Blame | Last modification | View Log | RSS feed
/*** Marlin 3D Printer Firmware* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]** Based on Sprinter and grbl.* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program. If not, see <http://www.gnu.org/licenses/>.**//*** stepper.cpp - A singleton object to execute motion plans using stepper motors* Marlin Firmware** Derived from Grbl* Copyright (c) 2009-2011 Simen Svale Skogsrud** Grbl is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** Grbl is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with Grbl. If not, see <http://www.gnu.org/licenses/>.*//*** Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith* and Philipp Tiefenbacher.*//*** __________________________* /| |\ _________________ ^* / | | \ /| |\ |* / | | \ / | | \ s* / | | | | | \ p* / | | | | | \ e* +-----+------------------------+---+--+---------------+----+ e* | BLOCK 1 | BLOCK 2 | d** time ----->** The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates* first block->accelerate_until step_events_completed, then keeps going at constant speed until* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.*//*** Marlin uses the Bresenham algorithm. For a detailed explanation of theory and* method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html*//*** Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.* Equations based on Synthethos TinyG2 sources, but the fixed-point* implementation is new, as we are running the ISR with a variable period.* Also implemented the Bézier velocity curve evaluation in ARM assembler,* to avoid impacting ISR speed.*/#include "Marlin.h"#include "stepper.h"#include "endstops.h"#include "planner.h"#include "temperature.h"#include "ultralcd.h"#include "language.h"#include "cardreader.h"#include "speed_lookuptable.h"#include "delay.h"#if HAS_DIGIPOTSS#include <SPI.h>#endifStepper stepper; // Singleton// public:#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)bool Stepper::homing_dual_axis = false;#endif#if HAS_MOTOR_CURRENT_PWMuint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()#endif// private:block_t* Stepper::current_block = NULL; // A pointer to the block currently being traceduint8_t Stepper::last_direction_bits = 0,Stepper::axis_did_move;bool Stepper::abort_current_block;#if DISABLED(MIXING_EXTRUDER)uint8_t Stepper::last_moved_extruder = 0xFF;#endif#if ENABLED(X_DUAL_ENDSTOPS)bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;#endif#if ENABLED(Y_DUAL_ENDSTOPS)bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;#endif#if ENABLED(Z_DUAL_ENDSTOPS)bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false;#endifuint32_t Stepper::acceleration_time, Stepper::deceleration_time;uint8_t Stepper::steps_per_isr;#if DISABLED(ADAPTIVE_STEP_SMOOTHING)constexpr#endifuint8_t Stepper::oversampling_factor;int32_t Stepper::delta_error[NUM_AXIS] = { 0 };uint32_t Stepper::advance_dividend[NUM_AXIS] = { 0 },Stepper::advance_divisor = 0,Stepper::step_events_completed = 0, // The number of step events executed in the current blockStepper::accelerate_until, // The point from where we need to stop accelerationStepper::decelerate_after, // The point from where we need to start deceleratingStepper::step_event_count; // The total event count for the current block#if ENABLED(MIXING_EXTRUDER)int32_t Stepper::delta_error_m[MIXING_STEPPERS];uint32_t Stepper::advance_dividend_m[MIXING_STEPPERS],Stepper::advance_divisor_m;#elseint8_t Stepper::active_extruder; // Active extruder#endif#if ENABLED(S_CURVE_ACCELERATION)int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assemblerint32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assemblerint32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembleruint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembleruint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assemblerbool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negativebool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not#endifuint32_t Stepper::nextMainISR = 0;#if ENABLED(LIN_ADVANCE)constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,Stepper::LA_isr_rate = LA_ADV_NEVER;uint16_t Stepper::LA_current_adv_steps = 0,Stepper::LA_final_adv_steps,Stepper::LA_max_adv_steps;int8_t Stepper::LA_steps = 0;bool Stepper::LA_use_advance_lead;#endif // LIN_ADVANCEint32_t Stepper::ticks_nominal = -1;#if DISABLED(S_CURVE_ACCELERATION)uint32_t Stepper::acc_step_rate; // needed for deceleration start point#endifvolatile int32_t Stepper::endstops_trigsteps[XYZ],Stepper::count_position[NUM_AXIS] = { 0 };int8_t Stepper::count_direction[NUM_AXIS] = {1, 1, 1, 1#if ENABLED(HANGPRINTER), 1#endif};#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)#define DUAL_ENDSTOP_APPLY_STEP(A,V) \if (homing_dual_axis) { \if (A##_HOME_DIR < 0) { \if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \} \else { \if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \} \} \else { \A##_STEP_WRITE(V); \A##2_STEP_WRITE(V); \}#endif#if ENABLED(X_DUAL_STEPPER_DRIVERS)#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)#if ENABLED(X_DUAL_ENDSTOPS)#define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)#else#define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)#endif#elif ENABLED(DUAL_X_CARRIAGE)#define X_APPLY_DIR(v,ALWAYS) \if (extruder_duplication_enabled || ALWAYS) { \X_DIR_WRITE(v); \X2_DIR_WRITE(v); \} \else { \if (movement_extruder()) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \}#define X_APPLY_STEP(v,ALWAYS) \if (extruder_duplication_enabled || ALWAYS) { \X_STEP_WRITE(v); \X2_STEP_WRITE(v); \} \else { \if (movement_extruder()) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \}#else#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)#endif#if ENABLED(Y_DUAL_STEPPER_DRIVERS)#define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)#if ENABLED(Y_DUAL_ENDSTOPS)#define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)#else#define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)#endif#else#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)#endif#if ENABLED(Z_DUAL_STEPPER_DRIVERS)#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)#if ENABLED(Z_DUAL_ENDSTOPS)#define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)#else#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)#endif#else#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)#endif/*** Hangprinter's mapping {A,B,C,D} <-> {X,Y,Z,E1} happens here.* If you have two extruders: {A,B,C,D} <-> {X,Y,Z,E2}* ... etc up to max 4 extruders.* Place D connector on your first "free" extruder output.*/#if ENABLED(HANGPRINTER)#define A_APPLY_DIR(v,Q) X_APPLY_DIR(v,Q)#define A_APPLY_STEP(v,Q) X_APPLY_STEP(v,Q)#define B_APPLY_DIR(v,Q) Y_APPLY_DIR(v,Q)#define B_APPLY_STEP(v,Q) Y_APPLY_STEP(v,Q)#define C_APPLY_DIR(v,Q) Z_APPLY_DIR(v,Q)#define C_APPLY_STEP(v,Q) Z_APPLY_STEP(v,Q)#define __D_APPLY(I,T,v) E##I##_##T##_WRITE(v)#define _D_APPLY(I,T,v) __D_APPLY(I,T,v)#define D_APPLY_DIR(v,Q) _D_APPLY(EXTRUDERS, DIR, v)#define D_APPLY_STEP(v,Q) _D_APPLY(EXTRUDERS, STEP, v)#endif#if DISABLED(MIXING_EXTRUDER)#define E_APPLY_STEP(v,Q) E_STEP_WRITE(active_extruder, v)#endif// intRes = longIn1 * longIn2 >> 24// uses:// A[tmp] to store 0// B[tmp] to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.// note that the lower two bytes and the upper byte of the 48bit result are not calculated.// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.// B A are bits 24-39 and are the returned value// C B A is longIn1// D C B A is longIn2//static FORCE_INLINE uint16_t MultiU24X32toH16(uint32_t longIn1, uint32_t longIn2) {register uint8_t tmp1;register uint8_t tmp2;register uint16_t intRes;__asm__ __volatile__(A("clr %[tmp1]")A("mul %A[longIn1], %B[longIn2]")A("mov %[tmp2], r1")A("mul %B[longIn1], %C[longIn2]")A("movw %A[intRes], r0")A("mul %C[longIn1], %C[longIn2]")A("add %B[intRes], r0")A("mul %C[longIn1], %B[longIn2]")A("add %A[intRes], r0")A("adc %B[intRes], r1")A("mul %A[longIn1], %C[longIn2]")A("add %[tmp2], r0")A("adc %A[intRes], r1")A("adc %B[intRes], %[tmp1]")A("mul %B[longIn1], %B[longIn2]")A("add %[tmp2], r0")A("adc %A[intRes], r1")A("adc %B[intRes], %[tmp1]")A("mul %C[longIn1], %A[longIn2]")A("add %[tmp2], r0")A("adc %A[intRes], r1")A("adc %B[intRes], %[tmp1]")A("mul %B[longIn1], %A[longIn2]")A("add %[tmp2], r1")A("adc %A[intRes], %[tmp1]")A("adc %B[intRes], %[tmp1]")A("lsr %[tmp2]")A("adc %A[intRes], %[tmp1]")A("adc %B[intRes], %[tmp1]")A("mul %D[longIn2], %A[longIn1]")A("add %A[intRes], r0")A("adc %B[intRes], r1")A("mul %D[longIn2], %B[longIn1]")A("add %B[intRes], r0")A("clr r1"): [intRes] "=&r" (intRes),[tmp1] "=&r" (tmp1),[tmp2] "=&r" (tmp2): [longIn1] "d" (longIn1),[longIn2] "d" (longIn2): "cc");return intRes;}void Stepper::wake_up() {// TCNT1 = 0;ENABLE_STEPPER_DRIVER_INTERRUPT();}/*** Set the stepper direction of each axis** COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS* COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS* COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS*/void Stepper::set_directions() {#define SET_STEP_DIR(A) \if (motor_direction(_AXIS(A))) { \A##_APPLY_DIR(INVERT_## A##_DIR, false); \count_direction[_AXIS(A)] = -1; \} \else { \A##_APPLY_DIR(!INVERT_## A##_DIR, false); \count_direction[_AXIS(A)] = 1; \}#if HAS_X_DIRSET_STEP_DIR(X); // A#endif#if HAS_Y_DIRSET_STEP_DIR(Y); // B#endif#if HAS_Z_DIRSET_STEP_DIR(Z); // C#endif#if ENABLED(HANGPRINTER)SET_STEP_DIR(D);#endif#if DISABLED(LIN_ADVANCE)#if ENABLED(MIXING_EXTRUDER)if (motor_direction(E_AXIS)) {MIXING_STEPPERS_LOOP(j) REV_E_DIR(j);count_direction[E_AXIS] = -1;}else {MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);count_direction[E_AXIS] = 1;}#elseif (motor_direction(E_AXIS)) {REV_E_DIR(active_extruder);count_direction[E_AXIS] = -1;}else {NORM_E_DIR(active_extruder);count_direction[E_AXIS] = 1;}#endif#endif // !LIN_ADVANCE// A small delay may be needed after changing direction#if MINIMUM_STEPPER_DIR_DELAY > 0DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);#endif}#if ENABLED(S_CURVE_ACCELERATION)/*** This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving* a "linear pop" velocity curve; with pop being the sixth derivative of position:* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th** The Bézier curve takes the form:** V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)** Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)* through B_5(t) are the Bernstein basis as follows:** B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4* B_5(t) = t^5 = t^5* ^ ^ ^ ^ ^ ^* | | | | | |* A B C D E F** Unfortunately, we cannot use forward-differencing to calculate each position through* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:** V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F** Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5* through t of the Bézier form of V(t), we can determine that:** A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3* D = 10*P_0 - 20*P_1 + 10*P_2* E = - 5*P_0 + 5*P_1* F = P_0** Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),* which, after simplification, resolves to:** A = - 6*P_i + 6*P_t = 6*(P_t - P_i)* B = 15*P_i - 15*P_t = 15*(P_i - P_t)* C = -10*P_i + 10*P_t = 10*(P_t - P_i)* D = 0* E = 0* F = P_i** As the t is evaluated in non uniform steps here, there is no other way rather than evaluating* the Bézier curve at each point:** V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]** Floating point arithmetic execution time cost is prohibitive, so we will transform the math to* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps* per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid* overflows on the evaluation of the Bézier curve, means we can use** t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign** The trapezoid generator state contains the following information, that we will use to create and evaluate* the Bézier curve:** blk->step_event_count [TS] = The total count of steps for this movement. (=distance)* blk->initial_rate [VI] = The initial steps per second (=velocity)* blk->final_rate [VF] = The ending steps per second (=velocity)* and the count of events completed (step_events_completed) [CS] (=distance until now)** Note the abbreviations we use in the following formulae are between []s** For Any 32bit CPU:** At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:** A = 6*128*(VF - VI) = 768*(VF - VI)* B = 15*128*(VI - VF) = 1920*(VI - VF)* C = 10*128*(VF - VI) = 1280*(VF - VI)* F = 128*VI = 128*VI* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)** And for each point, evaluate the curve with the following sequence:** void lsrs(uint32_t& d, uint32_t s, int cnt) {* d = s >> cnt;* }* void lsls(uint32_t& d, uint32_t s, int cnt) {* d = s << cnt;* }* void lsrs(int32_t& d, uint32_t s, int cnt) {* d = uint32_t(s) >> cnt;* }* void lsls(int32_t& d, uint32_t s, int cnt) {* d = uint32_t(s) << cnt;* }* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {* uint64_t res = uint64_t(op1) * op2;* rlo = uint32_t(res & 0xFFFFFFFF);* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);* }* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {* int64_t mul = int64_t(op1) * op2;* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));* mul += s;* rlo = int32_t(mul & 0xFFFFFFFF);* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);* }* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {* register uint32_t flo = 0;* register uint32_t fhi = bezier_AV * curr_step;* register uint32_t t = fhi;* register int32_t alo = bezier_F;* register int32_t ahi = 0;* register int32_t A = bezier_A;* register int32_t B = bezier_B;* register int32_t C = bezier_C;** lsrs(ahi, alo, 1); // a = F << 31* lsls(alo, alo, 31); //* umull(flo, fhi, fhi, t); // f *= t* umull(flo, fhi, fhi, t); // f>>=32; f*=t* lsrs(flo, fhi, 1); //* smlal(alo, ahi, flo, C); // a+=(f>>33)*C* umull(flo, fhi, fhi, t); // f>>=32; f*=t* lsrs(flo, fhi, 1); //* smlal(alo, ahi, flo, B); // a+=(f>>33)*B* umull(flo, fhi, fhi, t); // f>>=32; f*=t* lsrs(flo, fhi, 1); // f>>=33;* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;* lsrs(alo, ahi, 6); // a>>=38** return alo;* }** This is rewritten in ARM assembly for optimal performance (43 cycles to execute).** For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:* Let's reduce precision as much as possible. After some experimentation we found that:** Assume t and AV with 24 bits is enough* A = 6*(VF - VI)* B = 15*(VI - VF)* C = 10*(VF - VI)* F = VI* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)** Instead of storing sign for each coefficient, we will store its absolute value,* and flag the sign of the A coefficient, so we can save to store the sign bit.* It always holds that sign(A) = - sign(B) = sign(C)** So, the resulting range of the coefficients are:** t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits** And for each curve, estimate its coefficients with:** void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {* // Calculate the Bézier coefficients* if (v1 < v0) {* A_negative = true;* bezier_A = 6 * (v0 - v1);* bezier_B = 15 * (v0 - v1);* bezier_C = 10 * (v0 - v1);* }* else {* A_negative = false;* bezier_A = 6 * (v1 - v0);* bezier_B = 15 * (v1 - v0);* bezier_C = 10 * (v1 - v0);* }* bezier_F = v0;* }** And for each point, evaluate the curve with the following sequence:** // unsigned multiplication of 24 bits x 24bits, return upper 16 bits* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {* r = (uint64_t(op1) * op2) >> 8;* }* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {* r = (uint32_t(op1) * op2) >> 16;* }* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {* r = uint24_t((uint64_t(op1) * op2) >> 16);* }** int32_t _eval_bezier_curve(uint32_t curr_step) {* // To save computing, the first step is always the initial speed* if (!curr_step)* return bezier_F;** uint16_t t;* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits* uint16_t f = t;* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)* uint24_t acc = bezier_F; // Range 20 bits (unsigned)* if (A_negative) {* uint24_t v;* umul16x24to24hi(v, f, bezier_C); // Range 21bits* acc -= v;* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)* umul16x24to24hi(v, f, bezier_B); // Range 22bits* acc += v;* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)* acc -= v;* }* else {* uint24_t v;* umul16x24to24hi(v, f, bezier_C); // Range 21bits* acc += v;* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)* umul16x24to24hi(v, f, bezier_B); // Range 22bits* acc -= v;* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)* acc += v;* }* return acc;* }* These functions are translated to assembler for optimal performance.* Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.*/// For AVR we use assembly to maximize speedvoid Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {// Store advancebezier_AV = av;// Calculate the rest of the coefficientsregister uint8_t r2 = v0 & 0xFF;register uint8_t r3 = (v0 >> 8) & 0xFF;register uint8_t r12 = (v0 >> 16) & 0xFF;register uint8_t r5 = v1 & 0xFF;register uint8_t r6 = (v1 >> 8) & 0xFF;register uint8_t r7 = (v1 >> 16) & 0xFF;register uint8_t r4,r8,r9,r10,r11;__asm__ __volatile__(/* Calculate the Bézier coefficients *//* %10:%1:%0 = v0*//* %5:%4:%3 = v1*//* %7:%6:%10 = temporary*//* %9 = val (must be high register!)*//* %10 (must be high register!)*//* Store initial velocity*/A("sts bezier_F, %0")A("sts bezier_F+1, %1")A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 *//* Get delta speed */A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */A("clr %8") /* %8 = 0 */A("sub %0,%3")A("sbc %1,%4")A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 *//* Result was negative, get the absolute value*/A("com %10")A("com %1")A("neg %0")A("sbc %1,%2")A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */A("clr %2") /* %2 = 0, means A_negative = false *//* Store negative flag*/L("1")A("sts A_negative, %2") /* Store negative flag *//* Compute coefficients A,B and C [20 cycles worst case]*/A("ldi %9,6") /* %9 = 6 */A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */A("sts bezier_A, r0")A("mov %6,r1")A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */A("add %6,r0")A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */A("sts bezier_A+1, %6")A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */A("ldi %9,15") /* %9 = 15 */A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */A("sts bezier_B, r0")A("mov %6,r1")A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */A("add %6,r0")A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */A("sts bezier_B+1, %6")A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */A("ldi %9,10") /* %9 = 10 */A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */A("sts bezier_C, r0")A("mov %6,r1")A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */A("add %6,r0")A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */A("sts bezier_C+1, %6")" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */: "+r" (r2),"+d" (r3),"=r" (r4),"+r" (r5),"+r" (r6),"+r" (r7),"=r" (r8),"=r" (r9),"=r" (r10),"=d" (r11),"+r" (r12):: "r0", "r1", "cc", "memory");}FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {// If dealing with the first step, save expensive computing and return the initial speedif (!curr_step)return bezier_F;register uint8_t r0 = 0; /* Zero register */register uint8_t r2 = (curr_step) & 0xFF;register uint8_t r3 = (curr_step >> 8) & 0xFF;register uint8_t r4 = (curr_step >> 16) & 0xFF;register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */__asm__ __volatile(/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/A("lds %9,bezier_AV") /* %9 = LO(AV)*/A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/A("add %7,r0")A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/A("add %7,r0")A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*//* %8:%7 = t*//* uint16_t f = t;*/A("mov %5,%7") /* %6:%5 = f*/A("mov %6,%8")/* %6:%5 = f*//* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/A("clr %10") /* %10 = 0*/A("clr %11") /* %11 = 0*/A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */A("adc %11,%0") /* %11 += carry*/A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10") /* %6:%5 = */A("mov %6,%11") /* f = %10:%11*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10") /* %10 = 0*/A("clr %11") /* %11 = 0*/A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10") /* %6:%5 =*/A("mov %6,%11") /* f = %10:%11*//* [15 +17*2] = [49]*//* %4:%3:%2 will be acc from now on*//* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/A("clr %9") /* "decimal place we get for free"*/A("lds %2,bezier_F")A("lds %3,bezier_F+1")A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*//* if (A_negative) {*/A("lds r0,A_negative")A("or r0,%0") /* Is flag signalling negative? */A("brne 3f") /* If yes, Skip next instruction if A was negative*/A("rjmp 1f") /* Otherwise, jump *//* uint24_t v; *//* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] *//* acc -= v; */L("3")A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/A("sub %9,r1")A("sbc %2,%0")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/A("sub %3,r0")A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10") /* %10 = 0*/A("clr %11") /* %11 = 0*/A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10") /* %6:%5 =*/A("mov %6,%11") /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*//* acc += v; */A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/A("add %9,r1")A("adc %2,%0")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/A("add %3,r0")A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10") /* %10 = 0*/A("clr %11") /* %11 = 0*/A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10") /* %6:%5 =*/A("mov %6,%11") /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*//* acc -= v; */A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/A("sub %9,r1")A("sbc %2,%0")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/A("sub %3,r0")A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/A("jmp 2f") /* Done!*/L("1")/* uint24_t v; *//* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*//* acc += v; */A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/A("add %9,r1")A("adc %2,%0")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/A("add %3,r0")A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10") /* %10 = 0*/A("clr %11") /* %11 = 0*/A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10") /* %6:%5 =*/A("mov %6,%11") /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*//* acc -= v;*/A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/A("sub %9,r1")A("sbc %2,%0")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/A("sub %3,r0")A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10") /* %10 = 0*/A("clr %11") /* %11 = 0*/A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0") /* %11 += carry*/A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10") /* %6:%5 =*/A("mov %6,%11") /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*//* acc += v; */A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/A("add %9,r1")A("adc %2,%0")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/A("add %3,r0")A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/L("2")" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */: "+r"(r0),"+r"(r1),"+r"(r2),"+r"(r3),"+r"(r4),"+r"(r5),"+r"(r6),"+r"(r7),"+r"(r8),"+r"(r9),"+r"(r10),"+r"(r11)::"cc","r0","r1");return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);}#endif // S_CURVE_ACCELERATION/*** Stepper Driver Interrupt** Directly pulses the stepper motors at high frequency.*/HAL_STEP_TIMER_ISR {HAL_timer_isr_prologue(STEP_TIMER_NUM);Stepper::isr();HAL_timer_isr_epilogue(STEP_TIMER_NUM);}#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)void Stepper::isr() {DISABLE_ISRS();// Program timer compare for the maximum period, so it does NOT// flag an interrupt while this ISR is running - So changes from small// periods to big periods are respected and the timer does not reset to 0HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX);// Count of ticks for the next ISRhal_timer_t next_isr_ticks = 0;// Limit the amount of iterationsuint8_t max_loops = 10;// We need this variable here to be able to use it in the following loophal_timer_t min_ticks;do {// Enable ISRs to reduce USART processing latencyENABLE_ISRS();// Run main stepping pulse phase ISR if we have toif (!nextMainISR) Stepper::stepper_pulse_phase_isr();#if ENABLED(LIN_ADVANCE)// Run linear advance stepper ISR if we have toif (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr();#endif// ^== Time critical. NOTHING besides pulse generation should be above here!!!// Run main stepping block processing ISR if we have toif (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr();uint32_t interval =#if ENABLED(LIN_ADVANCE)MIN(nextAdvanceISR, nextMainISR) // Nearest time interval#elsenextMainISR // Remaining stepper ISR time#endif;// Limit the value to the maximum possible value of the timerNOMORE(interval, HAL_TIMER_TYPE_MAX);// Compute the time remaining for the main isrnextMainISR -= interval;#if ENABLED(LIN_ADVANCE)// Compute the time remaining for the advance isrif (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;#endif/*** This needs to avoid a race-condition caused by interleaving* of interrupts required by both the LA and Stepper algorithms.** Assume the following tick times for stepper pulses:* Stepper ISR (S): 1 1000 2000 3000 4000* Linear Adv. (E): 10 1010 2010 3010 4010** The current algorithm tries to interleave them, giving:* 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E** Ideal timing would yield these delta periods:* 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E** But, since each event must fire an ISR with a minimum duration, the* minimum delta might be 900, so deltas under 900 get rounded up:* 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E** It works, but divides the speed of all motors by half, leading to a sudden* reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even* accounting for double/quad stepping, which makes it even worse).*/// Compute the tick count for the next ISRnext_isr_ticks += interval;/*** The following section must be done with global interrupts disabled.* We want nothing to interrupt it, as that could mess the calculations* we do for the next value to program in the period register of the* stepper timer and lead to skipped ISRs (if the value we happen to program* is less than the current count due to something preempting between the* read and the write of the new period value).*/DISABLE_ISRS();/*** Get the current tick value + margin* Assuming at least 6µs between calls to this ISR...* On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin* On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin*/min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((STEPPER_TIMER_TICKS_PER_US) * 8);/*** NB: If for some reason the stepper monopolizes the MPU, eventually the* timer will wrap around (and so will 'next_isr_ticks'). So, limit the* loop to 10 iterations. Beyond that, there's no way to ensure correct pulse* timing, since the MCU isn't fast enough.*/if (!--max_loops) next_isr_ticks = min_ticks;// Advance pulses if not enough time to wait for the next ISR} while (next_isr_ticks < min_ticks);// Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are// sure that the time has not arrived yet - Warrantied by the scheduler// Set the next ISR to fire at the proper timeHAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks));// Don't forget to finally reenable interruptsENABLE_ISRS();}/*** This phase of the ISR should ONLY create the pulses for the steppers.* This prevents jitter caused by the interval between the start of the* interrupt and the start of the pulses. DON'T add any logic ahead of the* call to this method that might cause variation in the timing. The aim* is to keep pulse timing as regular as possible.*/#if ENABLED(UNREGISTERED_MOVE_SUPPORT)#define COUNT_IT current_block->count_it#else#define COUNT_IT true#endifvoid Stepper::stepper_pulse_phase_isr() {// If we must abort the current block, do so!if (abort_current_block) {abort_current_block = false;if (current_block) {axis_did_move = 0;current_block = NULL;planner.discard_current_block();}}// If there is no current block, do nothingif (!current_block) return;// Count of pending loops and events for this iterationconst uint32_t pending_events = step_event_count - step_events_completed;uint8_t events_to_do = MIN(pending_events, steps_per_isr);// Just update the value we will get at the end of the loopstep_events_completed += events_to_do;// Get the timer count and estimate the end of the pulsehal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);// Take multiple steps per interrupt (For high speed moves)do {#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN// Start an active pulse, if Bresenham says so, and update position#define PULSE_START(AXIS) do{ \delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \if (delta_error[_AXIS(AXIS)] >= 0) { \_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); \if (COUNT_IT) count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \} \}while(0)// Stop an active pulse, if any, and adjust error term#define PULSE_STOP(AXIS) do { \if (delta_error[_AXIS(AXIS)] >= 0) { \delta_error[_AXIS(AXIS)] -= advance_divisor; \_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0); \} \}while(0)// Pulse start#if ENABLED(HANGPRINTER)#if HAS_A_STEPPULSE_START(A);#endif#if HAS_B_STEPPULSE_START(B);#endif#if HAS_C_STEPPULSE_START(C);#endif#if HAS_D_STEPPULSE_START(D);#endif#else#if HAS_X_STEPPULSE_START(X);#endif#if HAS_Y_STEPPULSE_START(Y);#endif#if HAS_Z_STEPPULSE_START(Z);#endif#endif // HANGPRINTER// Pulse E/Mixing extruders#if ENABLED(LIN_ADVANCE)// Tick the E axis, correct error term and update positiondelta_error[E_AXIS] += advance_dividend[E_AXIS];if (delta_error[E_AXIS] >= 0) {if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];delta_error[E_AXIS] -= advance_divisor;// Don't step E here - But remember the number of steps to performmotor_direction(E_AXIS) ? --LA_steps : ++LA_steps;}#else // !LIN_ADVANCE - use linear interpolation for E also#if ENABLED(MIXING_EXTRUDER)// Tick the E axisdelta_error[E_AXIS] += advance_dividend[E_AXIS];if (delta_error[E_AXIS] >= 0) {if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];delta_error[E_AXIS] -= advance_divisor;}// Tick the counters used for this mix in proper proportionMIXING_STEPPERS_LOOP(j) {// Step mixing steppers (proportionally)delta_error_m[j] += advance_dividend_m[j];// Step when the counter goes over zeroif (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);}#else // !MIXING_EXTRUDERPULSE_START(E);#endif#endif // !LIN_ADVANCE#if MINIMUM_STEPPER_PULSE// Just wait for the requested pulse durationwhile (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }#endif// Add the delay needed to ensure the maximum driver rate is enforcedif (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);#if ENABLED(HANGPRINTER)#if HAS_A_STEPPULSE_STOP(A);#endif#if HAS_B_STEPPULSE_STOP(B);#endif#if HAS_C_STEPPULSE_STOP(C);#endif#if HAS_D_STEPPULSE_STOP(D);#endif#else#if HAS_X_STEPPULSE_STOP(X);#endif#if HAS_Y_STEPPULSE_STOP(Y);#endif#if HAS_Z_STEPPULSE_STOP(Z);#endif#endif#if DISABLED(LIN_ADVANCE)#if ENABLED(MIXING_EXTRUDER)MIXING_STEPPERS_LOOP(j) {if (delta_error_m[j] >= 0) {delta_error_m[j] -= advance_divisor_m;E_STEP_WRITE(j, INVERT_E_STEP_PIN);}}#else // !MIXING_EXTRUDERPULSE_STOP(E);#endif#endif // !LIN_ADVANCE// Decrement the count of pending pulses to do--events_to_do;// For minimum pulse time wait after stopping pulses alsoif (events_to_do) {// Just wait for the requested pulse durationwhile (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }#if MINIMUM_STEPPER_PULSE// Add to the value, the time that the pulse must be active (to be used on the next loop)pulse_end += hal_timer_t(MIN_PULSE_TICKS);#endif}} while (events_to_do);}// This is the last half of the stepper interrupt: This one processes and// properly schedules blocks from the planner. This is executed after creating// the step pulses, so it is not time critical, as pulses are already done.uint32_t Stepper::stepper_block_phase_isr() {// If no queued movements, just wait 1ms for the next moveuint32_t interval = (STEPPER_TIMER_RATE / 1000);// If there is a current blockif (current_block) {// If current block is finished, reset pointerif (step_events_completed >= step_event_count) {axis_did_move = 0;current_block = NULL;planner.discard_current_block();}else {// Step events not completed yet...// Are we in acceleration phase ?if (step_events_completed <= accelerate_until) { // Calculate new timer value#if ENABLED(S_CURVE_ACCELERATION)// Get the next speed to use (Jerk limited!)uint32_t acc_step_rate =acceleration_time < current_block->acceleration_time? _eval_bezier_curve(acceleration_time): current_block->cruise_rate;#elseacc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;NOMORE(acc_step_rate, current_block->nominal_rate);#endif// acc_step_rate is in steps/second// step_rate to timer interval and steps per stepper isrinterval = calc_timer_interval(acc_step_rate, oversampling_factor, &steps_per_isr);acceleration_time += interval;#if ENABLED(LIN_ADVANCE)if (LA_use_advance_lead) {// Fire ISR if final adv_rate is reachedif (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;}else if (LA_steps) nextAdvanceISR = 0;#endif // LIN_ADVANCE}// Are we in Deceleration phase ?else if (step_events_completed > decelerate_after) {uint32_t step_rate;#if ENABLED(S_CURVE_ACCELERATION)// If this is the 1st time we process the 2nd half of the trapezoid...if (!bezier_2nd_half) {// Initialize the Bézier speed curve_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);bezier_2nd_half = true;// The first point starts at cruise rate. Just save evaluation of the Bézier curvestep_rate = current_block->cruise_rate;}else {// Calculate the next speed to usestep_rate = deceleration_time < current_block->deceleration_time? _eval_bezier_curve(deceleration_time): current_block->final_rate;}#else// Using the old trapezoidal controlstep_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);if (step_rate < acc_step_rate) { // Still decelerating?step_rate = acc_step_rate - step_rate;NOLESS(step_rate, current_block->final_rate);}elsestep_rate = current_block->final_rate;#endif// step_rate is in steps/second// step_rate to timer interval and steps per stepper isrinterval = calc_timer_interval(step_rate, oversampling_factor, &steps_per_isr);deceleration_time += interval;#if ENABLED(LIN_ADVANCE)if (LA_use_advance_lead) {// Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reachedif (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {nextAdvanceISR = 0;LA_isr_rate = current_block->advance_speed;}}else if (LA_steps) nextAdvanceISR = 0;#endif // LIN_ADVANCE}// We must be in cruise phase otherwiseelse {#if ENABLED(LIN_ADVANCE)// If there are any esteps, fire the next advance_isr "now"if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;#endif// Calculate the ticks_nominal for this nominal speed, if not done yetif (ticks_nominal < 0) {// step_rate to timer interval and loops for the nominal speedticks_nominal = calc_timer_interval(current_block->nominal_rate, oversampling_factor, &steps_per_isr);}// The timer interval is just the nominal value for the nominal speedinterval = ticks_nominal;}}}// If there is no current block at this point, attempt to pop one from the buffer// and prepare its movementif (!current_block) {// Anything in the buffer?if ((current_block = planner.get_current_block())) {// Sync block? Sync the stepper counts and returnwhile (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {_set_position(current_block->position[A_AXIS], current_block->position[B_AXIS], current_block->position[C_AXIS],#if ENABLED(HANGPRINTER)current_block->position[D_AXIS],#endifcurrent_block->position[E_AXIS]);planner.discard_current_block();// Try to get a new blockif (!(current_block = planner.get_current_block()))return interval; // No more queued movements!}// Flag all moving axes for proper endstop handling#if IS_CORE// Define conditions for checking endstops#define S_(N) current_block->steps[CORE_AXIS_##N]#define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)#endif#if CORE_IS_XY || CORE_IS_XZ/*** Head direction in -X axis for CoreXY and CoreXZ bots.** If steps differ, both axes are moving.* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)* If DeltaA == DeltaB, the movement is only in the 1st axis (X)*/#if ENABLED(COREXY) || ENABLED(COREXZ)#define X_CMP ==#else#define X_CMP !=#endif#define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) X_CMP D_(2)) )#else#define X_MOVE_TEST !!current_block->steps[A_AXIS]#endif#if CORE_IS_XY || CORE_IS_YZ/*** Head direction in -Y axis for CoreXY / CoreYZ bots.** If steps differ, both axes are moving* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)*/#if ENABLED(COREYX) || ENABLED(COREYZ)#define Y_CMP ==#else#define Y_CMP !=#endif#define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Y_CMP D_(2)) )#else#define Y_MOVE_TEST !!current_block->steps[B_AXIS]#endif#if CORE_IS_XZ || CORE_IS_YZ/*** Head direction in -Z axis for CoreXZ or CoreYZ bots.** If steps differ, both axes are moving* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)*/#if ENABLED(COREZX) || ENABLED(COREZY)#define Z_CMP ==#else#define Z_CMP !=#endif#define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Z_CMP D_(2)) )#else#define Z_MOVE_TEST !!current_block->steps[C_AXIS]#endifuint8_t axis_bits = 0;if (X_MOVE_TEST) SBI(axis_bits, A_AXIS);if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS);if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS);//if (!!current_block->steps[E_AXIS]) SBI(axis_bits, E_AXIS);//if (!!current_block->steps[A_AXIS]) SBI(axis_bits, X_HEAD);//if (!!current_block->steps[B_AXIS]) SBI(axis_bits, Y_HEAD);//if (!!current_block->steps[C_AXIS]) SBI(axis_bits, Z_HEAD);axis_did_move = axis_bits;// No acceleration / deceleration time elapsed so faracceleration_time = deceleration_time = 0;uint8_t oversampling = 0; // Assume we won't use it#if ENABLED(ADAPTIVE_STEP_SMOOTHING)// At this point, we must decide if we can use Stepper movement axis smoothing.uint32_t max_rate = current_block->nominal_rate; // Get the maximum rate (maximum event speed)while (max_rate < MIN_STEP_ISR_FREQUENCY) {max_rate <<= 1;if (max_rate >= MAX_STEP_ISR_FREQUENCY_1X) break;++oversampling;}oversampling_factor = oversampling;#endif// Based on the oversampling factor, do the calculationsstep_event_count = current_block->step_event_count << oversampling;// Initialize Bresenham delta errors to 1/2#if ENABLED(HANGPRINTER)delta_error[A_AXIS] = delta_error[B_AXIS] = delta_error[C_AXIS] = delta_error[D_AXIS] = delta_error[E_AXIS] = -int32_t(step_event_count);#elsedelta_error[X_AXIS] = delta_error[Y_AXIS] = delta_error[Z_AXIS] = delta_error[E_AXIS] = -int32_t(step_event_count);#endif// Calculate Bresenham dividends#if ENABLED(HANGPRINTER)advance_dividend[A_AXIS] = current_block->steps[A_AXIS] << 1;advance_dividend[B_AXIS] = current_block->steps[B_AXIS] << 1;advance_dividend[C_AXIS] = current_block->steps[C_AXIS] << 1;advance_dividend[D_AXIS] = current_block->steps[D_AXIS] << 1;#elseadvance_dividend[X_AXIS] = current_block->steps[X_AXIS] << 1;advance_dividend[Y_AXIS] = current_block->steps[Y_AXIS] << 1;advance_dividend[Z_AXIS] = current_block->steps[Z_AXIS] << 1;#endifadvance_dividend[E_AXIS] = current_block->steps[E_AXIS] << 1;// Calculate Bresenham divisoradvance_divisor = step_event_count << 1;// No step events completed so farstep_events_completed = 0;// Compute the acceleration and deceleration pointsaccelerate_until = current_block->accelerate_until << oversampling;decelerate_after = current_block->decelerate_after << oversampling;#if ENABLED(MIXING_EXTRUDER)const uint32_t e_steps = (#if ENABLED(LIN_ADVANCE)current_block->steps[E_AXIS]#elsestep_event_count#endif);MIXING_STEPPERS_LOOP(i) {delta_error_m[i] = -int32_t(e_steps);advance_dividend_m[i] = current_block->mix_steps[i] << 1;}advance_divisor_m = e_steps << 1;#elseactive_extruder = current_block->active_extruder;#endif// Initialize the trapezoid generator from the current block.#if ENABLED(LIN_ADVANCE)#if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1// If the now active extruder wasn't in use during the last move, its pressure is most likely gone.if (active_extruder != last_moved_extruder) LA_current_adv_steps = 0;#endifif ((LA_use_advance_lead = current_block->use_advance_lead)) {LA_final_adv_steps = current_block->final_adv_steps;LA_max_adv_steps = current_block->max_adv_steps;//Start the ISRnextAdvanceISR = 0;LA_isr_rate = current_block->advance_speed;}else LA_isr_rate = LA_ADV_NEVER;#endifif (current_block->direction_bits != last_direction_bits#if DISABLED(MIXING_EXTRUDER)|| active_extruder != last_moved_extruder#endif) {last_direction_bits = current_block->direction_bits;#if DISABLED(MIXING_EXTRUDER)last_moved_extruder = active_extruder;#endifset_directions();}// At this point, we must ensure the movement about to execute isn't// trying to force the head against a limit switch. If using interrupt-// driven change detection, and already against a limit then no call to// the endstop_triggered method will be done and the movement will be// done against the endstop. So, check the limits here: If the movement// is against the limits, the block will be marked as to be killed, and// on the next call to this ISR, will be discarded.endstops.update();#if ENABLED(Z_LATE_ENABLE)// If delayed Z enable, enable it now. This option will severely interfere with// timing between pulses when chaining motion between blocks, and it could lead// to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!if (current_block->steps[Z_AXIS]) enable_Z();#endif// Mark the time_nominal as not calculated yetticks_nominal = -1;#if DISABLED(S_CURVE_ACCELERATION)// Set as deceleration point the initial rate of the blockacc_step_rate = current_block->initial_rate;#endif#if ENABLED(S_CURVE_ACCELERATION)// Initialize the Bézier speed curve_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);// We haven't started the 2nd half of the trapezoidbezier_2nd_half = false;#endif// Calculate the initial timer intervalinterval = calc_timer_interval(current_block->initial_rate, oversampling_factor, &steps_per_isr);}}// Return the interval to waitreturn interval;}#if ENABLED(LIN_ADVANCE)// Timer interrupt for E. LA_steps is set in the main routineuint32_t Stepper::advance_isr() {uint32_t interval;if (LA_use_advance_lead) {if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {LA_steps--;LA_current_adv_steps--;interval = LA_isr_rate;}else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {//step_events_completed <= (uint32_t)accelerate_until) {LA_steps++;LA_current_adv_steps++;interval = LA_isr_rate;}elseinterval = LA_isr_rate = LA_ADV_NEVER;}elseinterval = LA_ADV_NEVER;#if ENABLED(MIXING_EXTRUDER)if (LA_steps >= 0)MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);elseMIXING_STEPPERS_LOOP(j) REV_E_DIR(j);#elseif (LA_steps >= 0)NORM_E_DIR(active_extruder);elseREV_E_DIR(active_extruder);#endif// Get the timer count and estimate the end of the pulsehal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);// Step E stepper if we have stepswhile (LA_steps) {// Set the STEP pulse ON#if ENABLED(MIXING_EXTRUDER)MIXING_STEPPERS_LOOP(j) {// Step mixing steppers (proportionally)delta_error_m[j] += advance_dividend_m[j];// Step when the counter goes over zeroif (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);}#elseE_STEP_WRITE(active_extruder, !INVERT_E_STEP_PIN);#endif// Enforce a minimum duration for STEP pulse ON#if MINIMUM_STEPPER_PULSE// Just wait for the requested pulse durationwhile (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }#endif// Add the delay needed to ensure the maximum driver rate is enforcedif (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);LA_steps < 0 ? ++LA_steps : --LA_steps;// Set the STEP pulse OFF#if ENABLED(MIXING_EXTRUDER)MIXING_STEPPERS_LOOP(j) {if (delta_error_m[j] >= 0) {delta_error_m[j] -= advance_divisor_m;E_STEP_WRITE(j, INVERT_E_STEP_PIN);}}#elseE_STEP_WRITE(active_extruder, INVERT_E_STEP_PIN);#endif// For minimum pulse time wait before looping// Just wait for the requested pulse durationif (LA_steps) {while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }#if MINIMUM_STEPPER_PULSE// Add to the value, the time that the pulse must be active (to be used on the next loop)pulse_end += hal_timer_t(MIN_PULSE_TICKS);#endif}} // LA_stepsreturn interval;}#endif // LIN_ADVANCE// Check if the given block is busy or not - Must not be called from ISR contexts// The current_block could change in the middle of the read by an Stepper ISR, so// we must explicitly prevent that!bool Stepper::is_block_busy(const block_t* const block) {#define sw_barrier() asm volatile("": : :"memory");// Keep reading until 2 consecutive reads return the same value,// meaning there was no update in-between caused by an interrupt.// This works because stepper ISRs happen at a slower rate than// successive reads of a variable, so 2 consecutive reads with// the same value means no interrupt updated it.block_t* vold, *vnew = current_block;sw_barrier();do {vold = vnew;vnew = current_block;sw_barrier();} while (vold != vnew);// Return if the block is busy or notreturn block == vnew;}void Stepper::init() {// Init Digipot Motor Current#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWMdigipot_init();#endif// Init Microstepping Pins#if HAS_MICROSTEPSmicrostep_init();#endif// Init Dir Pins#if HAS_X_DIRX_DIR_INIT;#endif#if HAS_X2_DIRX2_DIR_INIT;#endif#if HAS_Y_DIRY_DIR_INIT;#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIRY2_DIR_INIT;#endif#endif#if HAS_Z_DIRZ_DIR_INIT;#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIRZ2_DIR_INIT;#endif#endif#if HAS_E0_DIRE0_DIR_INIT;#endif#if HAS_E1_DIRE1_DIR_INIT;#endif#if HAS_E2_DIRE2_DIR_INIT;#endif#if HAS_E3_DIRE3_DIR_INIT;#endif#if HAS_E4_DIRE4_DIR_INIT;#endif// Init Enable Pins - steppers default to disabled.#if HAS_X_ENABLEX_ENABLE_INIT;if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);#if (ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)) && HAS_X2_ENABLEX2_ENABLE_INIT;if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);#endif#endif#if HAS_Y_ENABLEY_ENABLE_INIT;if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLEY2_ENABLE_INIT;if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);#endif#endif#if HAS_Z_ENABLEZ_ENABLE_INIT;if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLEZ2_ENABLE_INIT;if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);#endif#endif#if HAS_E0_ENABLEE0_ENABLE_INIT;if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);#endif#if HAS_E1_ENABLEE1_ENABLE_INIT;if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);#endif#if HAS_E2_ENABLEE2_ENABLE_INIT;if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);#endif#if HAS_E3_ENABLEE3_ENABLE_INIT;if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);#endif#if HAS_E4_ENABLEE4_ENABLE_INIT;if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);#endif#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)#define _DISABLE(AXIS) disable_## AXIS()#define AXIS_INIT(AXIS, PIN) \_STEP_INIT(AXIS); \_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \_DISABLE(AXIS)#define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)// Init Step Pins#if HAS_X_STEP#if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)X2_STEP_INIT;X2_STEP_WRITE(INVERT_X_STEP_PIN);#endifAXIS_INIT(X, X);#endif#if HAS_Y_STEP#if ENABLED(Y_DUAL_STEPPER_DRIVERS)Y2_STEP_INIT;Y2_STEP_WRITE(INVERT_Y_STEP_PIN);#endifAXIS_INIT(Y, Y);#endif#if HAS_Z_STEP#if ENABLED(Z_DUAL_STEPPER_DRIVERS)Z2_STEP_INIT;Z2_STEP_WRITE(INVERT_Z_STEP_PIN);#endifAXIS_INIT(Z, Z);#endif#if E_STEPPERS > 0 && HAS_E0_STEPE_AXIS_INIT(0);#endif#if (E_STEPPERS > 1 || (E_STEPPERS == 1 && ENABLED(HANGPRINTER))) && HAS_E1_STEPE_AXIS_INIT(1);#endif#if (E_STEPPERS > 2 || (E_STEPPERS == 2 && ENABLED(HANGPRINTER))) && HAS_E2_STEPE_AXIS_INIT(2);#endif#if (E_STEPPERS > 3 || (E_STEPPERS == 3 && ENABLED(HANGPRINTER))) && HAS_E3_STEPE_AXIS_INIT(3);#endif#if (E_STEPPERS > 4 || (E_STEPPERS == 4 && ENABLED(HANGPRINTER))) && HAS_E4_STEPE_AXIS_INIT(4);#endif// Init Stepper ISR to 122 Hz for quick startingHAL_timer_start(STEP_TIMER_NUM, 122); // OCR1A = 0x4000ENABLE_STEPPER_DRIVER_INTERRUPT();endstops.enable(true); // Start with endstops active. After homing they can be disabledsei();set_directions(); // Init directions to last_direction_bits = 0}/*** Set the stepper positions directly in steps** The input is based on the typical per-axis XYZ steps.* For CORE machines XYZ needs to be translated to ABC.** This allows get_axis_position_mm to correctly* derive the current XYZ position later on.*/void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c,#if ENABLED(HANGPRINTER)const int32_t &d,#endifconst int32_t &e) {#if CORE_IS_XY// corexy positioning// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.htmlcount_position[A_AXIS] = a + b;count_position[B_AXIS] = CORESIGN(a - b);count_position[Z_AXIS] = c;#elif CORE_IS_XZ// corexz planningcount_position[A_AXIS] = a + c;count_position[Y_AXIS] = b;count_position[C_AXIS] = CORESIGN(a - c);#elif CORE_IS_YZ// coreyz planningcount_position[X_AXIS] = a;count_position[B_AXIS] = b + c;count_position[C_AXIS] = CORESIGN(b - c);#else// default non-h-bot planningcount_position[X_AXIS] = a;count_position[Y_AXIS] = b;count_position[Z_AXIS] = c;#if ENABLED(HANGPRINTER)count_position[D_AXIS] = d;#endif#endifcount_position[E_AXIS] = e;}/*** Get a stepper's position in steps.*/int32_t Stepper::position(const AxisEnum axis) {const bool was_enabled = STEPPER_ISR_ENABLED();if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();const int32_t v = count_position[axis];if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();return v;}// Signal endstops were triggered - This function can be called from// an ISR context (Temperature, Stepper or limits ISR), so we must// be very careful here. If the interrupt being preempted was the// Stepper ISR (this CAN happen with the endstop limits ISR) then// when the stepper ISR resumes, we must be very sure that the movement// is properly cancelledvoid Stepper::endstop_triggered(const AxisEnum axis) {const bool was_enabled = STEPPER_ISR_ENABLED();if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();#if IS_COREendstops_trigsteps[axis] = 0.5f * (axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]): count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]);#else // !COREXY && !COREXZ && !COREYZendstops_trigsteps[axis] = count_position[axis];#endif // !COREXY && !COREXZ && !COREYZ// Discard the rest of the move if there is a current blockquick_stop();if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();}int32_t Stepper::triggered_position(const AxisEnum axis) {const bool was_enabled = STEPPER_ISR_ENABLED();if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();const int32_t v = endstops_trigsteps[axis];if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();return v;}void Stepper::report_positions() {// Protect the access to the position.const bool was_enabled = STEPPER_ISR_ENABLED();if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();const int32_t xpos = count_position[X_AXIS],ypos = count_position[Y_AXIS],#if ENABLED(HANGPRINTER)dpos = count_position[D_AXIS],#endifzpos = count_position[Z_AXIS];if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();#if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)SERIAL_PROTOCOLPGM(MSG_COUNT_A);#elseSERIAL_PROTOCOLPGM(MSG_COUNT_X);#endifSERIAL_PROTOCOL(xpos);#if CORE_IS_XY || CORE_IS_YZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)SERIAL_PROTOCOLPGM(" B:");#elseSERIAL_PROTOCOLPGM(" Y:");#endifSERIAL_PROTOCOL(ypos);#if CORE_IS_XZ || CORE_IS_YZ || IS_DELTA || ENABLED(HANGPRINTER)SERIAL_PROTOCOLPGM(" C:");#elseSERIAL_PROTOCOLPGM(" Z:");#endifSERIAL_PROTOCOL(zpos);#if ENABLED(HANGPRINTER)SERIAL_PROTOCOLPAIR(" D:", dpos);#endifSERIAL_EOL();}#if ENABLED(BABYSTEPPING)#if MINIMUM_STEPPER_PULSE#define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)#else#define STEP_PULSE_CYCLES 0#endif#if ENABLED(DELTA)#define CYCLES_EATEN_BABYSTEP (2 * 15)#else#define CYCLES_EATEN_BABYSTEP 0#endif#define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))#define _ENABLE(AXIS) enable_## AXIS()#define _READ_DIR(AXIS) AXIS ##_DIR_READ#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)#if EXTRA_CYCLES_BABYSTEP > 20#define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM)#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }#else#define _SAVE_START NOOP#if EXTRA_CYCLES_BABYSTEP > 0#define _PULSE_WAIT DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)#elif STEP_PULSE_CYCLES > 0#define _PULSE_WAIT NOOP#elif ENABLED(DELTA)#define _PULSE_WAIT DELAY_US(2);#else#define _PULSE_WAIT DELAY_US(4);#endif#endif#define BABYSTEP_AXIS(AXIS, INVERT, DIR) { \const uint8_t old_dir = _READ_DIR(AXIS); \_ENABLE(AXIS); \_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INVERT); \DELAY_NS(MINIMUM_STEPPER_DIR_DELAY); \_SAVE_START; \_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \_PULSE_WAIT; \_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \_APPLY_DIR(AXIS, old_dir); \}// MUST ONLY BE CALLED BY AN ISR,// No other ISR should ever interrupt this!void Stepper::babystep(const AxisEnum axis, const bool direction) {cli();switch (axis) {#if ENABLED(BABYSTEP_XY)case X_AXIS:#if CORE_IS_XYBABYSTEP_AXIS(X, false, direction);BABYSTEP_AXIS(Y, false, direction);#elif CORE_IS_XZBABYSTEP_AXIS(X, false, direction);BABYSTEP_AXIS(Z, false, direction);#elseBABYSTEP_AXIS(X, false, direction);#endifbreak;case Y_AXIS:#if CORE_IS_XYBABYSTEP_AXIS(X, false, direction);BABYSTEP_AXIS(Y, false, direction^(CORESIGN(1)<0));#elif CORE_IS_YZBABYSTEP_AXIS(Y, false, direction);BABYSTEP_AXIS(Z, false, direction^(CORESIGN(1)<0));#elseBABYSTEP_AXIS(Y, false, direction);#endifbreak;#endifcase Z_AXIS: {#if CORE_IS_XZBABYSTEP_AXIS(X, BABYSTEP_INVERT_Z, direction);BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));#elif CORE_IS_YZBABYSTEP_AXIS(Y, BABYSTEP_INVERT_Z, direction);BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));#elif DISABLED(DELTA)BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);#else // DELTAconst bool z_direction = direction ^ BABYSTEP_INVERT_Z;enable_X();enable_Y();enable_Z();const uint8_t old_x_dir_pin = X_DIR_READ,old_y_dir_pin = Y_DIR_READ,old_z_dir_pin = Z_DIR_READ;X_DIR_WRITE(INVERT_X_DIR ^ z_direction);Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);#if MINIMUM_STEPPER_DIR_DELAY > 0DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);#endif_SAVE_START;X_STEP_WRITE(!INVERT_X_STEP_PIN);Y_STEP_WRITE(!INVERT_Y_STEP_PIN);Z_STEP_WRITE(!INVERT_Z_STEP_PIN);_PULSE_WAIT;X_STEP_WRITE(INVERT_X_STEP_PIN);Y_STEP_WRITE(INVERT_Y_STEP_PIN);Z_STEP_WRITE(INVERT_Z_STEP_PIN);// Restore direction bitsX_DIR_WRITE(old_x_dir_pin);Y_DIR_WRITE(old_y_dir_pin);Z_DIR_WRITE(old_z_dir_pin);#endif} break;default: break;}sei();}#endif // BABYSTEPPING/*** Software-controlled Stepper Motor Current*/#if HAS_DIGIPOTSS// From Arduino DigitalPotControl examplevoid Stepper::digitalPotWrite(const int16_t address, const int16_t value) {WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chipSPI.transfer(address); // Send the address and value via SPISPI.transfer(value);WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip//delay(10);}#endif // HAS_DIGIPOTSS#if HAS_MOTOR_CURRENT_PWMvoid Stepper::refresh_motor_power() {for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {switch (i) {#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)case 0:#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)case 1:#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)case 2:#endifdigipot_current(i, motor_current_setting[i]);default: break;}}}#endif // HAS_MOTOR_CURRENT_PWM#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWMvoid Stepper::digipot_current(const uint8_t driver, const int current) {#if HAS_DIGIPOTSSconst uint8_t digipot_ch[] = DIGIPOT_CHANNELS;digitalPotWrite(digipot_ch[driver], current);#elif HAS_MOTOR_CURRENT_PWMif (WITHIN(driver, 0, 2))motor_current_setting[driver] = current; // update motor_current_setting#define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))switch (driver) {#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)case 0: _WRITE_CURRENT_PWM(XY); break;#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)case 1: _WRITE_CURRENT_PWM(Z); break;#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)case 2: _WRITE_CURRENT_PWM(E); break;#endif}#endif}void Stepper::digipot_init() {#if HAS_DIGIPOTSSstatic const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;SPI.begin();SET_OUTPUT(DIGIPOTSS_PIN);for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);digipot_current(i, digipot_motor_current[i]);}#elif HAS_MOTOR_CURRENT_PWM#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);#endifrefresh_motor_power();// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)SET_CS5(PRESCALER_1);#endif}#endif#if HAS_MICROSTEPS/*** Software-controlled Microstepping*/void Stepper::microstep_init() {SET_OUTPUT(X_MS1_PIN);SET_OUTPUT(X_MS2_PIN);#if HAS_Y_MICROSTEPSSET_OUTPUT(Y_MS1_PIN);SET_OUTPUT(Y_MS2_PIN);#endif#if HAS_Z_MICROSTEPSSET_OUTPUT(Z_MS1_PIN);SET_OUTPUT(Z_MS2_PIN);#endif#if HAS_E0_MICROSTEPSSET_OUTPUT(E0_MS1_PIN);SET_OUTPUT(E0_MS2_PIN);#endif#if HAS_E1_MICROSTEPSSET_OUTPUT(E1_MS1_PIN);SET_OUTPUT(E1_MS2_PIN);#endif#if HAS_E2_MICROSTEPSSET_OUTPUT(E2_MS1_PIN);SET_OUTPUT(E2_MS2_PIN);#endif#if HAS_E3_MICROSTEPSSET_OUTPUT(E3_MS1_PIN);SET_OUTPUT(E3_MS2_PIN);#endif#if HAS_E4_MICROSTEPSSET_OUTPUT(E4_MS1_PIN);SET_OUTPUT(E4_MS2_PIN);#endifstatic const uint8_t microstep_modes[] = MICROSTEP_MODES;for (uint16_t i = 0; i < COUNT(microstep_modes); i++)microstep_mode(i, microstep_modes[i]);}void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {if (ms1 >= 0) switch (driver) {case 0: WRITE(X_MS1_PIN, ms1); break;#if HAS_Y_MICROSTEPScase 1: WRITE(Y_MS1_PIN, ms1); break;#endif#if HAS_Z_MICROSTEPScase 2: WRITE(Z_MS1_PIN, ms1); break;#endif#if HAS_E0_MICROSTEPScase 3: WRITE(E0_MS1_PIN, ms1); break;#endif#if HAS_E1_MICROSTEPScase 4: WRITE(E1_MS1_PIN, ms1); break;#endif#if HAS_E2_MICROSTEPScase 5: WRITE(E2_MS1_PIN, ms1); break;#endif#if HAS_E3_MICROSTEPScase 6: WRITE(E3_MS1_PIN, ms1); break;#endif#if HAS_E4_MICROSTEPScase 7: WRITE(E4_MS1_PIN, ms1); break;#endif}if (ms2 >= 0) switch (driver) {case 0: WRITE(X_MS2_PIN, ms2); break;#if HAS_Y_MICROSTEPScase 1: WRITE(Y_MS2_PIN, ms2); break;#endif#if HAS_Z_MICROSTEPScase 2: WRITE(Z_MS2_PIN, ms2); break;#endif#if HAS_E0_MICROSTEPScase 3: WRITE(E0_MS2_PIN, ms2); break;#endif#if HAS_E1_MICROSTEPScase 4: WRITE(E1_MS2_PIN, ms2); break;#endif#if HAS_E2_MICROSTEPScase 5: WRITE(E2_MS2_PIN, ms2); break;#endif#if HAS_E3_MICROSTEPScase 6: WRITE(E3_MS2_PIN, ms2); break;#endif#if HAS_E4_MICROSTEPScase 7: WRITE(E4_MS2_PIN, ms2); break;#endif}}void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {switch (stepping_mode) {case 1: microstep_ms(driver, MICROSTEP1); break;#if ENABLED(HEROIC_STEPPER_DRIVERS)case 128: microstep_ms(driver, MICROSTEP128); break;#elsecase 2: microstep_ms(driver, MICROSTEP2); break;case 4: microstep_ms(driver, MICROSTEP4); break;#endifcase 8: microstep_ms(driver, MICROSTEP8); break;case 16: microstep_ms(driver, MICROSTEP16); break;default: SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Microsteps unavailable"); break;}}void Stepper::microstep_readings() {SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");SERIAL_PROTOCOLPGM("X: ");SERIAL_PROTOCOL(READ(X_MS1_PIN));SERIAL_PROTOCOLLN(READ(X_MS2_PIN));#if HAS_Y_MICROSTEPSSERIAL_PROTOCOLPGM("Y: ");SERIAL_PROTOCOL(READ(Y_MS1_PIN));SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));#endif#if HAS_Z_MICROSTEPSSERIAL_PROTOCOLPGM("Z: ");SERIAL_PROTOCOL(READ(Z_MS1_PIN));SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));#endif#if HAS_E0_MICROSTEPSSERIAL_PROTOCOLPGM("E0: ");SERIAL_PROTOCOL(READ(E0_MS1_PIN));SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));#endif#if HAS_E1_MICROSTEPSSERIAL_PROTOCOLPGM("E1: ");SERIAL_PROTOCOL(READ(E1_MS1_PIN));SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));#endif#if HAS_E2_MICROSTEPSSERIAL_PROTOCOLPGM("E2: ");SERIAL_PROTOCOL(READ(E2_MS1_PIN));SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));#endif#if HAS_E3_MICROSTEPSSERIAL_PROTOCOLPGM("E3: ");SERIAL_PROTOCOL(READ(E3_MS1_PIN));SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));#endif#if HAS_E4_MICROSTEPSSERIAL_PROTOCOLPGM("E4: ");SERIAL_PROTOCOL(READ(E4_MS1_PIN));SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));#endif}#endif // HAS_MICROSTEPS