremental moves.
|
|
|
423 |
* Returns true if did NOT move, false if moved (requires current_position update).
|
|
|
424 |
*/
|
|
|
425 |
|
|
|
426 |
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
|
|
|
427 |
|
|
|
428 |
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
429 |
return true; // did not move, so current_position still accurate
|
|
|
430 |
|
|
|
431 |
const float total[XYZE] = {
|
|
|
432 |
rtarget[X_AXIS] - current_position[X_AXIS],
|
|
|
433 |
rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
|
434 |
rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
|
435 |
rtarget[E_CART] - current_position[E_CART]
|
|
|
436 |
};
|
|
|
437 |
|
|
|
438 |
const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
|
|
|
439 |
|
|
|
440 |
#if IS_KINEMATIC
|
|
|
441 |
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
|
|
442 |
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
|
|
|
443 |
seglimit = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
|
|
444 |
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
|
|
|
445 |
#else
|
|
|
446 |
uint16_t segments = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
|
|
447 |
#endif
|
|
|
448 |
|
|
|
449 |
NOLESS(segments, 1U); // must have at least one segment
|
|
|
450 |
const float inv_segments = 1.0f / segments; // divide once, multiply thereafter
|
|
|
451 |
|
|
|
452 |
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
453 |
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
|
|
|
454 |
scara_oldA = planner.get_axis_position_degrees(A_AXIS);
|
|
|
455 |
scara_oldB = planner.get_axis_position_degrees(B_AXIS);
|
|
|
456 |
#endif
|
|
|
457 |
|
|
|
458 |
const float diff[XYZE] = {
|
|
|
459 |
total[X_AXIS] * inv_segments,
|
|
|
460 |
total[Y_AXIS] * inv_segments,
|
|
|
461 |
total[Z_AXIS] * inv_segments,
|
|
|
462 |
total[E_CART] * inv_segments
|
|
|
463 |
};
|
|
|
464 |
|
|
|
465 |
// Note that E segment distance could vary slightly as z mesh height
|
|
|
466 |
// changes for each segment, but small enough to ignore.
|
|
|
467 |
|
|
|
468 |
float raw[XYZE] = {
|
|
|
469 |
current_position[X_AXIS],
|
|
|
470 |
current_position[Y_AXIS],
|
|
|
471 |
current_position[Z_AXIS],
|
|
|
472 |
current_position[E_CART]
|
|
|
473 |
};
|
|
|
474 |
|
|
|
475 |
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
|
476 |
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
|
477 |
while (--segments) {
|
|
|
478 |
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
479 |
ubl_buffer_segment_raw(raw, feedrate);
|
|
|
480 |
}
|
|
|
481 |
ubl_buffer_segment_raw(rtarget, feedrate);
|
|
|
482 |
return false; // moved but did not set_current_from_destination();
|
|
|
483 |
}
|
|
|
484 |
|
|
|
485 |
// Otherwise perform per-segment leveling
|
|
|
486 |
|
|
|
487 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
488 |
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
|
|
|
489 |
#endif
|
|
|
490 |
|
|
|
491 |
// increment to first segment destination
|
|
|
492 |
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
493 |
|
|
|
494 |
for (;;) { // for each mesh cell encountered during the move
|
|
|
495 |
|
|
|
496 |
// Compute mesh cell invariants that remain constant for all segments within cell.
|
|
|
497 |
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
|
|
498 |
// the bilinear interpolation from the adjacent cell within the mesh will still work.
|
|
|
499 |
// Inner loop will exit each time (because out of cell bounds) but will come back
|
|
|
500 |
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
|
501 |
// for mesh inset area.
|
|
|
502 |
|
|
|
503 |
int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0f / (MESH_X_DIST)),
|
|
|
504 |
cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0f / (MESH_Y_DIST));
|
|
|
505 |
|
|
|
506 |
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
|
|
507 |
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
|
|
508 |
|
|
|
509 |
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
|
|
510 |
y0 = mesh_index_to_ypos(cell_yi);
|
|
|
511 |
|
|
|
512 |
float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
|
|
513 |
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
|
|
514 |
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
|
|
515 |
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
|
|
516 |
|
|
|
517 |
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
|
|
518 |
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
|
|
519 |
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
|
520 |
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
|
521 |
|
|
|
522 |
float cx = raw[X_AXIS] - x0, // cell-relative x and y
|
|
|
523 |
cy = raw[Y_AXIS] - y0;
|
|
|
524 |
|
|
|
525 |
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0f / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
|
|
526 |
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0f / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
|
|
527 |
|
|
|
528 |
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
|
|
|
529 |
|
|
|
530 |
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
|
|
531 |
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
|
|
532 |
|
|
|
533 |
float z_cxym = z_cxyd * (1.0f / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
|
|
|
534 |
|
|
|
535 |
// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
|
|
|
536 |
|
|
|
537 |
// As subsequent segments step through this cell, the z_cxy0 intercept will change
|
|
|
538 |
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
|
|
539 |
// each change by a constant for fixed segment lengths.
|
|
|
540 |
|
|
|
541 |
const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
|
|
|
542 |
z_sxym = (z_xmy1 - z_xmy0) * (1.0f / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
|
|
|
543 |
|
|
|
544 |
for (;;) { // for all segments within this mesh cell
|
|
|
545 |
|
|
|
546 |
if (--segments == 0) // if this is last segment, use rtarget for exact
|
|
|
547 |
COPY(raw, rtarget);
|
|
|
548 |
|
|
|
549 |
const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
|
|
|
550 |
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
551 |
* fade_scaling_factor // apply fade factor to interpolated mesh height
|
|
|
552 |
#endif
|
|
|
553 |
;
|
|
|
554 |
|
|
|
555 |
const float z = raw[Z_AXIS];
|
|
|
556 |
raw[Z_AXIS] += z_cxcy;
|
|
|
557 |
ubl_buffer_segment_raw(raw, feedrate);
|
|
|
558 |
raw[Z_AXIS] = z;
|
|
|
559 |
|
|
|
560 |
if (segments == 0) // done with last segment
|
|
|
561 |
return false; // did not set_current_from_destination()
|
|
|
562 |
|
|
|
563 |
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
564 |
|
|
|
565 |
cx += diff[X_AXIS];
|
|
|
566 |
cy += diff[Y_AXIS];
|
|
|
567 |
|
|
|
568 |
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
|
|
|
569 |
break;
|
|
|
570 |
|
|
|
571 |
// Next segment still within same mesh cell, adjust the per-segment
|
|
|
572 |
// slope and intercept to compute next z height.
|
|
|
573 |
|
|
|
574 |
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
|
|
575 |
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
|
|
576 |
|
|
|
577 |
} // segment loop
|
|
|
578 |
} // cell loop
|
|
|
579 |
|
|
|
580 |
return false; // caller will update current_position
|
|
|
581 |
}
|
|
|
582 |
|
|
|
583 |
#endif // UBL_SEGMENTED
|
|
|
584 |
|
|
|
585 |
#endif // AUTO_BED_LEVELING_UBL
|