Subversion Repositories Tronxy-X3A-Marlin

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 ron 1
 /**************************************\
2
 *                                      *
3
 *   OpenSCAD Mesh Display              *
4
 *   by Thinkyhead - April 2017         *
5
 *                                      *
6
 *   Copy the grid output from Marlin,  *
7
 *   paste below as shown, and use      *
8
 *   OpenSCAD to see a visualization    *
9
 *   of your mesh.                      *
10
 *                                      *
11
 \**************************************/
12
 
13
//$t = 0.15; // comment out during animation
14
 
15
//
16
// Mesh info and points
17
//
18
 
19
mesh_width    = 200;   // X Size in mm of the probed area
20
mesh_height   = 200;   // Y Size...
21
zprobe_offset = 0;     // Added to the points
22
NAN           = 0;     // Z to use for un-measured points
23
 
24
measured_z = [
25
  [ -1.20, -1.13, -1.09, -1.03, -1.19 ],
26
  [ -1.16, -1.25, -1.27, -1.25, -1.08 ],
27
  [ -1.13, -1.26, -1.39, -1.31, -1.18 ],
28
  [ -1.09, -1.20, -1.26, -1.21, -1.18 ],
29
  [ -1.13, -0.99, -1.03, -1.06, -1.32 ]
30
];
31
 
32
//
33
// Geometry
34
//
35
 
36
max_z_scale   = 100;   // Scale at Time 0.5
37
min_z_scale   = 10;    // Scale at Time 0.0 and 1.0
38
thickness     = 0.5;   // thickness of the mesh triangles
39
tesselation   = 1;     // levels of tesselation from 0-2
40
alternation   = 2;     // direction change modulus (try it)
41
 
42
//
43
// Appearance
44
//
45
 
46
show_plane    = true;
47
show_labels   = true;
48
arrow_length  = 5;
49
 
50
label_font_lg = "Arial";
51
label_font_sm = "Arial";
52
mesh_color    = [1,1,1,0.5];
53
plane_color   = [0.4,0.6,0.9,0.6];
54
 
55
//================================================ Derive useful values
56
 
57
big_z = max_2D(measured_z,0);
58
lil_z = min_2D(measured_z,0);
59
 
60
mean_value = (big_z + lil_z) / 2.0;
61
 
62
mesh_points_y = len(measured_z);
63
mesh_points_x = len(measured_z[0]);
64
 
65
xspace = mesh_width / (mesh_points_x - 1);
66
yspace = mesh_height / (mesh_points_y - 1);
67
 
68
// At $t=0 and $t=1 scale will be 100%
69
z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2;
70
 
71
//
72
// Min and max recursive functions for 1D and 2D arrays
73
// Return the smallest or largest value in the array
74
//
75
function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i];
76
function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0);
77
function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i];
78
function max_2D(a,j) = (j<len(a)-1) ? max_2D(a,j+1) : max_1D(a[j], 0);
79
 
80
//
81
// Get the corner probe points of a grid square.
82
//
83
// Input  : x,y grid indexes
84
// Output : An array of the 4 corner points
85
//
86
function grid_square(x,y) = [
87
  [x * xspace, y * yspace, z_scale_factor * (measured_z[y][x] - mean_value)],
88
  [x * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x] - mean_value)],
89
  [(x+1) * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x+1] - mean_value)],
90
  [(x+1) * xspace, y * yspace, z_scale_factor * (measured_z[y][x+1] - mean_value)]
91
];
92
 
93
// The corner point of a grid square with Z centered on the mean
94
function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)];
95
 
96
//
97
// Draw the point markers and labels
98
//
99
module point_markers(show_home=true) {
100
  // Mark the home position 0,0
101
  color([0,0,0,0.25]) translate([1,1]) cylinder(r=1, h=z_scale_factor, center=true);
102
 
103
  for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) {
104
    z = measured_z[y][x];
105
    down = z < mean_value;
106
    translate(pos(x, y, z)) {
107
 
108
      // Label each point with the Z
109
      if (show_labels) {
110
        v = z - mean_value;
111
 
112
        color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
113
        translate([0,0,down?-10:10]) {
114
 
115
          $fn=8;
116
          rotate([90,0])
117
            text(str(z), 6, label_font_lg, halign="center", valign="center");
118
 
119
          translate([0,0,down?-6:6]) rotate([90,0])
120
            text(str(down ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
121
        }
122
      }
123
 
124
      // Show an arrow pointing up or down
125
      rotate([0, down ? 180 : 0]) translate([0,0,-1])
126
        cylinder(
127
          r1=0.5,
128
          r2=0.1,
129
          h=arrow_length, $fn=12, center=1
130
        );
131
    }
132
  }
133
}
134
 
135
//
136
// Split a square on the diagonal into
137
// two triangles and render them.
138
//
139
//     s : a square
140
//   alt : a flag to split on the other diagonal
141
//
142
module tesselated_square(s, alt=false) {
143
  add = [0,0,thickness];
144
  p1 = [
145
    s[0], s[1], s[2], s[3],
146
    s[0]+add, s[1]+add, s[2]+add, s[3]+add
147
  ];
148
  f1 = alt
149
      ? [ [0,1,3], [4,5,1,0], [4,7,5], [5,7,3,1], [7,4,0,3] ]
150
      : [ [0,1,2], [4,5,1,0], [4,6,5], [5,6,2,1], [6,4,0,2] ];
151
  f2 = alt
152
      ? [ [1,2,3], [5,6,2,1], [5,6,7], [6,7,3,2], [7,5,1,3] ]
153
      : [ [0,2,3], [4,6,2,0], [4,7,6], [6,7,3,2], [7,4,0,3] ];
154
 
155
  // Use the other diagonal
156
  polyhedron(points=p1, faces=f1);
157
  polyhedron(points=p1, faces=f2);
158
}
159
 
160
/**
161
 * The simplest mesh display
162
 */
163
module simple_mesh(show_plane=show_plane) {
164
  if (show_plane) color(plane_color) cube([mesh_width, mesh_height, thickness]);
165
  color(mesh_color)
166
    for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2])
167
      tesselated_square(grid_square(x, y));
168
}
169
 
170
/**
171
 * Subdivide the mesh into smaller squares.
172
 */
173
module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) {
174
  if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_width+10, mesh_height+10, thickness]);
175
  tesselation = tesselation % 4;
176
  color(mesh_color)
177
  for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
178
    square = grid_square(x, y);
179
    if (tesselation < 1) {
180
      tesselated_square(square,(x%alternation)-(y%alternation));
181
    }
182
    else {
183
      subdiv_4 = subdivided_square(square);
184
      if (tesselation < 2) {
185
        for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
186
      }
187
      else {
188
        for (i=[0:3]) {
189
          subdiv_16 = subdivided_square(subdiv_4[i]);
190
          if (tesselation < 3) {
191
            for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
192
          }
193
          else {
194
            for (j=[0:3]) {
195
              subdiv_64 = subdivided_square(subdiv_16[j]);
196
              if (tesselation < 4) {
197
                for (k=[0:3]) tesselated_square(subdiv_64[k]);
198
              }
199
            }
200
          }
201
        }
202
      }
203
    }
204
 
205
  }
206
}
207
 
208
//
209
// Subdivision helpers
210
//
211
function ctrz(a) = (a[0][2]+a[1][2]+a[3][2]+a[2][2])/4;
212
function avgx(a,i) = (a[i][0]+a[(i+1)%4][0])/2;
213
function avgy(a,i) = (a[i][1]+a[(i+1)%4][1])/2;
214
function avgz(a,i) = (a[i][2]+a[(i+1)%4][2])/2;
215
 
216
//
217
// Convert one square into 4, applying bilinear averaging
218
//
219
// Input  : 1 square (4 points)
220
// Output : An array of 4 squares
221
//
222
function subdivided_square(a) = [
223
  [ // SW square
224
    a[0],                          // SW
225
    [a[0][0],avgy(a,0),avgz(a,0)], // CW
226
    [avgx(a,1),avgy(a,0),ctrz(a)], // CC
227
    [avgx(a,1),a[0][1],avgz(a,3)]  // SC
228
  ],
229
  [ // NW square
230
    [a[0][0],avgy(a,0),avgz(a,0)], // CW
231
    a[1],                          // NW
232
    [avgx(a,1),a[1][1],avgz(a,1)], // NC
233
    [avgx(a,1),avgy(a,0),ctrz(a)]  // CC
234
  ],
235
  [ // NE square
236
    [avgx(a,1),avgy(a,0),ctrz(a)], // CC
237
    [avgx(a,1),a[1][1],avgz(a,1)], // NC
238
    a[2],                          // NE
239
    [a[2][0],avgy(a,0),avgz(a,2)]  // CE
240
  ],
241
  [ // SE square
242
    [avgx(a,1),a[0][1],avgz(a,3)], // SC
243
    [avgx(a,1),avgy(a,0),ctrz(a)], // CC
244
    [a[2][0],avgy(a,0),avgz(a,2)], // CE
245
    a[3]                           // SE
246
  ]
247
];
248
 
249
 
250
//================================================ Run the plan
251
 
252
translate([-mesh_width / 2, -mesh_height / 2]) {
253
  $fn = 12;
254
  point_markers();
255
  bilinear_mesh();
256
}