Blame | Last modification | View Log | RSS feed
/*** Marlin 3D Printer Firmware* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]** Based on Sprinter and grbl.* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program. If not, see <http://www.gnu.org/licenses/>.**/#include "MarlinConfig.h"#if ENABLED(AUTO_BED_LEVELING_UBL)#include "Marlin.h"#include "ubl.h"#include "planner.h"#include "stepper.h"#include <avr/io.h>#include <math.h>#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without thisinline void set_current_from_destination() { COPY(current_position, destination); }#elseextern void set_current_from_destination();#endif#if !UBL_SEGMENTEDvoid unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {/*** Much of the nozzle movement will be within the same cell. So we will do as little computation* as possible to determine if this is the case. If this move is within the same cell, we will* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave*/#if ENABLED(SKEW_CORRECTION)// For skew correction just adjust the destination point and we're donefloat start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART] },end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_CART] };planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);#elseconst float (&start)[XYZE] = current_position,(&end)[XYZE] = destination;#endifconst int cell_start_xi = get_cell_index_x(start[X_AXIS]),cell_start_yi = get_cell_index_y(start[Y_AXIS]),cell_dest_xi = get_cell_index_x(end[X_AXIS]),cell_dest_yi = get_cell_index_y(end[Y_AXIS]);if (g26_debug_flag) {SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);SERIAL_ECHOPAIR(", ee=", destination[E_CART]);SERIAL_CHAR(')');SERIAL_EOL();debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));}// A move within the same cell needs no splittingif (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) {// For a move off the bed, use a constant Z raiseif (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {// Note: There is no Z Correction in this case. We are off the grid and don't know what// a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH// value, that will be used instead of a calculated (Bi-Linear interpolation) correction.const float z_raise = 0.0#ifdef UBL_Z_RAISE_WHEN_OFF_MESH+ UBL_Z_RAISE_WHEN_OFF_MESH#endif;planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z_raise, end[E_CART], feed_rate, extruder);set_current_from_destination();if (g26_debug_flag)debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));return;}FINAL_MOVE:// The distance is always MESH_X_DIST so multiply by the constant reciprocal.const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0f / (MESH_X_DIST));float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;// X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0f / (MESH_Y_DIST)),z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;// Undefined parts of the Mesh in z_values[][] are NAN.// Replace NAN corrections with 0.0 to prevent NAN propagation.planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + (isnan(z0) ? 0.0 : z0), end[E_CART], feed_rate, extruder);if (g26_debug_flag)debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));set_current_from_destination();return;}/*** Past this point the move is known to cross one or more mesh lines. Check for the most common* case - crossing only one X or Y line - after details are worked out to reduce computation.*/const float dx = end[X_AXIS] - start[X_AXIS],dy = end[Y_AXIS] - start[Y_AXIS];const int left_flag = dx < 0.0 ? 1 : 0,down_flag = dy < 0.0 ? 1 : 0;const float adx = left_flag ? -dx : dx,ady = down_flag ? -dy : dy;const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;/*** Compute the extruder scaling factor for each partial move, checking for* zero-length moves that would result in an infinite scaling factor.* A float divide is required for this, but then it just multiplies.* Also select a scaling factor based on the larger of the X and Y* components. The larger of the two is used to preserve precision.*/const bool use_x_dist = adx > ady;float on_axis_distance = use_x_dist ? dx : dy,e_position = end[E_CART] - start[E_CART],z_position = end[Z_AXIS] - start[Z_AXIS];const float e_normalized_dist = e_position / on_axis_distance,z_normalized_dist = z_position / on_axis_distance;int current_xi = cell_start_xi,current_yi = cell_start_yi;const float m = dy / dx,c = start[Y_AXIS] - m * start[X_AXIS];const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),inf_m_flag = (isinf(m) != 0);/*** Handle vertical lines that stay within one column.* These need not be perfectly vertical.*/if (dxi == 0) { // Vertical line?current_yi += down_flag; // Line going down? Just go to the bottom.while (current_yi != cell_dest_yi + down_flag) {current_yi += dyi;const float next_mesh_line_y = mesh_index_to_ypos(current_yi);/*** Skip the calculations for an infinite slope.* For others the next X is the same so this can continue.* Calculate X at the next Y mesh line.*/const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)* planner.fade_scaling_factor_for_z(end[Z_AXIS]);// Undefined parts of the Mesh in z_values[][] are NAN.// Replace NAN corrections with 0.0 to prevent NAN propagation.if (isnan(z0)) z0 = 0.0;const float ry = mesh_index_to_ypos(current_yi);/*** Without this check, it's possible to generate a zero length move, as in the case where* the line is heading down, starting exactly on a mesh line boundary. Since this is rare* it might be fine to remove this check and let planner.buffer_segment() filter it out.*/if (ry != start[Y_AXIS]) {if (!inf_normalized_flag) {on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];e_position = start[E_CART] + on_axis_distance * e_normalized_dist;z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;}else {e_position = end[E_CART];z_position = end[Z_AXIS];}planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);} //else printf("FIRST MOVE PRUNED ");}if (g26_debug_flag)debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));// At the final destination? Usually not, but when on a Y Mesh Line it's completed.if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])goto FINAL_MOVE;set_current_from_destination();return;}/*** Handle horizontal lines that stay within one row.* These need not be perfectly horizontal.*/if (dyi == 0) { // Horizontal line?current_xi += left_flag; // Heading left? Just go to the left edge of the cell for the first move.while (current_xi != cell_dest_xi + left_flag) {current_xi += dxi;const float next_mesh_line_x = mesh_index_to_xpos(current_xi),ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh linefloat z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)* planner.fade_scaling_factor_for_z(end[Z_AXIS]);// Undefined parts of the Mesh in z_values[][] are NAN.// Replace NAN corrections with 0.0 to prevent NAN propagation.if (isnan(z0)) z0 = 0.0;const float rx = mesh_index_to_xpos(current_xi);/*** Without this check, it's possible to generate a zero length move, as in the case where* the line is heading left, starting exactly on a mesh line boundary. Since this is rare* it might be fine to remove this check and let planner.buffer_segment() filter it out.*/if (rx != start[X_AXIS]) {if (!inf_normalized_flag) {on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];e_position = start[E_CART] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal movez_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;}else {e_position = end[E_CART];z_position = end[Z_AXIS];}if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder))break;} //else printf("FIRST MOVE PRUNED ");}if (g26_debug_flag)debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])goto FINAL_MOVE;set_current_from_destination();return;}/**** Handle the generic case of a line crossing both X and Y Mesh lines.**/int xi_cnt = cell_start_xi - cell_dest_xi,yi_cnt = cell_start_yi - cell_dest_yi;if (xi_cnt < 0) xi_cnt = -xi_cnt;if (yi_cnt < 0) yi_cnt = -yi_cnt;current_xi += left_flag;current_yi += down_flag;while (xi_cnt || yi_cnt) {const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh linerx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line// (No need to worry about m being zero.// If that was the case, it was already detected// as a vertical line move above.)if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first// Yes! Crossing a Y Mesh Line nextfloat z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)* planner.fade_scaling_factor_for_z(end[Z_AXIS]);// Undefined parts of the Mesh in z_values[][] are NAN.// Replace NAN corrections with 0.0 to prevent NAN propagation.if (isnan(z0)) z0 = 0.0;if (!inf_normalized_flag) {on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];e_position = start[E_CART] + on_axis_distance * e_normalized_dist;z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;}else {e_position = end[E_CART];z_position = end[Z_AXIS];}if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder))break;current_yi += dyi;yi_cnt--;}else {// Yes! Crossing a X Mesh Line nextfloat z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)* planner.fade_scaling_factor_for_z(end[Z_AXIS]);// Undefined parts of the Mesh in z_values[][] are NAN.// Replace NAN corrections with 0.0 to prevent NAN propagation.if (isnan(z0)) z0 = 0.0;if (!inf_normalized_flag) {on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];e_position = start[E_CART] + on_axis_distance * e_normalized_dist;z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;}else {e_position = end[E_CART];z_position = end[Z_AXIS];}if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder))break;current_xi += dxi;xi_cnt--;}if (xi_cnt < 0 || yi_cnt < 0) break; // Too far! Exit the loop and go to FINAL_MOVE}if (g26_debug_flag)debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])goto FINAL_MOVE;set_current_from_destination();}#else // UBL_SEGMENTED#if IS_SCARA // scale the feed rate from mm/s to degrees/sstatic float scara_feed_factor, scara_oldA, scara_oldB;#endif// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {#if ENABLED(SKEW_CORRECTION)float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);#elseconst float (&raw)[XYZE] = in_raw;#endif#if ENABLED(DELTA) // apply delta inverse_kinematicsDELTA_IK(raw);planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_CART], fr, active_extruder);#elif ENABLED(HANGPRINTER) // apply hangprinter inverse_kinematicsHANGPRINTER_IK(raw);planner.buffer_segment(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], in_raw[E_CART], fr, active_extruder);#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]// should move the feedrate scaling to scara inverse_kinematicsconst float adiff = ABS(delta[A_AXIS] - scara_oldA),bdiff = ABS(delta[B_AXIS] - scara_oldB);scara_oldA = delta[A_AXIS];scara_oldB = delta[B_AXIS];float s_feedrate = MAX(adiff, bdiff) * scara_feed_factor;planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_CART], s_feedrate, active_extruder);#else // CARTESIANplanner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_CART], fr, active_extruder);#endif}#if IS_SCARA#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm#elif ENABLED(DELTA)#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)#else // CARTESIAN#ifdef LEVELED_SEGMENT_LENGTH#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH#else#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)#endif#endif/*** Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.* This calls planner.buffer_segment multiple times for small incremental moves.* Returns true if did NOT move, false if moved (requires current_position update).*/bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundaryreturn true; // did not move, so current_position still accurateconst float total[XYZE] = {rtarget[X_AXIS] - current_position[X_AXIS],rtarget[Y_AXIS] - current_position[Y_AXIS],rtarget[Z_AXIS] - current_position[Z_AXIS],rtarget[E_CART] - current_position[E_CART]};const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance#if IS_KINEMATICconst float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rateuint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrateseglimit = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment lengthNOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)#elseuint16_t segments = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length#endifNOLESS(segments, 1U); // must have at least one segmentconst float inv_segments = 1.0f / segments; // divide once, multiply thereafter#if IS_SCARA // scale the feed rate from mm/s to degrees/sscara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;scara_oldA = planner.get_axis_position_degrees(A_AXIS);scara_oldB = planner.get_axis_position_degrees(B_AXIS);#endifconst float diff[XYZE] = {total[X_AXIS] * inv_segments,total[Y_AXIS] * inv_segments,total[Z_AXIS] * inv_segments,total[E_CART] * inv_segments};// Note that E segment distance could vary slightly as z mesh height// changes for each segment, but small enough to ignore.float raw[XYZE] = {current_position[X_AXIS],current_position[Y_AXIS],current_position[Z_AXIS],current_position[E_CART]};// Only compute leveling per segment if ubl active and target below z_fade_height.if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh levelingwhile (--segments) {LOOP_XYZE(i) raw[i] += diff[i];ubl_buffer_segment_raw(raw, feedrate);}ubl_buffer_segment_raw(rtarget, feedrate);return false; // moved but did not set_current_from_destination();}// Otherwise perform per-segment leveling#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);#endif// increment to first segment destinationLOOP_XYZE(i) raw[i] += diff[i];for (;;) { // for each mesh cell encountered during the move// Compute mesh cell invariants that remain constant for all segments within cell.// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)// the bilinear interpolation from the adjacent cell within the mesh will still work.// Inner loop will exit each time (because out of cell bounds) but will come back// in top of loop and again re-find same adjacent cell and use it, just less efficient// for mesh inset area.int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0f / (MESH_X_DIST)),cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0f / (MESH_Y_DIST));cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+addy0 = mesh_index_to_ypos(cell_yi);float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left cornerz_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left cornerz_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right cornerz_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right cornerif (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh pointsif (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined pointsfloat cx = raw[X_AXIS] - x0, // cell-relative x and ycy = raw[Y_AXIS] - y0;const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0f / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)z_xmy1 = (z_x1y1 - z_x0y1) * (1.0f / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cxz_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1float z_cxym = z_cxyd * (1.0f / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)// As subsequent segments step through this cell, the z_cxy0 intercept will change// and the z_cxym slope will change, both as a function of cx within the cell, and// each change by a constant for fixed segment lengths.const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0z_sxym = (z_xmy1 - z_xmy0) * (1.0f / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxymfor (;;) { // for all segments within this mesh cellif (--segments == 0) // if this is last segment, use rtarget for exactCOPY(raw, rtarget);const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)* fade_scaling_factor // apply fade factor to interpolated mesh height#endif;const float z = raw[Z_AXIS];raw[Z_AXIS] += z_cxcy;ubl_buffer_segment_raw(raw, feedrate);raw[Z_AXIS] = z;if (segments == 0) // done with last segmentreturn false; // did not set_current_from_destination()LOOP_XYZE(i) raw[i] += diff[i];cx += diff[X_AXIS];cy += diff[Y_AXIS];if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to nextbreak;// Next segment still within same mesh cell, adjust the per-segment// slope and intercept to compute next z height.z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym} // segment loop} // cell loopreturn false; // caller will update current_position}#endif // UBL_SEGMENTED#endif // AUTO_BED_LEVELING_UBL