Blame | Last modification | View Log | RSS feed
/*** Marlin 3D Printer Firmware* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]** Based on Sprinter and grbl.* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program. If not, see <http://www.gnu.org/licenses/>.**//*** About Marlin** This firmware is a mashup between Sprinter and grbl.* - https://github.com/kliment/Sprinter* - https://github.com/grbl/grbl*//*** -----------------* G-Codes in Marlin* -----------------** Helpful G-code references:* - http://linuxcnc.org/handbook/gcode/g-code.html* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes** Help to document Marlin's G-codes online:* - http://reprap.org/wiki/G-code* - https://github.com/MarlinFirmware/MarlinDocumentation** -----------------** "G" Codes** G0 -> G1* G1 - Coordinated Movement X Y Z E* G2 - CW ARC* G3 - CCW ARC* G4 - Dwell S<seconds> or P<milliseconds>* G5 - Cubic B-spline with XYZE destination and IJPQ offsets* G6 - Direct stepper move (Requires UNREGISTERED_MOVE_SUPPORT). Hangprinter defaults to relative moves. Others default to absolute moves.* G10 - Retract filament according to settings of M207 (Requires FWRETRACT)* G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)* G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)* G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)* G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)* G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)* G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)* G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)* G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)* G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)* G28 - Home one or more axes* G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)* G31 - Dock sled (Z_PROBE_SLED only)* G32 - Undock sled (Z_PROBE_SLED only)* G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)* G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)* G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)* G90 - Use Absolute Coordinates* G91 - Use Relative Coordinates* G92 - Set current position to coordinates given* G95 - Set torque mode (Requires MECHADUINO_I2C_COMMANDS enabled)* G96 - Set encoder reference point (Requires MECHADUINO_I2C_COMMANDS enabled)** "M" Codes** M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)* M1 -> M0* M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise* M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise* M5 - Turn laser/spindle off* M17 - Enable/Power all stepper motors* M18 - Disable all stepper motors; same as M84* M20 - List SD card. (Requires SDSUPPORT)* M21 - Init SD card. (Requires SDSUPPORT)* M22 - Release SD card. (Requires SDSUPPORT)* M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)* M24 - Start/resume SD print. (Requires SDSUPPORT)* M25 - Pause SD print. (Requires SDSUPPORT)* M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)* M27 - Report SD print status. (Requires SDSUPPORT)* OR, with 'S<seconds>' set the SD status auto-report interval. (Requires AUTO_REPORT_SD_STATUS)* OR, with 'C' get the current filename.* M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)* M29 - Stop SD write. (Requires SDSUPPORT)* M30 - Delete file from SD: "M30 /path/file.gco"* M31 - Report time since last M109 or SD card start to serial.* M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)* Use P to run other files as sub-programs: "M32 P !filename#"* The '#' is necessary when calling from within sd files, as it stops buffer prereading* M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)* M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)* M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.* M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins* M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs> S<chizoid>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)* M75 - Start the print job timer.* M76 - Pause the print job timer.* M77 - Stop the print job timer.* M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)* M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)* M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)* M82 - Set E codes absolute (default).* M83 - Set E codes relative while in Absolute (G90) mode.* M84 - Disable steppers until next move, or use S<seconds> to specify an idle* duration after which steppers should turn off. S0 disables the timeout.* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)* M92 - Set planner.axis_steps_per_mm for one or more axes.* M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)* M104 - Set extruder target temp.* M105 - Report current temperatures.* M106 - Set print fan speed.* M107 - Print fan off.* M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling* If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F* M110 - Set the current line number. (Used by host printing)* M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.* M112 - Emergency stop.* M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)* M114 - Report current position.* - S1 Compute length traveled since last G96 using encoder position data (Requires MECHADUINO_I2C_COMMANDS, only kinematic axes)* M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)* M117 - Display a message on the controller screen. (Requires an LCD)* M118 - Display a message in the host console.* M119 - Report endstops status.* M120 - Enable endstops detection.* M121 - Disable endstops detection.* M122 - Debug stepper (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)* M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)* M126 - Solenoid Air Valve Open. (Requires BARICUDA)* M127 - Solenoid Air Valve Closed. (Requires BARICUDA)* M128 - EtoP Open. (Requires BARICUDA)* M129 - EtoP Closed. (Requires BARICUDA)* M140 - Set bed target temp. S<temp>* M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)* M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)* M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).* M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)* M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)* M164 - Commit the mix (Req. MIXING_EXTRUDER) and optionally save as a virtual tool (Req. MIXING_VIRTUAL_TOOLS > 1)* M165 - Set the mix for a mixing extruder wuth parameters ABCDHI. (Requires MIXING_EXTRUDER and DIRECT_MIXING_IN_G1)* M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! *** Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. *** M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)* M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"* M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! *** M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.* M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>* M205 - Set advanced settings. Current units apply:S<print> T<travel> minimum speedsQ<minimum segment time>X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>* M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)* M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)Every normal extrude-only move will be classified as retract depending on the direction.* M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)* M218 - Set/get a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)* M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)* M221 - Set Flow Percentage: "M221 S<percent>"* M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"* M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)* M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)* M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)* M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)* M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)* M290 - Babystepping (Requires BABYSTEPPING)* M300 - Play beep sound S<frequency Hz> P<duration ms>* M301 - Set PID parameters P I and D. (Requires PIDTEMP)* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)* M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)* M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)* M350 - Set microstepping mode. (Requires digital microstepping pins.)* M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)* M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)* M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)* M381 - Disable all solenoids. (Requires EXT_SOLENOID)* M400 - Finish all moves.* M401 - Deploy and activate Z probe. (Requires a probe)* M402 - Deactivate and stow Z probe. (Requires a probe)* M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)* M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)* M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)* M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)* M410 - Quickstop. Abort all planned moves.* M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, or AUTO_BED_LEVELING_UBL)* M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)* M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)* M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)* M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! *** M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.* M524 - Abort SD card print job started with M24 (Requires SDSUPPORT)* M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)* M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)* M603 - Configure filament change: "M603 T<tool> U<unload_length> L<load_length>". (Requires ADVANCED_PAUSE_FEATURE)* M605 - Set Dual X-Carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)* M665 - Set Delta configurations: "M665 H<delta height> L<diagonal rod> R<delta radius> S<segments/s> B<calibration radius> X<Alpha angle trim> Y<Beta angle trim> Z<Gamma angle trim> (Requires DELTA)* M665 - Set Hangprinter configurations: "M665 W<Ay> E<Az> R<Bx> T<By> Y<Bz> U<Cx> I<Cy> O<Cz> P<Dz> S<segments/s>" (Requires HANGPRINTER)* M666 - Set/get endstop offsets for delta (Requires DELTA) or dual endstops (Requires [XYZ]_DUAL_ENDSTOPS).* M701 - Load filament (requires FILAMENT_LOAD_UNLOAD_GCODES)* M702 - Unload filament (requires FILAMENT_LOAD_UNLOAD_GCODES)* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)* M852 - Set skew factors: "M852 [I<xy>] [J<xz>] [K<yz>]". (Requires SKEW_CORRECTION_GCODE, and SKEW_CORRECTION_FOR_Z for IJ)* M860 - Report the position of position encoder modules.* M861 - Report the status of position encoder modules.* M862 - Perform an axis continuity test for position encoder modules.* M863 - Perform steps-per-mm calibration for position encoder modules.* M864 - Change position encoder module I2C address.* M865 - Check position encoder module firmware version.* M866 - Report or reset position encoder module error count.* M867 - Enable/disable or toggle error correction for position encoder modules.* M868 - Report or set position encoder module error correction threshold.* M869 - Report position encoder module error.* M900 - Get or Set Linear Advance K-factor. (Requires LIN_ADVANCE)* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)* M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)* M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)* M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)* M911 - Report stepper driver overtemperature pre-warn condition. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)* M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)* M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)* M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)** M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)** ************ Custom codes - This can change to suit future G-code regulations* M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)* M999 - Restart after being stopped by error** "T" Codes** T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"**/#include "Marlin.h"#include "ultralcd.h"#include "planner.h"#include "stepper.h"#include "endstops.h"#include "temperature.h"#include "cardreader.h"#include "configuration_store.h"#include "language.h"#include "pins_arduino.h"#include "math.h"#include "nozzle.h"#include "printcounter.h"#include "duration_t.h"#include "types.h"#include "parser.h"#if ENABLED(AUTO_POWER_CONTROL)#include "power.h"#endif#if ABL_PLANAR#include "vector_3.h"#if ENABLED(AUTO_BED_LEVELING_LINEAR)#include "least_squares_fit.h"#endif#elif ENABLED(MESH_BED_LEVELING)#include "mesh_bed_leveling.h"#endif#if ENABLED(BEZIER_CURVE_SUPPORT)#include "planner_bezier.h"#endif#if ENABLED(FWRETRACT)#include "fwretract.h"#endif#if ENABLED(POWER_LOSS_RECOVERY)#include "power_loss_recovery.h"#endif#if ENABLED(FILAMENT_RUNOUT_SENSOR)#include "runout.h"#endif#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)#include "buzzer.h"#endif#if ENABLED(USE_WATCHDOG)#include "watchdog.h"#endif#if ENABLED(MAX7219_DEBUG)#include "Max7219_Debug_LEDs.h"#endif#if HAS_COLOR_LEDS#include "leds.h"#endif#if HAS_SERVOS#include "servo.h"#endif#if HAS_DIGIPOTSS#include <SPI.h>#endif#if HAS_TRINAMIC#include "tmc_util.h"#endif#if ENABLED(DAC_STEPPER_CURRENT)#include "stepper_dac.h"#endif#if ENABLED(EXPERIMENTAL_I2CBUS)#include "twibus.h"#endif#if ENABLED(I2C_POSITION_ENCODERS)#include "I2CPositionEncoder.h"#endif#if ENABLED(M100_FREE_MEMORY_WATCHER)void gcode_M100();void M100_dump_routine(const char * const title, const char *start, const char *end);#endif#if ENABLED(G26_MESH_VALIDATION)bool g26_debug_flag; // =falsevoid gcode_G26();#endif#if ENABLED(SDSUPPORT)CardReader card;#endif#if ENABLED(EXPERIMENTAL_I2CBUS)TWIBus i2c;#endif#if ENABLED(G38_PROBE_TARGET)bool G38_move = false,G38_endstop_hit = false;#endif#if ENABLED(AUTO_BED_LEVELING_UBL)#include "ubl.h"#endif#if ENABLED(CNC_COORDINATE_SYSTEMS)int8_t active_coordinate_system = -1; // machine spacefloat coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];#endifbool Running = true;uint8_t marlin_debug_flags = DEBUG_NONE;/*** Cartesian Current Position* Used to track the native machine position as moves are queued.* Used by 'buffer_line_to_current_position' to do a move after changing it.* Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.*/float current_position[XYZE] = { 0 };/*** Cartesian Destination* The destination for a move, filled in by G-code movement commands,* and expected by functions like 'prepare_move_to_destination'.* Set with 'gcode_get_destination' or 'set_destination_from_current'.*/float destination[XYZE] = { 0 };/*** axis_homed* Flags that each linear axis was homed.* XYZ on cartesian, ABC on delta, ABZ on SCARA.** axis_known_position* Flags that the position is known in each linear axis. Set when homed.* Cleared whenever a stepper powers off, potentially losing its position.*/uint8_t axis_homed, axis_known_position; // = 0/*** GCode line number handling. Hosts may opt to include line numbers when* sending commands to Marlin, and lines will be checked for sequentiality.* M110 N<int> sets the current line number.*/static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;/*** GCode Command Queue* A simple ring buffer of BUFSIZE command strings.** Commands are copied into this buffer by the command injectors* (immediate, serial, sd card) and they are processed sequentially by* the main loop. The process_next_command function parses the next* command and hands off execution to individual handler functions.*/uint8_t commands_in_queue = 0, // Count of commands in the queuecmd_queue_index_r = 0, // Ring buffer read (out) positioncmd_queue_index_w = 0; // Ring buffer write (in) positionchar command_queue[BUFSIZE][MAX_CMD_SIZE];/*** Next Injected Command pointer. NULL if no commands are being injected.* Used by Marlin internally to ensure that commands initiated from within* are enqueued ahead of any pending serial or sd card commands.*/static const char *injected_commands_P = NULL;#if ENABLED(TEMPERATURE_UNITS_SUPPORT)TempUnit input_temp_units = TEMPUNIT_C;#endif/*** Feed rates are often configured with mm/m* but the planner and stepper like mm/s units.*/static const float homing_feedrate_mm_s[] PROGMEM = {#if ENABLED(HANGPRINTER)MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), MMM_TO_MMS(DUMMY_HOMING_FEEDRATE),MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), 0#else#if ENABLED(DELTA)MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),#elseMMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),#endifMMM_TO_MMS(HOMING_FEEDRATE_Z), 0#endif};FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }float feedrate_mm_s = MMM_TO_MMS(1500.0f);static float saved_feedrate_mm_s;int16_t feedrate_percentage = 100, saved_feedrate_percentage;// Initialized by settings.load()bool axis_relative_modes[XYZE] = AXIS_RELATIVE_MODES;#if HAS_WORKSPACE_OFFSET#if HAS_POSITION_SHIFT// The distance that XYZ has been offset by G92. Reset by G28.float position_shift[XYZ] = { 0 };#endif#if HAS_HOME_OFFSET// This offset is added to the configured home position.// Set by M206, M428, or menu item. Saved to EEPROM.float home_offset[XYZ] = { 0 };#endif#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT// The above two are combined to save on computesfloat workspace_offset[XYZ] = { 0 };#endif#endif// Software Endstops are based on the configured limits.float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };#if HAS_SOFTWARE_ENDSTOPSbool soft_endstops_enabled = true;#if IS_KINEMATICfloat soft_endstop_radius, soft_endstop_radius_2;#endif#endif#if FAN_COUNT > 0int16_t fanSpeeds[FAN_COUNT] = { 0 };#if ENABLED(EXTRA_FAN_SPEED)int16_t old_fanSpeeds[FAN_COUNT],new_fanSpeeds[FAN_COUNT];#endif#if ENABLED(PROBING_FANS_OFF)bool fans_paused; // = false;int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };#endif#endif#if ENABLED(USE_CONTROLLER_FAN)int controllerFanSpeed; // = 0;#endif// The active extruder (tool). Set with T<extruder> command.uint8_t active_extruder; // = 0;// Relative Mode. Enable with G91, disable with G90.static bool relative_mode; // = false;// For M109 and M190, this flag may be cleared (by M108) to exit the wait loopvolatile bool wait_for_heatup = true;// For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop#if HAS_RESUME_CONTINUEvolatile bool wait_for_user; // = false;#endif#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)bool suspend_auto_report; // = false#endifconst char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };#if ENABLED(HANGPRINTER)const char axis_codes_hangprinter[ABCDE] = { 'A', 'B', 'C', 'D', 'E' };#define RAW_AXIS_CODES(I) axis_codes_hangprinter[I]#else#define RAW_AXIS_CODES(I) axis_codes[I]#endif// Number of characters read in the current line of serial inputstatic int serial_count; // = 0;// Inactivity shutdownmillis_t previous_move_ms; // = 0;static millis_t max_inactive_time; // = 0;static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;// Buzzer - I2C on the LCD or a BEEPER_PIN#if ENABLED(LCD_USE_I2C_BUZZER)#define BUZZ(d,f) lcd_buzz(d, f)#elif PIN_EXISTS(BEEPER)Buzzer buzzer;#define BUZZ(d,f) buzzer.tone(d, f)#else#define BUZZ(d,f) NOOP#endifuint8_t target_extruder;#if HAS_BED_PROBEfloat zprobe_zoffset; // Initialized by settings.load()#endif#if HAS_ABLfloat xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s#elif defined(XY_PROBE_SPEED)#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)#else#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()#endif#if ENABLED(AUTO_BED_LEVELING_BILINEAR)#if ENABLED(DELTA)#define ADJUST_DELTA(V) \if (planner.leveling_active) { \const float zadj = bilinear_z_offset(V); \delta[A_AXIS] += zadj; \delta[B_AXIS] += zadj; \delta[C_AXIS] += zadj; \}#else#define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }#endif#elif IS_KINEMATIC#define ADJUST_DELTA(V) NOOP#endif#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)const static char msg_wait_for_bed_heating[] PROGMEM = "Wait for bed heating...\n";#endif// Extruder offsets#if HOTENDS > 1float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()#endif#if HAS_Z_SERVO_PROBEconst int z_servo_angle[2] = Z_SERVO_ANGLES;#endif#if ENABLED(BARICUDA)uint8_t baricuda_valve_pressure = 0,baricuda_e_to_p_pressure = 0;#endif#if HAS_POWER_SWITCHbool powersupply_on;#if ENABLED(AUTO_POWER_CONTROL)#define PSU_ON() powerManager.power_on()#define PSU_OFF() powerManager.power_off()#else#define PSU_ON() PSU_PIN_ON()#define PSU_OFF() PSU_PIN_OFF()#endif#endif#if ENABLED(DELTA)float delta[ABC];// Initialized by settings.load()float delta_height,delta_endstop_adj[ABC] = { 0 },delta_radius,delta_tower_angle_trim[ABC],delta_tower[ABC][2],delta_diagonal_rod,delta_calibration_radius,delta_diagonal_rod_2_tower[ABC],delta_segments_per_second,delta_clip_start_height = Z_MAX_POS;float delta_safe_distance_from_top();#elif ENABLED(HANGPRINTER)float anchor_A_y,anchor_A_z,anchor_B_x,anchor_B_y,anchor_B_z,anchor_C_x,anchor_C_y,anchor_C_z,anchor_D_z,line_lengths[ABCD],line_lengths_origin[ABCD],delta_segments_per_second;#endif#if ENABLED(AUTO_BED_LEVELING_BILINEAR)int bilinear_grid_spacing[2], bilinear_start[2];float bilinear_grid_factor[2],z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];#if ENABLED(ABL_BILINEAR_SUBDIVISION)#define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]#define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]#else#define ABL_BG_SPACING(A) bilinear_grid_spacing[A]#define ABL_BG_FACTOR(A) bilinear_grid_factor[A]#define ABL_BG_POINTS_X GRID_MAX_POINTS_X#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y#define ABL_BG_GRID(X,Y) z_values[X][Y]#endif#endif#if IS_SCARA// Float constants for SCARA calculationsconst float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,L2_2 = sq(float(L2));float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,delta[ABC];#endiffloat cartes[XYZ] = { 0 };#if ENABLED(FILAMENT_WIDTH_SENSOR)bool filament_sensor; // = false; // M405 turns on filament sensor control. M406 turns it off.float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameteruint8_t meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay settingint8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delayed measurement. Store extruder factor after subtracting 100filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer#endif#if ENABLED(ADVANCED_PAUSE_FEATURE)AdvancedPauseMenuResponse advanced_pause_menu_response;float filament_change_unload_length[EXTRUDERS],filament_change_load_length[EXTRUDERS];#endif#if ENABLED(MIXING_EXTRUDER)float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.#if MIXING_VIRTUAL_TOOLS > 1float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];#endif#endifstatic bool send_ok[BUFSIZE];#if HAS_SERVOSServo servo[NUM_SERVOS];#define MOVE_SERVO(I, P) servo[I].move(P)#if HAS_Z_SERVO_PROBE#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[0])#define STOW_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[1])#endif#endif#ifdef CHDKmillis_t chdkHigh = 0;bool chdkActive = false;#endif#if ENABLED(HOST_KEEPALIVE_FEATURE)MarlinBusyState busy_state = NOT_BUSY;static millis_t next_busy_signal_ms = 0;uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;#else#define host_keepalive() NOOP#endif#if ENABLED(I2C_POSITION_ENCODERS)I2CPositionEncodersMgr I2CPEM;#endif#if ENABLED(CNC_WORKSPACE_PLANES)static WorkspacePlane workspace_plane = PLANE_XY;#endifFORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \static inline type array(const AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \typedef void __void_##CONFIG##__XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);/*** **************************************************************************** ******************************** FUNCTIONS ********************************* ****************************************************************************/void stop();void get_available_commands();void process_next_command();void process_parsed_command();void get_cartesian_from_steppers();void set_current_from_steppers_for_axis(const AxisEnum axis);#if ENABLED(ARC_SUPPORT)void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const bool clockwise);#endif#if ENABLED(BEZIER_CURVE_SUPPORT)void plan_cubic_move(const float (&cart)[XYZE], const float (&offset)[4]);#endifvoid report_current_position();void report_current_position_detail();#if ENABLED(DEBUG_LEVELING_FEATURE)void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {serialprintPGM(prefix);SERIAL_CHAR('(');SERIAL_ECHO(x);SERIAL_ECHOPAIR(", ", y);SERIAL_ECHOPAIR(", ", z);SERIAL_CHAR(')');if (suffix) serialprintPGM(suffix); else SERIAL_EOL();}void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);}#define DEBUG_POS(SUFFIX,VAR) do { \print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)#endif/*** sync_plan_position** Set the planner/stepper positions directly from current_position with* no kinematic translation. Used for homing axes and cartesian/core syncing.** This is not possible for Hangprinter because current_position and position are different sizes*/void sync_plan_position() {#if DISABLED(HANGPRINTER)#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);#endifplanner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART]);#endif}void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_CART]); }#if IS_KINEMATICinline void sync_plan_position_kinematic() {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);#endifplanner.set_position_mm_kinematic(current_position);}#endif#if ENABLED(SDSUPPORT)#include "SdFatUtil.h"int freeMemory() { return SdFatUtil::FreeRam(); }#elseextern "C" {extern char __bss_end;extern char __heap_start;extern void* __brkval;int freeMemory() {int free_memory;if (int(__brkval) == 0)free_memory = (int(&free_memory)) - (int(&__bss_end));elsefree_memory = (int(&free_memory)) - (int(__brkval));return free_memory;}}#endif // !SDSUPPORT#if ENABLED(DIGIPOT_I2C)extern void digipot_i2c_set_current(uint8_t channel, float current);extern void digipot_i2c_init();#endif/*** Inject the next "immediate" command, when possible, onto the front of the queue.* Return true if any immediate commands remain to inject.*/static bool drain_injected_commands_P() {if (injected_commands_P != NULL) {size_t i = 0;char c, cmd[30];strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);cmd[sizeof(cmd) - 1] = '\0';while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode commandcmd[i] = '\0';if (enqueue_and_echo_command(cmd)) // success?injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done}return (injected_commands_P != NULL); // return whether any more remain}/*** Record one or many commands to run from program memory.* Aborts the current queue, if any.* Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards*/void enqueue_and_echo_commands_P(const char * const pgcode) {injected_commands_P = pgcode;(void)drain_injected_commands_P(); // first command executed asap (when possible)}/*** Clear the Marlin command queue*/void clear_command_queue() {cmd_queue_index_r = cmd_queue_index_w = commands_in_queue = 0;}/*** Once a new command is in the ring buffer, call this to commit it*/inline void _commit_command(bool say_ok) {send_ok[cmd_queue_index_w] = say_ok;if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;commands_in_queue++;}/*** Copy a command from RAM into the main command buffer.* Return true if the command was successfully added.* Return false for a full buffer, or if the 'command' is a comment.*/inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;strcpy(command_queue[cmd_queue_index_w], cmd);_commit_command(say_ok);return true;}/*** Enqueue with Serial Echo*/bool enqueue_and_echo_command(const char* cmd) {if (_enqueuecommand(cmd)) {SERIAL_ECHO_START();SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);SERIAL_CHAR('"');SERIAL_EOL();return true;}return false;}#if HAS_QUEUE_NOWvoid enqueue_and_echo_command_now(const char* cmd) {while (!enqueue_and_echo_command(cmd)) idle();}#if HAS_LCD_QUEUE_NOWvoid enqueue_and_echo_commands_now_P(const char * const pgcode) {enqueue_and_echo_commands_P(pgcode);while (drain_injected_commands_P()) idle();}#endif#endifvoid setup_killpin() {#if HAS_KILLSET_INPUT_PULLUP(KILL_PIN);#endif}void setup_powerhold() {#if HAS_SUICIDEOUT_WRITE(SUICIDE_PIN, HIGH);#endif#if HAS_POWER_SWITCH#if ENABLED(PS_DEFAULT_OFF)powersupply_on = true; PSU_OFF();#elsepowersupply_on = false; PSU_ON();#endif#endif}void suicide() {#if HAS_SUICIDEOUT_WRITE(SUICIDE_PIN, LOW);#endif}void servo_init() {#if NUM_SERVOS >= 1 && HAS_SERVO_0servo[0].attach(SERVO0_PIN);servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.#endif#if NUM_SERVOS >= 2 && HAS_SERVO_1servo[1].attach(SERVO1_PIN);servo[1].detach();#endif#if NUM_SERVOS >= 3 && HAS_SERVO_2servo[2].attach(SERVO2_PIN);servo[2].detach();#endif#if NUM_SERVOS >= 4 && HAS_SERVO_3servo[3].attach(SERVO3_PIN);servo[3].detach();#endif#if HAS_Z_SERVO_PROBE/*** Set position of Z Servo Endstop** The servo might be deployed and positioned too low to stow* when starting up the machine or rebooting the board.* There's no way to know where the nozzle is positioned until* homing has been done - no homing with z-probe without init!**/STOW_Z_SERVO();#endif}/*** Stepper Reset (RigidBoard, et.al.)*/#if HAS_STEPPER_RESETvoid disableStepperDrivers() {OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips}void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups#endif#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0void i2c_on_receive(int bytes) { // just echo all bytes received to seriali2c.receive(bytes);}void i2c_on_request() { // just send dummy data for nowi2c.reply("Hello World!\n");}#endifvoid gcode_line_error(const char* err, bool doFlush = true) {SERIAL_ERROR_START();serialprintPGM(err);SERIAL_ERRORLN(gcode_LastN);//Serial.println(gcode_N);if (doFlush) flush_and_request_resend();serial_count = 0;}/*** Get all commands waiting on the serial port and queue them.* Exit when the buffer is full or when no more characters are* left on the serial port.*/inline void get_serial_commands() {static char serial_line_buffer[MAX_CMD_SIZE];static bool serial_comment_mode = false;// If the command buffer is empty for too long,// send "wait" to indicate Marlin is still waiting.#if NO_TIMEOUTS > 0static millis_t last_command_time = 0;const millis_t ms = millis();if (commands_in_queue == 0 && !MYSERIAL0.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {SERIAL_ECHOLNPGM(MSG_WAIT);last_command_time = ms;}#endif/*** Loop while serial characters are incoming and the queue is not full*/int c;while (commands_in_queue < BUFSIZE && (c = MYSERIAL0.read()) >= 0) {char serial_char = c;/*** If the character ends the line*/if (serial_char == '\n' || serial_char == '\r') {serial_comment_mode = false; // end of line == end of comment// Skip empty lines and commentsif (!serial_count) { thermalManager.manage_heater(); continue; }serial_line_buffer[serial_count] = 0; // Terminate stringserial_count = 0; // Reset bufferchar* command = serial_line_buffer;while (*command == ' ') command++; // Skip leading spaceschar *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the lineif (npos) {bool M110 = strstr_P(command, PSTR("M110")) != NULL;if (M110) {char* n2pos = strchr(command + 4, 'N');if (n2pos) npos = n2pos;}gcode_N = strtol(npos + 1, NULL, 10);if (gcode_N != gcode_LastN + 1 && !M110)return gcode_line_error(PSTR(MSG_ERR_LINE_NO));char *apos = strrchr(command, '*');if (apos) {uint8_t checksum = 0, count = uint8_t(apos - command);while (count) checksum ^= command[--count];if (strtol(apos + 1, NULL, 10) != checksum)return gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));}elsereturn gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));gcode_LastN = gcode_N;}#if ENABLED(SDSUPPORT)else if (card.saving && strcmp(command, "M29") != 0) // No line number with M29 in Pronterfacereturn gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));#endif// Movement commands alert when stoppedif (IsStopped()) {char* gpos = strchr(command, 'G');if (gpos) {switch (strtol(gpos + 1, NULL, 10)) {case 0:case 1:#if ENABLED(ARC_SUPPORT)case 2:case 3:#endif#if ENABLED(BEZIER_CURVE_SUPPORT)case 5:#endifSERIAL_ERRORLNPGM(MSG_ERR_STOPPED);LCD_MESSAGEPGM(MSG_STOPPED);break;}}}#if DISABLED(EMERGENCY_PARSER)// Process critical commands earlyif (strcmp(command, "M108") == 0) {wait_for_heatup = false;#if ENABLED(NEWPANEL)wait_for_user = false;#endif}if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));if (strcmp(command, "M410") == 0) quickstop_stepper();#endif#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0last_command_time = ms;#endif// Add the command to the queue_enqueuecommand(serial_line_buffer, true);}else if (serial_count >= MAX_CMD_SIZE - 1) {// Keep fetching, but ignore normal characters beyond the max length// The command will be injected when EOL is reached}else if (serial_char == '\\') { // Handle escapesif ((c = MYSERIAL0.read()) >= 0 && !serial_comment_mode) // if we have one more character, copy it overserial_line_buffer[serial_count++] = (char)c;// otherwise do nothing}else { // it's not a newline, carriage return or escape charif (serial_char == ';') serial_comment_mode = true;if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;}} // queue has space, serial has data}#if ENABLED(SDSUPPORT)#if ENABLED(PRINTER_EVENT_LEDS) && HAS_RESUME_CONTINUEstatic bool lights_off_after_print; // = false#endif/*** Get commands from the SD Card until the command buffer is full* or until the end of the file is reached. The special character '#'* can also interrupt buffering.*/inline void get_sdcard_commands() {static bool stop_buffering = false,sd_comment_mode = false;if (!card.sdprinting) return;/*** '#' stops reading from SD to the buffer prematurely, so procedural* macro calls are possible. If it occurs, stop_buffering is triggered* and the buffer is run dry; this character _can_ occur in serial com* due to checksums, however, no checksums are used in SD printing.*/if (commands_in_queue == 0) stop_buffering = false;uint16_t sd_count = 0;bool card_eof = card.eof();while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {const int16_t n = card.get();char sd_char = (char)n;card_eof = card.eof();if (card_eof || n == -1|| sd_char == '\n' || sd_char == '\r'|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)) {if (card_eof) {card.printingHasFinished();if (card.sdprinting)sd_count = 0; // If a sub-file was printing, continue from call pointelse {SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);#if ENABLED(PRINTER_EVENT_LEDS)LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);leds.set_green();#if HAS_RESUME_CONTINUElights_off_after_print = true;enqueue_and_echo_commands_P(PSTR("M0 S"#if ENABLED(NEWPANEL)"1800"#else"60"#endif));#elsesafe_delay(2000);leds.set_off();#endif#endif // PRINTER_EVENT_LEDS}}else if (n == -1) {SERIAL_ERROR_START();SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);}if (sd_char == '#') stop_buffering = true;sd_comment_mode = false; // for new command// Skip empty lines and commentsif (!sd_count) { thermalManager.manage_heater(); continue; }command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate stringsd_count = 0; // clear sd line buffer_commit_command(false);}else if (sd_count >= MAX_CMD_SIZE - 1) {/*** Keep fetching, but ignore normal characters beyond the max length* The command will be injected when EOL is reached*/}else {if (sd_char == ';') sd_comment_mode = true;if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;}}}#if ENABLED(POWER_LOSS_RECOVERY)inline bool drain_job_recovery_commands() {static uint8_t job_recovery_commands_index = 0; // Resets on rebootif (job_recovery_commands_count) {if (_enqueuecommand(job_recovery_commands[job_recovery_commands_index])) {++job_recovery_commands_index;if (!--job_recovery_commands_count) job_recovery_phase = JOB_RECOVERY_DONE;}return true;}return false;}#endif#endif // SDSUPPORT/*** Add to the circular command queue the next command from:* - The command-injection queue (injected_commands_P)* - The active serial input (usually USB)* - Commands left in the queue after power-loss* - The SD card file being actively printed*/void get_available_commands() {// Immediate commands block the other queuesif (drain_injected_commands_P()) return;get_serial_commands();#if ENABLED(POWER_LOSS_RECOVERY)// Commands for power-loss recovery take precedenceif (job_recovery_phase == JOB_RECOVERY_YES && drain_job_recovery_commands()) return;#endif#if ENABLED(SDSUPPORT)get_sdcard_commands();#endif}/*** Set target_extruder from the T parameter or the active_extruder** Returns TRUE if the target is invalid*/bool get_target_extruder_from_command(const uint16_t code) {if (parser.seenval('T')) {const int8_t e = parser.value_byte();if (e >= EXTRUDERS) {SERIAL_ECHO_START();SERIAL_CHAR('M');SERIAL_ECHO(code);SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);return true;}target_extruder = e;}elsetarget_extruder = active_extruder;return false;}#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)bool extruder_duplication_enabled = false; // Used in Dual X mode 2#endif#if ENABLED(DUAL_X_CARRIAGE)static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;static float x_home_pos(const int extruder) {if (extruder == 0)return base_home_pos(X_AXIS);else/*** In dual carriage mode the extruder offset provides an override of the* second X-carriage position when homed - otherwise X2_HOME_POS is used.* This allows soft recalibration of the second extruder home position* without firmware reflash (through the M218 command).*/return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;}static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1static bool active_extruder_parked = false; // used in mode 1 & 2static float raised_parked_position[XYZE]; // used in mode 1static millis_t delayed_move_time = 0; // used in mode 1static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2#endif // DUAL_X_CARRIAGE#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)/*** Software endstops can be used to monitor the open end of* an axis that has a hardware endstop on the other end. Or* they can prevent axes from moving past endstops and grinding.** To keep doing their job as the coordinate system changes,* the software endstop positions must be refreshed to remain* at the same positions relative to the machine.*/void update_software_endstops(const AxisEnum axis) {#if HAS_HOME_OFFSET && HAS_POSITION_SHIFTworkspace_offset[axis] = home_offset[axis] + position_shift[axis];#endif#if ENABLED(DUAL_X_CARRIAGE)if (axis == X_AXIS) {// In Dual X mode hotend_offset[X] is T1's home positionconst float dual_max_x = MAX(hotend_offset[X_AXIS][1], X2_MAX_POS);if (active_extruder != 0) {// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)soft_endstop_min[X_AXIS] = X2_MIN_POS;soft_endstop_max[X_AXIS] = dual_max_x;}else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {// In Duplication Mode, T0 can move as far left as X_MIN_POS// but not so far to the right that T1 would move past the endsoft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);soft_endstop_max[X_AXIS] = MIN(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);}else {// In other modes, T0 can move from X_MIN_POS to X_MAX_POSsoft_endstop_min[axis] = base_min_pos(axis);soft_endstop_max[axis] = base_max_pos(axis);}}#elif ENABLED(DELTA)soft_endstop_min[axis] = base_min_pos(axis);soft_endstop_max[axis] = axis == Z_AXIS ? delta_height#if HAS_BED_PROBE- zprobe_zoffset#endif: base_max_pos(axis);#elsesoft_endstop_min[axis] = base_min_pos(axis);soft_endstop_max[axis] = base_max_pos(axis);#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("For ", axis_codes[axis]);#if HAS_HOME_OFFSETSERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);#endif#if HAS_POSITION_SHIFTSERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);#endifSERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);}#endif#if ENABLED(DELTA)switch (axis) {#if HAS_SOFTWARE_ENDSTOPScase X_AXIS:case Y_AXIS:// Get a minimum radius for clampingsoft_endstop_radius = MIN3(ABS(MAX(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);soft_endstop_radius_2 = sq(soft_endstop_radius);break;#endifcase Z_AXIS:delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();default: break;}#endif}#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE || DELTA#if HAS_M206_COMMAND/*** Change the home offset for an axis.* Also refreshes the workspace offset.*/static void set_home_offset(const AxisEnum axis, const float v) {home_offset[axis] = v;update_software_endstops(axis);}#endif // HAS_M206_COMMAND/*** Set an axis' current position to its home position (after homing).** For Core and Cartesian robots this applies one-to-one when an* individual axis has been homed.** DELTA should wait until all homing is done before setting the XYZ* current_position to home, because homing is a single operation.* In the case where the axis positions are already known and previously* homed, DELTA could home to X or Y individually by moving either one* to the center. However, homing Z always homes XY and Z.** SCARA should wait until all XY homing is done before setting the XY* current_position to home, because neither X nor Y is at home until* both are at home. Z can however be homed individually.** Callers must sync the planner position after calling this!*/static void set_axis_is_at_home(const AxisEnum axis) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);SERIAL_CHAR(')');SERIAL_EOL();}#endifSBI(axis_known_position, axis);SBI(axis_homed, axis);#if HAS_POSITION_SHIFTposition_shift[axis] = 0;update_software_endstops(axis);#endif#if ENABLED(DUAL_X_CARRIAGE)if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {current_position[X_AXIS] = x_home_pos(active_extruder);return;}#endif#if ENABLED(MORGAN_SCARA)/*** Morgan SCARA homes XY at the same time*/if (axis == X_AXIS || axis == Y_AXIS) {float homeposition[XYZ] = {base_home_pos(X_AXIS),base_home_pos(Y_AXIS),base_home_pos(Z_AXIS)};// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);/*** Get Home position SCARA arm angles using inverse kinematics,* and calculate homing offset using forward kinematics*/inverse_kinematics(homeposition);forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);current_position[axis] = cartes[axis];/*** SCARA home positions are based on configuration since the actual* limits are determined by the inverse kinematic transform.*/soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));}else#elif ENABLED(DELTA)current_position[axis] = (axis == Z_AXIS ? delta_height#if HAS_BED_PROBE- zprobe_zoffset#endif: base_home_pos(axis));#elsecurrent_position[axis] = base_home_pos(axis);#endif/*** Z Probe Z Homing? Account for the probe's Z offset.*/#if HAS_BED_PROBE && Z_HOME_DIR < 0if (axis == Z_AXIS) {#if HOMING_Z_WITH_PROBEcurrent_position[Z_AXIS] -= zprobe_zoffset;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);}#endif#elif ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");#endif}#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {#if HAS_HOME_OFFSETSERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);#endifDEBUG_POS("", current_position);SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);SERIAL_CHAR(')');SERIAL_EOL();}#endif#if ENABLED(I2C_POSITION_ENCODERS)I2CPEM.homed(axis);#endif}/*** Homing bump feedrate (mm/s)*/inline float get_homing_bump_feedrate(const AxisEnum axis) {#if HOMING_Z_WITH_PROBEif (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW);#endifstatic const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);if (hbd < 1) {hbd = 10;SERIAL_ECHO_START();SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");}return homing_feedrate(axis) / hbd;}/*** Some planner shorthand inline functions*//*** Move the planner to the current position from wherever it last moved* (or from wherever it has been told it is located).** Impossible on Hangprinter because current_position and position are of different sizes*/inline void buffer_line_to_current_position() {#if DISABLED(HANGPRINTER) // emptying this function probably breaks do_blocking_move_to()planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART], feedrate_mm_s, active_extruder);#endif}/*** Move the planner to the position stored in the destination array, which is* used by G0/G1/G2/G3/G5 and many other functions to set a destination.*/inline void buffer_line_to_destination(const float &fr_mm_s) {#if ENABLED(HANGPRINTER)UNUSED(fr_mm_s);#elseplanner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_CART], fr_mm_s, active_extruder);#endif}#if IS_KINEMATIC/*** Calculate delta, start a line, and set current_position to destination*/void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);#endif#if UBL_SEGMENTED// ubl segmented line will do z-only moves in single segmentubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));#elseif ( current_position[X_AXIS] == destination[X_AXIS]&& current_position[Y_AXIS] == destination[Y_AXIS]&& current_position[Z_AXIS] == destination[Z_AXIS]&& current_position[E_CART] == destination[E_CART]) return;planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);#endifset_current_from_destination();}#endif // IS_KINEMATIC/*** Plan a move to (X, Y, Z) and set the current_position.* The final current_position may not be the one that was requested* Caution: 'destination' is modified by this function.*/void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s/*=0.0*/) {const float old_feedrate_mm_s = feedrate_mm_s;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));#endifconst float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);#if ENABLED(DELTA)if (!position_is_reachable(rx, ry)) return;feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;set_destination_from_current(); // sync destination at the start#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);#endif// when in the danger zoneif (current_position[Z_AXIS] > delta_clip_start_height) {if (rz > delta_clip_start_height) { // staying in the danger zonedestination[X_AXIS] = rx; // move directly (uninterpolated)destination[Y_AXIS] = ry;destination[Z_AXIS] = rz;prepare_uninterpolated_move_to_destination(); // set_current_from_destination#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);#endifreturn;}destination[Z_AXIS] = delta_clip_start_height;prepare_uninterpolated_move_to_destination(); // set_current_from_destination#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);#endif}if (rz > current_position[Z_AXIS]) { // raising?destination[Z_AXIS] = rz;prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);#endif}destination[X_AXIS] = rx;destination[Y_AXIS] = ry;prepare_move_to_destination(); // set_current_from_destination#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);#endifif (rz < current_position[Z_AXIS]) { // lowering?destination[Z_AXIS] = rz;prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);#endif}#elif IS_SCARAif (!position_is_reachable(rx, ry)) return;set_destination_from_current();// If Z needs to raise, do it before moving XYif (destination[Z_AXIS] < rz) {destination[Z_AXIS] = rz;prepare_uninterpolated_move_to_destination(z_feedrate);}destination[X_AXIS] = rx;destination[Y_AXIS] = ry;prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);// If Z needs to lower, do it after moving XYif (destination[Z_AXIS] > rz) {destination[Z_AXIS] = rz;prepare_uninterpolated_move_to_destination(z_feedrate);}#else// If Z needs to raise, do it before moving XYif (current_position[Z_AXIS] < rz) {feedrate_mm_s = z_feedrate;current_position[Z_AXIS] = rz;buffer_line_to_current_position();}feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;current_position[X_AXIS] = rx;current_position[Y_AXIS] = ry;buffer_line_to_current_position();// If Z needs to lower, do it after moving XYif (current_position[Z_AXIS] > rz) {feedrate_mm_s = z_feedrate;current_position[Z_AXIS] = rz;buffer_line_to_current_position();}#endifplanner.synchronize();feedrate_mm_s = old_feedrate_mm_s;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");#endif}void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);}void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);}void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);}//// Prepare to do endstop or probe moves// with custom feedrates.//// - Save current feedrates// - Reset the rate multiplier// - Reset the command timeout// - Enable the endstops (for endstop moves)//void setup_for_endstop_or_probe_move() {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);#endifsaved_feedrate_mm_s = feedrate_mm_s;saved_feedrate_percentage = feedrate_percentage;feedrate_percentage = 100;}void clean_up_after_endstop_or_probe_move() {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);#endiffeedrate_mm_s = saved_feedrate_mm_s;feedrate_percentage = saved_feedrate_percentage;}#if HAS_AXIS_UNHOMED_ERRbool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {#if ENABLED(HOME_AFTER_DEACTIVATE)const bool xx = x && !TEST(axis_known_position, X_AXIS),yy = y && !TEST(axis_known_position, Y_AXIS),zz = z && !TEST(axis_known_position, Z_AXIS);#elseconst bool xx = x && !TEST(axis_homed, X_AXIS),yy = y && !TEST(axis_homed, Y_AXIS),zz = z && !TEST(axis_homed, Z_AXIS);#endifif (xx || yy || zz) {SERIAL_ECHO_START();SERIAL_ECHOPGM(MSG_HOME " ");if (xx) SERIAL_ECHOPGM(MSG_X);if (yy) SERIAL_ECHOPGM(MSG_Y);if (zz) SERIAL_ECHOPGM(MSG_Z);SERIAL_ECHOLNPGM(" " MSG_FIRST);#if ENABLED(ULTRA_LCD)lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");#endifreturn true;}return false;}#endif // HAS_AXIS_UNHOMED_ERR#if ENABLED(Z_PROBE_SLED)#ifndef SLED_DOCKING_OFFSET#define SLED_DOCKING_OFFSET 0#endif/*** Method to dock/undock a sled designed by Charles Bell.** stow[in] If false, move to MAX_X and engage the solenoid* If true, move to MAX_X and release the solenoid*/static void dock_sled(bool stow) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("dock_sled(", stow);SERIAL_CHAR(')');SERIAL_EOL();}#endif// Dock sled a bit closer to ensure proper capturingdo_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)WRITE(SOL1_PIN, !stow); // switch solenoid#endif}#elif ENABLED(Z_PROBE_ALLEN_KEY)FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s) {do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);}void run_deploy_moves_script() {#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0#endifconst float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0#endifconst float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0#endifconst float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0#endifconst float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0#endifconst float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));#endif}void run_stow_moves_script() {#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0#endifconst float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0#endifconst float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0#endifconst float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0#endifconst float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));#endif#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]#endif#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0#endifconst float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));#endif}#endif // Z_PROBE_ALLEN_KEY#if ENABLED(PROBING_FANS_OFF)void fans_pause(const bool p) {if (p != fans_paused) {fans_paused = p;if (p)for (uint8_t x = 0; x < FAN_COUNT; x++) {paused_fanSpeeds[x] = fanSpeeds[x];fanSpeeds[x] = 0;}elsefor (uint8_t x = 0; x < FAN_COUNT; x++)fanSpeeds[x] = paused_fanSpeeds[x];}}#endif // PROBING_FANS_OFF#if HAS_BED_PROBE// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)#if ENABLED(Z_MIN_PROBE_ENDSTOP)#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)#else#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)#endif#endif#if QUIET_PROBINGvoid probing_pause(const bool p) {#if ENABLED(PROBING_HEATERS_OFF)thermalManager.pause(p);#endif#if ENABLED(PROBING_FANS_OFF)fans_pause(p);#endifif (p) safe_delay(#if DELAY_BEFORE_PROBING > 25DELAY_BEFORE_PROBING#else25#endif);}#endif // QUIET_PROBING#if ENABLED(BLTOUCH)typedef unsigned char BLTCommand;void bltouch_init(const bool set_voltage=false);bool bltouch_last_written_mode; // Initialized by settings.load, 0 = Open Drain; 1 = 5V Drainbool bltouch_triggered() {return (#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING#elseREAD(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING#endif);}bool bltouch_command(const BLTCommand cmd, const millis_t &ms) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("BLTouch Command :", cmd);#endifMOVE_SERVO(Z_PROBE_SERVO_NR, cmd);safe_delay(MAX(ms, (uint32_t)BLTOUCH_DELAY)); // BLTOUCH_DELAY is also the *minimum* delayreturn bltouch_triggered();}// Native BLTouch commands ("Underscore"...), used in lcd menus and internallyvoid _bltouch_reset() { bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY); }void _bltouch_selftest() { bltouch_command(BLTOUCH_SELFTEST, BLTOUCH_DELAY); }void _bltouch_set_SW_mode() { bltouch_command(BLTOUCH_SW_MODE, BLTOUCH_DELAY); }void _bltouch_set_5V_mode() { bltouch_command(BLTOUCH_5V_MODE, BLTOUCH_SET5V_DELAY); }void _bltouch_set_OD_mode() { bltouch_command(BLTOUCH_OD_MODE, BLTOUCH_SETOD_DELAY); }void _bltouch_mode_store() { bltouch_command(BLTOUCH_MODE_STORE, BLTOUCH_MODE_STORE_DELAY); }void _bltouch_deploy() { bltouch_command(BLTOUCH_DEPLOY, BLTOUCH_DEPLOY_DELAY); }void _bltouch_stow() { bltouch_command(BLTOUCH_STOW, BLTOUCH_STOW_DELAY); }void _bltouch_reset_SW_mode() { if (bltouch_triggered()) _bltouch_stow(); else _bltouch_deploy(); }bool _bltouch_deploy_query_alarm() { return bltouch_command(BLTOUCH_DEPLOY, BLTOUCH_DEPLOY_DELAY); }bool _bltouch_stow_query_alarm() { return bltouch_command(BLTOUCH_STOW, BLTOUCH_STOW_DELAY); }void bltouch_clear() {_bltouch_reset(); // RESET or RESET_SW will clear an alarm condition but...// ...it will not clear a triggered condition in SW mode when the pin is currently up// ANTClabs <-- CODE ERROR_bltouch_stow(); // STOW will pull up the pin and clear any triggered condition unless it fails, don't care_bltouch_deploy(); // DEPLOY to test the probe. Could fail, don't care_bltouch_stow(); // STOW to be ready for meaningful work. Could fail, don't care}bool bltouch_deploy_proc() {// Do a DEPLOY#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch DEPLOY requested");#endif// Attempt to DEPLOY, wait for DEPLOY_DELAY or ALARMif (_bltouch_deploy_query_alarm()) {// The deploy might have failed or the probe is already triggered (nozzle too low?)#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch ALARM or TRIGGER after DEPLOY, recovering");#endifbltouch_clear(); // Get the probe into start condition// Last attempt to DEPLOYif (_bltouch_deploy_query_alarm()) {// The deploy might have failed or the probe is actually triggered (nozzle too low?) again#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch Recovery Failed");#endifSERIAL_ECHOLN(MSG_STOP_BLTOUCH); // Tell the user something is wrong, needs actionstop(); // but it's not too bad, no need to kill, allow restartreturn true; // Tell our caller we goofed in case he cares to know}}// One of the recommended ANTClabs ways to probe, using SW MODE#if ENABLED(BLTOUCH_FORCE_SW_MODE)_bltouch_set_SW_mode();#endif// Now the probe is ready to issue a 10ms pulse when the pin goes up.// The trigger STOW (see motion.cpp for example) will pull up the probes pin as soon as the pulse// is registered.#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("bltouch.deploy_proc() end");#endifreturn false; // report success to caller}bool bltouch_stow_proc() {// Do a STOW#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch STOW requested");#endif// A STOW will clear a triggered condition in the probe (10ms pulse).// At the moment that we come in here, we might (pulse) or will (SW mode) see the trigger on the pin.// So even though we know a STOW will be ignored if an ALARM condition is active, we will STOW.// Note: If the probe is deployed AND in an ALARM condition, this STOW will not pull up the pin// and the ALARM condition will still be there. --> ANTClabs should change this behavior maybe// Attempt to STOW, wait for STOW_DELAY or ALARMif (_bltouch_stow_query_alarm()) {// The stow might have failed#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch ALARM or TRIGGER after STOW, recovering");#endif_bltouch_reset(); // This RESET will then also pull up the pin. If it doesn't// work and the pin is still down, there will no longer be// an ALARM condition though.// But one more STOW will catch that// Last attempt to STOWif (_bltouch_stow_query_alarm()) { // so if there is now STILL an ALARM condition:#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch Recovery Failed");#endifSERIAL_ECHOLN(MSG_STOP_BLTOUCH); // Tell the user something is wrong, needs actionstop(); // but it's not too bad, no need to kill, allow restartreturn true; // Tell our caller we goofed in case he cares to know}}#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("bltouch.stow_proc() end");#endifreturn false; // report success to caller}bool bltouch_status_proc() {/*** Return a TRUE for "YES, it is DEPLOYED"* This function will ensure switch state is reset after execution*/#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch STATUS requested");#endif_bltouch_set_SW_mode(); // Incidentally, _set_SW_mode() will also RESET any active alarmconst bool tr = bltouch_triggered(); // If triggered in SW mode, the pin is up, it is STOWED#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("BLTouch is ", (int)tr);#endifif (tr) _bltouch_stow(); else _bltouch_deploy(); // Turn off SW mode, reset any trigger, honor pin statereturn !tr;}void bltouch_mode_conv_proc(const bool M5V) {/*** BLTOUCH pre V3.0 and clones: No reaction at all to this sequence apart from a DEPLOY -> STOW* BLTOUCH V3.0: This will set the mode (twice) and sadly, a STOW is needed at the end, because of the deploy* BLTOUCH V3.1: This will set the mode and store it in the eeprom. The STOW is not needed but does not hurt*/#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("BLTouch Set Mode - ", (int)M5V);#endif_bltouch_deploy();if (M5V) _bltouch_set_5V_mode(); else _bltouch_set_OD_mode();_bltouch_mode_store();if (M5V) _bltouch_set_5V_mode(); else _bltouch_set_OD_mode();_bltouch_stow();bltouch_last_written_mode = M5V;}bool set_bltouch_deployed(const bool deploy) {if (deploy) _bltouch_deploy(); else _bltouch_stow();return false;}void bltouch_mode_conv_5V() { bltouch_mode_conv_proc(true); }void bltouch_mode_conv_OD() { bltouch_mode_conv_proc(false); }// DEPLOY and STOW are wrapped for error handling - these are used by homing and by probingbool bltouch_deploy() { return bltouch_deploy_proc(); }bool bltouch_stow() { return bltouch_stow_proc(); }bool bltouch_status() { return bltouch_status_proc(); }// Init the class and device. Call from setup().void bltouch_init(const bool set_voltage/*=false*/) {// Voltage Setting (if enabled). At every Marlin initialization:// BLTOUCH < V3.0 and clones: This will be ignored by the probe// BLTOUCH V3.0: SET_5V_MODE or SET_OD_MODE (if enabled).// OD_MODE is the default on power on, but setting it does not hurt// This mode will stay active until manual SET_OD_MODE or power cycle// BLTOUCH V3.1: SET_5V_MODE or SET_OD_MODE (if enabled).// At power on, the probe will default to the eeprom settings configured by the user_bltouch_reset();_bltouch_stow();#if ENABLED(BLTOUCH_FORCE_MODE_SET)constexpr bool should_set = true;#else#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPAIR("last_written_mode - ", int(bltouch_last_written_mode));SERIAL_ECHOLNPGM("config mode - "#if ENABLED(BLTOUCH_SET_5V_MODE)"BLTOUCH_SET_5V_MODE"#else"OD"#endif);}#endifconst bool should_set = bltouch_last_written_mode != (false#if ENABLED(BLTOUCH_SET_5V_MODE)|| true#endif);#endifif (should_set && set_voltage)bltouch_mode_conv_proc((false#if ENABLED(BLTOUCH_SET_5V_MODE)|| true#endif));}#endif // BLTOUCH/*** Raise Z to a minimum height to make room for a probe to move*/inline void do_probe_raise(const float z_raise) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("do_probe_raise(", z_raise);SERIAL_CHAR(')');SERIAL_EOL();}#endiffloat z_dest = z_raise;if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;NOMORE(z_dest, Z_MAX_POS);if (z_dest > current_position[Z_AXIS])do_blocking_move_to_z(z_dest);}// returns false for ok and true for failurebool set_probe_deployed(const bool deploy) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {DEBUG_POS("set_probe_deployed", current_position);SERIAL_ECHOLNPAIR("deploy: ", deploy);}#endifif (endstops.z_probe_enabled == deploy) return false;// Make room for probe to deploy (or stow)// Fix-mounted probe should only raise for deploy#if ENABLED(FIX_MOUNTED_PROBE)const bool deploy_stow_condition = deploy;#elseconstexpr bool deploy_stow_condition = true;#endif// For beds that fall when Z is powered off only raise for trusted Z#if ENABLED(UNKNOWN_Z_NO_RAISE)const bool unknown_condition = TEST(axis_known_position, Z_AXIS);#elseconstexpr float unknown_condition = true;#endifif (deploy_stow_condition && unknown_condition)do_probe_raise(MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE));#if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)#if ENABLED(Z_PROBE_SLED)#define _AUE_ARGS true, false, false#else#define _AUE_ARGS#endifif (axis_unhomed_error(_AUE_ARGS)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);stop();return true;}#endifconst float oldXpos = current_position[X_AXIS],oldYpos = current_position[Y_AXIS];#ifdef _TRIGGERED_WHEN_STOWED_TEST// If endstop is already false, the Z probe is deployedif (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.// Would a goto be less ugly?//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity// for a triggered when stowed manual probe.if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early// otherwise an Allen-Key probe can't be stowed.#endif#if ENABLED(SOLENOID_PROBE)#if HAS_SOLENOID_1WRITE(SOL1_PIN, deploy);#endif#elif ENABLED(Z_PROBE_SLED)dock_sled(!deploy);#elif HAS_Z_SERVO_PROBE && DISABLED(BLTOUCH)MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);#elif ENABLED(Z_PROBE_ALLEN_KEY)deploy ? run_deploy_moves_script() : run_stow_moves_script();#endif#ifdef _TRIGGERED_WHEN_STOWED_TEST} // _TRIGGERED_WHEN_STOWED_TEST == deployif (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?if (IsRunning()) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("Z-Probe failed");LCD_ALERTMESSAGEPGM("Err: ZPROBE");}stop();return true;} // _TRIGGERED_WHEN_STOWED_TEST == deploy#endifdo_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deployendstops.enable_z_probe(deploy);return false;}/*** @brief Used by run_z_probe to do a single Z probe move.** @param z Z destination* @param fr_mm_s Feedrate in mm/s* @return true to indicate an error*/static bool do_probe_move(const float z, const float fr_mm_s) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);#endif#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)// Wait for bed to heat back up between probing pointsif (thermalManager.isHeatingBed()) {serialprintPGM(msg_wait_for_bed_heating);LCD_MESSAGEPGM(MSG_BED_HEATING);while (thermalManager.isHeatingBed()) safe_delay(200);lcd_reset_status();}#endif// Deploy BLTouch at the start of any probe#if ENABLED(BLTOUCH)if (set_bltouch_deployed(true)) return true;#endif#if QUIET_PROBINGprobing_pause(true);#endif// Move down until probe triggereddo_blocking_move_to_z(z, fr_mm_s);// Check to see if the probe was triggeredconst bool probe_triggered = TEST(endstops.trigger_state(),#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)Z_MIN#elseZ_MIN_PROBE#endif);#if QUIET_PROBINGprobing_pause(false);#endif// Retract BLTouch immediately after a probe if it was triggered#if ENABLED(BLTOUCH)if (probe_triggered && set_bltouch_deployed(false)) return true;#endifendstops.hit_on_purpose();// Get Z where the steppers were interruptedset_current_from_steppers_for_axis(Z_AXIS);// Tell the planner where we actually areSYNC_PLAN_POSITION_KINEMATIC();#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);#endifreturn !probe_triggered;}/*** @details Used by probe_pt to do a single Z probe at the current position.* Leaves current_position[Z_AXIS] at the height where the probe triggered.** @return The raw Z position where the probe was triggered*/static float run_z_probe() {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);#endif// Stop the probe before it goes too low to prevent damage.// If Z isn't known then probe to -10mm.const float z_probe_low_point = TEST(axis_known_position, Z_AXIS) ? -zprobe_zoffset + Z_PROBE_LOW_POINT : -10.0;// Double-probing does a fast probe followed by a slow probe#if MULTIPLE_PROBING == 2// Do a first probe at the fast speedif (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_FAST))) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM("FAST Probe fail!");DEBUG_POS("<<< run_z_probe", current_position);}#endifreturn NAN;}float first_probe_z = current_position[Z_AXIS];#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);#endif// move up to make clearance for the probedo_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));#else// If the nozzle is well over the travel height then// move down quickly before doing the slow probefloat z = Z_CLEARANCE_DEPLOY_PROBE + 5.0;if (zprobe_zoffset < 0) z -= zprobe_zoffset;if (current_position[Z_AXIS] > z) {// If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probeif (!do_probe_move(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST)))do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));}#endif#if MULTIPLE_PROBING > 2float probes_total = 0;for (uint8_t p = MULTIPLE_PROBING + 1; --p;) {#endif// move down slowly to find bedif (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_SLOW))) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM("SLOW Probe fail!");DEBUG_POS("<<< run_z_probe", current_position);}#endifreturn NAN;}#if MULTIPLE_PROBING > 2probes_total += current_position[Z_AXIS];if (p > 1) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));}#endif#if MULTIPLE_PROBING > 2// Return the average value of all probesconst float measured_z = probes_total * (1.0f / (MULTIPLE_PROBING));#elif MULTIPLE_PROBING == 2const float z2 = current_position[Z_AXIS];#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("2nd Probe Z:", z2);SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - z2);}#endif// Return a weighted average of the fast and slow probesconst float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2;#else// Return the single probe resultconst float measured_z = current_position[Z_AXIS];#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);#endifreturn measured_z;}/*** - Move to the given XY* - Deploy the probe, if not already deployed* - Probe the bed, get the Z position* - Depending on the 'stow' flag* - Stow the probe, or* - Raise to the BETWEEN height* - Return the probed Z position*/float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));SERIAL_ECHOPAIR(", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_STOW ? "stow" : "none");SERIAL_ECHOPAIR(", ", int(verbose_level));SERIAL_ECHOPAIR(", ", probe_relative ? "probe" : "nozzle");SERIAL_ECHOLNPGM("_relative)");DEBUG_POS("", current_position);}#endif// TODO: Adapt for SCARA, where the offset rotatesfloat nx = rx, ny = ry;if (probe_relative) {if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probenx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle positionny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);}else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzleconst float nz =#if ENABLED(DELTA)// Move below clip height or xy move will be aborted by do_blocking_move_toMIN(current_position[Z_AXIS], delta_clip_start_height)#elsecurrent_position[Z_AXIS]#endif;const float old_feedrate_mm_s = feedrate_mm_s;feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;// Move the probe to the starting XYZdo_blocking_move_to(nx, ny, nz);float measured_z = NAN;if (!DEPLOY_PROBE()) {measured_z = run_z_probe() + zprobe_zoffset;const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;if (big_raise || raise_after == PROBE_PT_RAISE)do_blocking_move_to_z(current_position[Z_AXIS] + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), MMM_TO_MMS(Z_PROBE_SPEED_FAST));else if (raise_after == PROBE_PT_STOW)if (STOW_PROBE()) measured_z = NAN;}if (verbose_level > 2) {SERIAL_PROTOCOLPGM("Bed X: ");SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);SERIAL_PROTOCOLPGM(" Y: ");SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);SERIAL_PROTOCOLPGM(" Z: ");SERIAL_PROTOCOL_F(measured_z, 3);SERIAL_EOL();}feedrate_mm_s = old_feedrate_mm_s;if (isnan(measured_z)) {LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);}#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");#endifreturn measured_z;}#endif // HAS_BED_PROBE#if HAS_LEVELINGbool leveling_is_valid() {return#if ENABLED(MESH_BED_LEVELING)mbl.has_mesh()#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)!!bilinear_grid_spacing[X_AXIS]#elif ENABLED(AUTO_BED_LEVELING_UBL)ubl.mesh_is_valid()#else // 3POINT, LINEARtrue#endif;}/*** Turn bed leveling on or off, fixing the current* position as-needed.** Disable: Current position = physical position* Enable: Current position = "unleveled" physical position*/void set_bed_leveling_enabled(const bool enable/*=true*/) {#if ENABLED(AUTO_BED_LEVELING_BILINEAR)const bool can_change = (!enable || leveling_is_valid());#elseconstexpr bool can_change = true;#endifif (can_change && enable != planner.leveling_active) {planner.synchronize();#if ENABLED(MESH_BED_LEVELING)if (!enable)planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);const bool enabling = enable && leveling_is_valid();planner.leveling_active = enabling;if (enabling) planner.unapply_leveling(current_position);#elif ENABLED(AUTO_BED_LEVELING_UBL)#if PLANNER_LEVELINGif (planner.leveling_active) { // leveling from on to off// change unleveled current_position to physical current_position without moving steppers.planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);planner.leveling_active = false; // disable only AFTER calling apply_leveling}else { // leveling from off to onplanner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored// change physical current_position to unleveled current_position without moving steppers.planner.unapply_leveling(current_position);}#else// UBL equivalents for apply/unapply_leveling#if ENABLED(SKEW_CORRECTION)float pos[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };planner.skew(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS]);#elseconst float (&pos)[XYZE] = current_position;#endifif (planner.leveling_active) {current_position[Z_AXIS] += ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS]);planner.leveling_active = false;}else {planner.leveling_active = true;current_position[Z_AXIS] -= ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS]);}#endif#else // ABL#if ENABLED(AUTO_BED_LEVELING_BILINEAR)// Force bilinear_z_offset to re-calculate next timeconst float reset[XYZ] = { -9999.999, -9999.999, 0 };(void)bilinear_z_offset(reset);#endif// Enable or disable leveling compensation in the plannerplanner.leveling_active = enable;if (!enable)// When disabling just get the current position from the steppers.// This will yield the smallest error when first converted back to steps.set_current_from_steppers_for_axis(#if ABL_PLANARALL_AXES#elseZ_AXIS#endif);else// When enabling, remove compensation from the current position,// so compensation will give the right stepper counts.planner.unapply_leveling(current_position);SYNC_PLAN_POSITION_KINEMATIC();#endif // ABL}}#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)void set_z_fade_height(const float zfh, const bool do_report/*=true*/) {if (planner.z_fade_height == zfh) return;const bool leveling_was_active = planner.leveling_active;set_bed_leveling_enabled(false);planner.set_z_fade_height(zfh);if (leveling_was_active) {const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };set_bed_leveling_enabled(true);if (do_report && memcmp(oldpos, current_position, sizeof(oldpos)))report_current_position();}}#endif // LEVELING_FADE_HEIGHT/*** Reset calibration results to zero.*/void reset_bed_level() {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");#endifset_bed_leveling_enabled(false);#if ENABLED(MESH_BED_LEVELING)mbl.reset();#elif ENABLED(AUTO_BED_LEVELING_UBL)ubl.reset();#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)z_values[x][y] = NAN;#elif ABL_PLANARplanner.bed_level_matrix.set_to_identity();#endif}#endif // HAS_LEVELING#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)/*** Enable to produce output in JSON format suitable* for SCAD or JavaScript mesh visualizers.** Visualize meshes in OpenSCAD using the included script.** buildroot/shared/scripts/MarlinMesh.scad*///#define SCAD_MESH_OUTPUT/*** Print calibration results for plotting or manual frame adjustment.*/void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn) {#ifndef SCAD_MESH_OUTPUTfor (uint8_t x = 0; x < sx; x++) {for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)SERIAL_PROTOCOLCHAR(' ');SERIAL_PROTOCOL(int(x));}SERIAL_EOL();#endif#ifdef SCAD_MESH_OUTPUTSERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array#endiffor (uint8_t y = 0; y < sy; y++) {#ifdef SCAD_MESH_OUTPUTSERIAL_PROTOCOLPGM(" ["); // open sub-array#elseif (y < 10) SERIAL_PROTOCOLCHAR(' ');SERIAL_PROTOCOL(int(y));#endiffor (uint8_t x = 0; x < sx; x++) {SERIAL_PROTOCOLCHAR(' ');const float offset = fn(x, y);if (!isnan(offset)) {if (offset >= 0) SERIAL_PROTOCOLCHAR('+');SERIAL_PROTOCOL_F(offset, int(precision));}else {#ifdef SCAD_MESH_OUTPUTfor (uint8_t i = 3; i < precision + 3; i++)SERIAL_PROTOCOLCHAR(' ');SERIAL_PROTOCOLPGM("NAN");#elsefor (uint8_t i = 0; i < precision + 3; i++)SERIAL_PROTOCOLCHAR(i ? '=' : ' ');#endif}#ifdef SCAD_MESH_OUTPUTif (x < sx - 1) SERIAL_PROTOCOLCHAR(',');#endif}#ifdef SCAD_MESH_OUTPUTSERIAL_PROTOCOLCHAR(' ');SERIAL_PROTOCOLCHAR(']'); // close sub-arrayif (y < sy - 1) SERIAL_PROTOCOLCHAR(',');#endifSERIAL_EOL();}#ifdef SCAD_MESH_OUTPUTSERIAL_PROTOCOLPGM("];"); // close 2D array#endifSERIAL_EOL();}#endif#if ENABLED(AUTO_BED_LEVELING_BILINEAR)/*** Extrapolate a single point from its neighbors*/static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPGM("Extrapolate [");if (x < 10) SERIAL_CHAR(' ');SERIAL_ECHO(int(x));SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');SERIAL_CHAR(' ');if (y < 10) SERIAL_CHAR(' ');SERIAL_ECHO(int(y));SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');SERIAL_CHAR(']');}#endifif (!isnan(z_values[x][y])) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");#endifreturn; // Don't overwrite good values.}SERIAL_EOL();// Get X neighbors, Y neighbors, and XY neighborsconst uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;float a1 = z_values[x1][y ], a2 = z_values[x2][y ],b1 = z_values[x ][y1], b2 = z_values[x ][y2],c1 = z_values[x1][y1], c2 = z_values[x2][y2];// Treat far unprobed points as zero, near as equal to farif (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;// Take the average instead of the medianz_values[x][y] = (a + b + c) / 3.0;// Median is robust (ignores outliers).// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)// : ((c < b) ? b : (a < c) ? a : c);}//Enable this if your SCARA uses 180° of total area//#define EXTRAPOLATE_FROM_EDGE#if ENABLED(EXTRAPOLATE_FROM_EDGE)#if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y#define HALF_IN_X#elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X#define HALF_IN_Y#endif#endif/*** Fill in the unprobed points (corners of circular print surface)* using linear extrapolation, away from the center.*/static void extrapolate_unprobed_bed_level() {#ifdef HALF_IN_Xconstexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;#elseconstexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-centerctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-centerxlen = ctrx1;#endif#ifdef HALF_IN_Yconstexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;#elseconstexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-centerctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-centerylen = ctry1;#endiffor (uint8_t xo = 0; xo <= xlen; xo++)for (uint8_t yo = 0; yo <= ylen; yo++) {uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;#ifndef HALF_IN_Xconst uint8_t x1 = ctrx1 - xo;#endif#ifndef HALF_IN_Yconst uint8_t y1 = ctry1 - yo;#ifndef HALF_IN_Xextrapolate_one_point(x1, y1, +1, +1); // left-below + +#endifextrapolate_one_point(x2, y1, -1, +1); // right-below - +#endif#ifndef HALF_IN_Xextrapolate_one_point(x1, y2, +1, -1); // left-above + -#endifextrapolate_one_point(x2, y2, -1, -1); // right-above - -}}static void print_bilinear_leveling_grid() {SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; });}#if ENABLED(ABL_BILINEAR_SUBDIVISION)#define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1#define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];int bilinear_grid_spacing_virt[2] = { 0 };float bilinear_grid_factor_virt[2] = { 0 };static void print_bilinear_leveling_grid_virt() {SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,[](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; });}#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))float bed_level_virt_coord(const uint8_t x, const uint8_t y) {uint8_t ep = 0, ip = 1;if (!x || x == ABL_TEMP_POINTS_X - 1) {if (x) {ep = GRID_MAX_POINTS_X - 1;ip = GRID_MAX_POINTS_X - 2;}if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))return LINEAR_EXTRAPOLATION(z_values[ep][y - 1],z_values[ip][y - 1]);elsereturn LINEAR_EXTRAPOLATION(bed_level_virt_coord(ep + 1, y),bed_level_virt_coord(ip + 1, y));}if (!y || y == ABL_TEMP_POINTS_Y - 1) {if (y) {ep = GRID_MAX_POINTS_Y - 1;ip = GRID_MAX_POINTS_Y - 2;}if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))return LINEAR_EXTRAPOLATION(z_values[x - 1][ep],z_values[x - 1][ip]);elsereturn LINEAR_EXTRAPOLATION(bed_level_virt_coord(x, ep + 1),bed_level_virt_coord(x, ip + 1));}return z_values[x - 1][y - 1];}static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {return (p[i-1] * -t * sq(1 - t)+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))- p[i+2] * sq(t) * (1 - t)) * 0.5;}static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {float row[4], column[4];for (uint8_t i = 0; i < 4; i++) {for (uint8_t j = 0; j < 4; j++) {column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);}row[i] = bed_level_virt_cmr(column, 1, ty);}return bed_level_virt_cmr(row, 1, tx);}void bed_level_virt_interpolate() {bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))continue;z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =bed_level_virt_2cmr(x + 1,y + 1,(float)tx / (BILINEAR_SUBDIVISIONS),(float)ty / (BILINEAR_SUBDIVISIONS));}}#endif // ABL_BILINEAR_SUBDIVISION// Refresh after other values have been updatedvoid refresh_bed_level() {bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);#if ENABLED(ABL_BILINEAR_SUBDIVISION)bed_level_virt_interpolate();#endif}#endif // AUTO_BED_LEVELING_BILINEAR#if ENABLED(SENSORLESS_HOMING)/*** Set sensorless homing if the axis has it, accounting for Core Kinematics.*/void sensorless_homing_per_axis(const AxisEnum axis, const bool enable=true) {switch (axis) {#if X_SENSORLESScase X_AXIS:tmc_sensorless_homing(stepperX, enable);#if CORE_IS_XY && Y_SENSORLESStmc_sensorless_homing(stepperY, enable);#elif CORE_IS_XZ && Z_SENSORLESStmc_sensorless_homing(stepperZ, enable);#endifbreak;#endif#if Y_SENSORLESScase Y_AXIS:tmc_sensorless_homing(stepperY, enable);#if CORE_IS_XY && X_SENSORLESStmc_sensorless_homing(stepperX, enable);#elif CORE_IS_YZ && Z_SENSORLESStmc_sensorless_homing(stepperZ, enable);#endifbreak;#endif#if Z_SENSORLESScase Z_AXIS:tmc_sensorless_homing(stepperZ, enable);#if CORE_IS_XZ && X_SENSORLESStmc_sensorless_homing(stepperX, enable);#elif CORE_IS_YZ && Y_SENSORLESStmc_sensorless_homing(stepperY, enable);#endifbreak;#endifdefault: break;}}#endif // SENSORLESS_HOMING/*** Home an individual linear axis*/static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);SERIAL_ECHOPAIR(", ", distance);SERIAL_ECHOPGM(", ");if (fr_mm_s)SERIAL_ECHO(fr_mm_s);else {SERIAL_ECHOPAIR("[", homing_feedrate(axis));SERIAL_CHAR(']');}SERIAL_ECHOLNPGM(")");}#endif#if HOMING_Z_WITH_PROBE && HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)// Wait for bed to heat back up between probing pointsif (axis == Z_AXIS && distance < 0 && thermalManager.isHeatingBed()) {serialprintPGM(msg_wait_for_bed_heating);LCD_MESSAGEPGM(MSG_BED_HEATING);while (thermalManager.isHeatingBed()) safe_delay(200);lcd_reset_status();}#endif// Only do some things when moving towards an endstopconst int8_t axis_home_dir =#if ENABLED(DUAL_X_CARRIAGE)(axis == X_AXIS) ? x_home_dir(active_extruder) :#endifhome_dir(axis);const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);if (is_home_dir) {#if HOMING_Z_WITH_PROBE && QUIET_PROBINGif (axis == Z_AXIS) probing_pause(true);#endif// Disable stealthChop if used. Enable diag1 pin on driver.#if ENABLED(SENSORLESS_HOMING)sensorless_homing_per_axis(axis);#endif}// Tell the planner the axis is at 0current_position[axis] = 0;// Do the move, which is required to hit an endstop#if IS_SCARASYNC_PLAN_POSITION_KINEMATIC();current_position[axis] = distance;inverse_kinematics(current_position);planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);#elif ENABLED(HANGPRINTER) // TODO: Hangprinter homing is not finished (Jan 7, 2018)SYNC_PLAN_POSITION_KINEMATIC();current_position[axis] = distance;inverse_kinematics(current_position);planner.buffer_line(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);#elsesync_plan_position();current_position[axis] = distance; // Set delta/cartesian axes directlyplanner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);#endifplanner.synchronize();if (is_home_dir) {#if HOMING_Z_WITH_PROBE && QUIET_PROBINGif (axis == Z_AXIS) probing_pause(false);#endifendstops.validate_homing_move();// Re-enable stealthChop if used. Disable diag1 pin on driver.#if ENABLED(SENSORLESS_HOMING)sensorless_homing_per_axis(axis, false);#endif}#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);SERIAL_CHAR(')');SERIAL_EOL();}#endif}/*** Home an individual "raw axis" to its endstop.* This applies to XYZ on Cartesian and Core robots, and* to the individual ABC steppers on DELTA and SCARA.** At the end of the procedure the axis is marked as* homed and the current position of that axis is updated.* Kinematic robots should wait till all axes are homed* before updating the current position.*/static void homeaxis(const AxisEnum axis) {#if IS_SCARA// Only Z homing (with probe) is permittedif (axis != Z_AXIS) { BUZZ(100, 880); return; }#else#define CAN_HOME(A) \(axis == _AXIS(A) && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);SERIAL_CHAR(')');SERIAL_EOL();}#endifconst int axis_home_dir = (#if ENABLED(DUAL_X_CARRIAGE)axis == X_AXIS ? x_home_dir(active_extruder) :#endifhome_dir(axis));// Homing Z towards the bed? Deploy the Z probe or endstop.#if HOMING_Z_WITH_PROBEif (axis == Z_AXIS && DEPLOY_PROBE()) return;#endif// Set flags for X, Y, Z motor locking#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)switch (axis) {#if ENABLED(X_DUAL_ENDSTOPS)case X_AXIS:#endif#if ENABLED(Y_DUAL_ENDSTOPS)case Y_AXIS:#endif#if ENABLED(Z_DUAL_ENDSTOPS)case Z_AXIS:#endifstepper.set_homing_dual_axis(true);default: break;}#endif// Fast move towards endstop until triggered#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");#endif#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)// BLTOUCH needs to be deployed every timeif (axis == Z_AXIS && set_bltouch_deployed(true)) return;#endifdo_homing_move(axis, 1.5f * max_length(axis) * axis_home_dir);#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)// BLTOUCH needs to be stowed after trigger to rearm itselfif (axis == Z_AXIS) set_bltouch_deployed(false);#endif// When homing Z with probe respect probe clearanceconst float bump = axis_home_dir * (#if HOMING_Z_WITH_PROBE(axis == Z_AXIS && (Z_HOME_BUMP_MM)) ? MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_HOME_BUMP_MM) :#endifhome_bump_mm(axis));// If a second homing move is configured...if (bump) {// Move away from the endstop by the axis HOME_BUMP_MM#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");#endifdo_homing_move(axis, -bump#if HOMING_Z_WITH_PROBE, axis == Z_AXIS ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : 0.00#endif);// Slow move towards endstop until triggered#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");#endif#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)// BLTOUCH needs to be deployed every timeif (axis == Z_AXIS && set_bltouch_deployed(true)) return;#endifdo_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)// BLTOUCH needs to be stowed after trigger to rearm itselfif (axis == Z_AXIS) set_bltouch_deployed(false);#endif}/*** Home axes that have dual endstops... differently*/#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)const bool pos_dir = axis_home_dir > 0;#if ENABLED(X_DUAL_ENDSTOPS)if (axis == X_AXIS) {const float adj = ABS(endstops.x_endstop_adj);if (adj) {if (pos_dir ? (endstops.x_endstop_adj > 0) : (endstops.x_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);do_homing_move(axis, pos_dir ? -adj : adj);stepper.set_x_lock(false);stepper.set_x2_lock(false);}}#endif#if ENABLED(Y_DUAL_ENDSTOPS)if (axis == Y_AXIS) {const float adj = ABS(endstops.y_endstop_adj);if (adj) {if (pos_dir ? (endstops.y_endstop_adj > 0) : (endstops.y_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);do_homing_move(axis, pos_dir ? -adj : adj);stepper.set_y_lock(false);stepper.set_y2_lock(false);}}#endif#if ENABLED(Z_DUAL_ENDSTOPS)if (axis == Z_AXIS) {const float adj = ABS(endstops.z_endstop_adj);if (adj) {if (pos_dir ? (endstops.z_endstop_adj > 0) : (endstops.z_endstop_adj < 0)) stepper.set_z_lock(true); else stepper.set_z2_lock(true);do_homing_move(axis, pos_dir ? -adj : adj);stepper.set_z_lock(false);stepper.set_z2_lock(false);}}#endifstepper.set_homing_dual_axis(false);#endif#if IS_SCARAset_axis_is_at_home(axis);SYNC_PLAN_POSITION_KINEMATIC();#elif ENABLED(DELTA)// Delta has already moved all three towers up in G28// so here it re-homes each tower in turn.// Delta homing treats the axes as normal linear axes.// retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum stepsif (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");#endifdo_homing_move(axis, delta_endstop_adj[axis] - (MIN_STEPS_PER_SEGMENT + 1) * planner.steps_to_mm[axis] * Z_HOME_DIR);}#else// For cartesian/core machines,// set the axis to its home positionset_axis_is_at_home(axis);sync_plan_position();destination[axis] = current_position[axis];#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);#endif#endif// Put away the Z probe#if HOMING_Z_WITH_PROBEif (axis == Z_AXIS && STOW_PROBE()) return;#endif// Clear retracted status if homing the Z axis#if ENABLED(FWRETRACT)if (axis == Z_AXIS) fwretract.hop_amount = 0.0;#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);SERIAL_CHAR(')');SERIAL_EOL();}#endif} // homeaxis()#if ENABLED(MIXING_EXTRUDER)void normalize_mix() {float mix_total = 0.0;for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += mixing_factor[i];// Scale all values if they don't add up to ~1.0if (!NEAR(mix_total, 1.0)) {SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");const float inverse_sum = RECIPROCAL(mix_total);for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= inverse_sum;}}#if ENABLED(DIRECT_MIXING_IN_G1)// Get mixing parameters from the GCode// The total "must" be 1.0 (but it will be normalized)// If no mix factors are given, the old mix is preservedvoid gcode_get_mix() {const char mixing_codes[] = { 'A', 'B'#if MIXING_STEPPERS > 2, 'C'#if MIXING_STEPPERS > 3, 'D'#if MIXING_STEPPERS > 4, 'H'#if MIXING_STEPPERS > 5, 'I'#endif // MIXING_STEPPERS > 5#endif // MIXING_STEPPERS > 4#endif // MIXING_STEPPERS > 3#endif // MIXING_STEPPERS > 2};byte mix_bits = 0;for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {if (parser.seenval(mixing_codes[i])) {SBI(mix_bits, i);mixing_factor[i] = MAX(parser.value_float(), 0.0);}}// If any mixing factors were included, clear the rest// If none were included, preserve the last mixif (mix_bits) {for (uint8_t i = 0; i < MIXING_STEPPERS; i++)if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;normalize_mix();}}#endif#endif/*** **************************************************************************** ***************************** G-CODE HANDLING ****************************** ****************************************************************************//*** Set XYZE destination and feedrate from the current GCode command** - Set destination from included axis codes* - Set to current for missing axis codes* - Set the feedrate, if included*/void gcode_get_destination() {LOOP_XYZE(i) {if (parser.seen(axis_codes[i])) {const float v = parser.value_axis_units((AxisEnum)i);destination[i] = (axis_relative_modes[i] || relative_mode)? current_position[i] + v: (i == E_CART) ? v : LOGICAL_TO_NATIVE(v, i);}elsedestination[i] = current_position[i];}if (parser.linearval('F') > 0)feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());#if ENABLED(PRINTCOUNTER)if (!DEBUGGING(DRYRUN))print_job_timer.incFilamentUsed(destination[E_CART] - current_position[E_CART]);#endif// Get ABCDHI mixing factors#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)gcode_get_mix();#endif}#if ENABLED(HOST_KEEPALIVE_FEATURE)/*** Output a "busy" message at regular intervals* while the machine is not accepting commands.*/void host_keepalive() {const millis_t ms = millis();if (!suspend_auto_report && host_keepalive_interval && busy_state != NOT_BUSY) {if (PENDING(ms, next_busy_signal_ms)) return;switch (busy_state) {case IN_HANDLER:case IN_PROCESS:SERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);break;case PAUSED_FOR_USER:SERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);break;case PAUSED_FOR_INPUT:SERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);break;default:break;}}next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;}#endif // HOST_KEEPALIVE_FEATURE/******************************************************************* GCode Handlers *******************************************************************/#if ENABLED(NO_MOTION_BEFORE_HOMING)#define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))#else#define G0_G1_CONDITION true#endif/*** G0, G1: Coordinated movement of X Y Z E axes*/inline void gcode_G0_G1(#if IS_SCARAbool fast_move=false#endif) {if (IsRunning() && G0_G1_CONDITION) {gcode_get_destination(); // For X Y Z E F#if ENABLED(FWRETRACT)if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {// When M209 Autoretract is enabled, convert E-only moves to firmware retract/prime movesif (fwretract.autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {const float echange = destination[E_CART] - current_position[E_CART];// Is this a retract or prime move?if (WITHIN(ABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && fwretract.retracted[active_extruder] == (echange > 0.0)) {current_position[E_CART] = destination[E_CART]; // Hide a G1-based retract/prime from calculationssync_plan_position_e(); // AND from the plannerreturn fwretract.retract(echange < 0.0); // Firmware-based retract/prime (double-retract ignored)}}}#endif // FWRETRACT#if IS_SCARAfast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();#elseprepare_move_to_destination();#endif#if ENABLED(NANODLP_Z_SYNC)#if ENABLED(NANODLP_ALL_AXIS)#define _MOVE_SYNC parser.seenval('X') || parser.seenval('Y') || parser.seenval('Z') // For any move wait and output sync message#else#define _MOVE_SYNC parser.seenval('Z') // Only for Z move#endifif (_MOVE_SYNC) {planner.synchronize();SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);}#endif}}/*** G2: Clockwise Arc* G3: Counterclockwise Arc** This command has two forms: IJ-form and R-form.** - I specifies an X offset. J specifies a Y offset.* At least one of the IJ parameters is required.* X and Y can be omitted to do a complete circle.* The given XY is not error-checked. The arc ends* based on the angle of the destination.* Mixing I or J with R will throw an error.** - R specifies the radius. X or Y is required.* Omitting both X and Y will throw an error.* X or Y must differ from the current XY.* Mixing R with I or J will throw an error.** - P specifies the number of full circles to do* before the specified arc move.** Examples:** G2 I10 ; CW circle centered at X+10* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12*/#if ENABLED(ARC_SUPPORT)inline void gcode_G2_G3(const bool clockwise) {#if ENABLED(NO_MOTION_BEFORE_HOMING)if (axis_unhomed_error()) return;#endifif (IsRunning()) {#if ENABLED(SF_ARC_FIX)const bool relative_mode_backup = relative_mode;relative_mode = true;#endifgcode_get_destination();#if ENABLED(SF_ARC_FIX)relative_mode = relative_mode_backup;#endiffloat arc_offset[2] = { 0, 0 };if (parser.seenval('R')) {const float r = parser.value_linear_units(),p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],p2 = destination[X_AXIS], q2 = destination[Y_AXIS];if (r && (p2 != p1 || q2 != q1)) {const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1dx = p2 - p1, dy = q2 - q1, // X and Y differencesd = HYPOT(dx, dy), // Linear distance between the pointsh2 = (r - 0.5f * d) * (r + 0.5f * d), // factor to reduce rounding errorh = (h2 >= 0) ? SQRT(h2) : 0.0f, // Distance to the arc pivot-pointmx = (p1 + p2) * 0.5f, my = (q1 + q2) * 0.5f, // Point between the two pointssx = -dy / d, sy = dx / d, // Slope of the perpendicular bisectorcx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arcarc_offset[0] = cx - p1;arc_offset[1] = cy - q1;}}else {if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();}if (arc_offset[0] || arc_offset[1]) {#if ENABLED(ARC_P_CIRCLES)// P indicates number of circles to doint8_t circles_to_do = parser.byteval('P');if (!WITHIN(circles_to_do, 0, 100)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);}while (circles_to_do--)plan_arc(current_position, arc_offset, clockwise);#endif// Send the arc to the plannerplan_arc(destination, arc_offset, clockwise);}else {// Bad argumentsSERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);}}}#endif // ARC_SUPPORTvoid dwell(millis_t time) {time += millis();while (PENDING(millis(), time)) idle();}/*** G4: Dwell S<seconds> or P<milliseconds>*/inline void gcode_G4() {millis_t dwell_ms = 0;if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to waitif (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to waitplanner.synchronize();#if ENABLED(NANODLP_Z_SYNC)SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);#endifif (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);dwell(dwell_ms);}#if ENABLED(BEZIER_CURVE_SUPPORT)/*** Parameters interpreted according to:* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline* However I, J omission is not supported at this point; all* parameters can be omitted and default to zero.*//*** G5: Cubic B-spline*/inline void gcode_G5() {#if ENABLED(NO_MOTION_BEFORE_HOMING)if (axis_unhomed_error()) return;#endifif (IsRunning()) {#if ENABLED(CNC_WORKSPACE_PLANES)if (workspace_plane != PLANE_XY) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);return;}#endifgcode_get_destination();const float offset[] = {parser.linearval('I'),parser.linearval('J'),parser.linearval('P'),parser.linearval('Q')};plan_cubic_move(destination, offset);}}#endif // BEZIER_CURVE_SUPPORT#if ENABLED(UNREGISTERED_MOVE_SUPPORT)/*** G6 implementation for Hangprinter based on* http://reprap.org/wiki/GCodes#G6:_Direct_Stepper_Move* Accessed Jan 8, 2018** G6 is used frequently to tighten lines with Hangprinter, so Hangprinter default is relative moves.* Hangprinter uses switches* S1 for absolute moves* S2 for saving recording new line length after unregistered move* (typically used while tuning LINE_BUILDUP_COMPENSATION_FEATURE parameters)*//*** G6: Direct Stepper Move*/inline void gcode_G6() {bool count_it = false;#if ENABLED(NO_MOTION_BEFORE_HOMING)if (axis_unhomed_error()) return;#endifif (IsRunning()) {float go[MOV_AXIS] = { 0.0 },tmp_fr_mm_s = 0.0;LOOP_MOV_AXIS(i)if (parser.seen(RAW_AXIS_CODES(i)))go[i] = parser.value_axis_units((AxisEnum)i);#if ENABLED(HANGPRINTER)#define GO_SRC line_lengths#elif ENABLED(DELTA)#define GO_SRC delta#else#define GO_SRC current_position#endifif (#if ENABLED(HANGPRINTER) // Sending R to another machine is the same as not sending S1 to Hangprinterparser.byteval('S') != 2#elseparser.seen('R')#endif)LOOP_MOV_AXIS(i) go[i] += GO_SRC[i];elseLOOP_MOV_AXIS(i) if (!parser.seen(RAW_AXIS_CODES(i))) go[i] += GO_SRC[i];tmp_fr_mm_s = parser.linearval('F') > 0.0 ? MMM_TO_MMS(parser.value_feedrate()) : feedrate_mm_s;#if ENABLED(HANGPRINTER)if (parser.byteval('S') == 2) {LOOP_MOV_AXIS(i) line_lengths[i] = go[i];count_it = true;}#endifplanner.buffer_segment(go[A_AXIS], go[B_AXIS], go[C_AXIS]#if ENABLED(HANGPRINTER), go[D_AXIS]#endif, current_position[E_CART], tmp_fr_mm_s, active_extruder, 0.0, count_it);}}#endif#if ENABLED(FWRETRACT)/*** G10 - Retract filament according to settings of M207*/inline void gcode_G10() {#if EXTRUDERS > 1const bool rs = parser.boolval('S');#endiffwretract.retract(true#if EXTRUDERS > 1, rs#endif);}/*** G11 - Recover filament according to settings of M208*/inline void gcode_G11() { fwretract.retract(false); }#endif // FWRETRACT#if ENABLED(NOZZLE_CLEAN_FEATURE)/*** G12: Clean the nozzle*/inline void gcode_G12() {// Don't allow nozzle cleaning without homing firstif (axis_unhomed_error()) return;const uint8_t pattern = parser.ushortval('P', 0),strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);Nozzle::clean(pattern, strokes, radius, objects);}#endif#if ENABLED(CNC_WORKSPACE_PLANES)inline void report_workspace_plane() {SERIAL_ECHO_START();SERIAL_ECHOPGM("Workspace Plane ");serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") :workspace_plane == PLANE_ZX ? PSTR("ZX\n") :PSTR("XY\n"));}inline void set_workspace_plane(const WorkspacePlane plane) {workspace_plane = plane;if (DEBUGGING(INFO)) report_workspace_plane();}/*** G17: Select Plane XY* G18: Select Plane ZX* G19: Select Plane YZ*/inline void gcode_G17() { set_workspace_plane(PLANE_XY); }inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }#endif // CNC_WORKSPACE_PLANES#if ENABLED(CNC_COORDINATE_SYSTEMS)/*** Select a coordinate system and update the workspace offset.* System index -1 is used to specify machine-native.*/bool select_coordinate_system(const int8_t _new) {if (active_coordinate_system == _new) return false;float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))COPY(old_offset, coordinate_system[active_coordinate_system]);if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))COPY(new_offset, coordinate_system[_new]);active_coordinate_system = _new;LOOP_XYZ(i) {const float diff = new_offset[i] - old_offset[i];if (diff) {position_shift[i] += diff;update_software_endstops((AxisEnum)i);}}return true;}/*** G53: Apply native workspace to the current move** In CNC G-code G53 is a modifier.* It precedes a movement command (or other modifiers) on the same line.* This is the first command to use parser.chain() to make this possible.** Marlin also uses G53 on a line by itself to go back to native space.*/inline void gcode_G53() {const int8_t _system = active_coordinate_system;active_coordinate_system = -1;if (parser.chain()) { // If this command has more following...process_parsed_command();active_coordinate_system = _system;}}/*** G54-G59.3: Select a new workspace** A workspace is an XYZ offset to the machine native space.* All workspaces default to 0,0,0 at start, or with EEPROM* support they may be restored from a previous session.** G92 is used to set the current workspace's offset.*/inline void gcode_G54_59(uint8_t subcode=0) {const int8_t _space = parser.codenum - 54 + subcode;if (select_coordinate_system(_space)) {SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);report_current_position();}}FORCE_INLINE void gcode_G54() { gcode_G54_59(); }FORCE_INLINE void gcode_G55() { gcode_G54_59(); }FORCE_INLINE void gcode_G56() { gcode_G54_59(); }FORCE_INLINE void gcode_G57() { gcode_G54_59(); }FORCE_INLINE void gcode_G58() { gcode_G54_59(); }FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }#endif#if ENABLED(INCH_MODE_SUPPORT)/*** G20: Set input mode to inches*/inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }/*** G21: Set input mode to millimeters*/inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }#endif#if ENABLED(NOZZLE_PARK_FEATURE)/*** G27: Park the nozzle*/inline void gcode_G27() {// Don't allow nozzle parking without homing firstif (axis_unhomed_error()) return;Nozzle::park(parser.ushortval('P'));}#endif // NOZZLE_PARK_FEATURE#if ENABLED(QUICK_HOME)static void quick_home_xy() {// Pretend the current position is 0,0current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;sync_plan_position();const int x_axis_home_dir =#if ENABLED(DUAL_X_CARRIAGE)x_home_dir(active_extruder)#elsehome_dir(X_AXIS)#endif;const float mlx = max_length(X_AXIS),mly = max_length(Y_AXIS),mlratio = mlx > mly ? mly / mlx : mlx / mly,fr_mm_s = MIN(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);#if ENABLED(SENSORLESS_HOMING)sensorless_homing_per_axis(X_AXIS);sensorless_homing_per_axis(Y_AXIS);#endifdo_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);endstops.validate_homing_move();current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;#if ENABLED(SENSORLESS_HOMING)sensorless_homing_per_axis(X_AXIS, false);sensorless_homing_per_axis(Y_AXIS, false);#endif}#endif // QUICK_HOME#if ENABLED(DEBUG_LEVELING_FEATURE)void log_machine_info() {SERIAL_ECHOPGM("Machine Type: ");#if ENABLED(DELTA)SERIAL_ECHOLNPGM("Delta");#elif IS_SCARASERIAL_ECHOLNPGM("SCARA");#elif IS_CORESERIAL_ECHOLNPGM("Core");#elseSERIAL_ECHOLNPGM("Cartesian");#endifSERIAL_ECHOPGM("Probe: ");#if ENABLED(PROBE_MANUALLY)SERIAL_ECHOLNPGM("PROBE_MANUALLY");#elif ENABLED(FIX_MOUNTED_PROBE)SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");#elif ENABLED(BLTOUCH)SERIAL_ECHOLNPGM("BLTOUCH");#elif HAS_Z_SERVO_PROBESERIAL_ECHOLNPGM("SERVO PROBE");#elif ENABLED(Z_PROBE_SLED)SERIAL_ECHOLNPGM("Z_PROBE_SLED");#elif ENABLED(Z_PROBE_ALLEN_KEY)SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");#elseSERIAL_ECHOLNPGM("NONE");#endif#if HAS_BED_PROBESERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);#if X_PROBE_OFFSET_FROM_EXTRUDER > 0SERIAL_ECHOPGM(" (Right");#elif X_PROBE_OFFSET_FROM_EXTRUDER < 0SERIAL_ECHOPGM(" (Left");#elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0SERIAL_ECHOPGM(" (Middle");#elseSERIAL_ECHOPGM(" (Aligned With");#endif#if Y_PROBE_OFFSET_FROM_EXTRUDER > 0#if IS_SCARASERIAL_ECHOPGM("-Distal");#elseSERIAL_ECHOPGM("-Back");#endif#elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0#if IS_SCARASERIAL_ECHOPGM("-Proximal");#elseSERIAL_ECHOPGM("-Front");#endif#elif X_PROBE_OFFSET_FROM_EXTRUDER != 0SERIAL_ECHOPGM("-Center");#endifif (zprobe_zoffset < 0)SERIAL_ECHOPGM(" & Below");else if (zprobe_zoffset > 0)SERIAL_ECHOPGM(" & Above");elseSERIAL_ECHOPGM(" & Same Z as");SERIAL_ECHOLNPGM(" Nozzle)");#endif#if HAS_ABLSERIAL_ECHOPGM("Auto Bed Leveling: ");#if ENABLED(AUTO_BED_LEVELING_LINEAR)SERIAL_ECHOPGM("LINEAR");#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)SERIAL_ECHOPGM("BILINEAR");#elif ENABLED(AUTO_BED_LEVELING_3POINT)SERIAL_ECHOPGM("3POINT");#elif ENABLED(AUTO_BED_LEVELING_UBL)SERIAL_ECHOPGM("UBL");#endifif (planner.leveling_active) {SERIAL_ECHOLNPGM(" (enabled)");#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)if (planner.z_fade_height)SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height);#endif#if ABL_PLANARconst float diff[XYZ] = {planner.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],planner.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],planner.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]};SERIAL_ECHOPGM("ABL Adjustment X");if (diff[X_AXIS] > 0) SERIAL_CHAR('+');SERIAL_ECHO(diff[X_AXIS]);SERIAL_ECHOPGM(" Y");if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');SERIAL_ECHO(diff[Y_AXIS]);SERIAL_ECHOPGM(" Z");if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');SERIAL_ECHO(diff[Z_AXIS]);#else#if ENABLED(AUTO_BED_LEVELING_UBL)SERIAL_ECHOPGM("UBL Adjustment Z");const float rz = ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS]);#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)SERIAL_ECHOPAIR("Bilinear Grid X", bilinear_start[X_AXIS]);SERIAL_ECHOPAIR(" Y", bilinear_start[Y_AXIS]);SERIAL_ECHOPAIR(" W", ABL_BG_SPACING(X_AXIS));SERIAL_ECHOLNPAIR(" H", ABL_BG_SPACING(Y_AXIS));SERIAL_ECHOPGM("ABL Adjustment Z");const float rz = bilinear_z_offset(current_position);#endifSERIAL_ECHO(ftostr43sign(rz, '+'));#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)if (planner.z_fade_height) {SERIAL_ECHOPAIR(" (", ftostr43sign(rz * planner.fade_scaling_factor_for_z(current_position[Z_AXIS]), '+'));SERIAL_CHAR(')');}#endif#endif}elseSERIAL_ECHOLNPGM(" (disabled)");SERIAL_EOL();#elif ENABLED(MESH_BED_LEVELING)SERIAL_ECHOPGM("Mesh Bed Leveling");if (planner.leveling_active) {SERIAL_ECHOLNPGM(" (enabled)");SERIAL_ECHOPAIR("MBL Adjustment Z", ftostr43sign(mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT), 1.0#endif), '+'));#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)if (planner.z_fade_height) {SERIAL_ECHOPAIR(" (", ftostr43sign(mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS], planner.fade_scaling_factor_for_z(current_position[Z_AXIS])), '+'));SERIAL_CHAR(')');}#endif}elseSERIAL_ECHOPGM(" (disabled)");SERIAL_EOL();#endif // MESH_BED_LEVELING}#endif // DEBUG_LEVELING_FEATURE#if ENABLED(DELTA)#if ENABLED(SENSORLESS_HOMING)inline void delta_sensorless_homing(const bool on=true) {sensorless_homing_per_axis(A_AXIS, on);sensorless_homing_per_axis(B_AXIS, on);sensorless_homing_per_axis(C_AXIS, on);}#endif/*** A delta can only safely home all axes at the same time* This is like quick_home_xy() but for 3 towers.*/inline void home_delta() {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);#endif// Init the current position of all carriages to 0,0,0ZERO(current_position);sync_plan_position();// Disable stealthChop if used. Enable diag1 pin on driver.#if ENABLED(SENSORLESS_HOMING)delta_sensorless_homing();#endif// Move all carriages together linearly until an endstop is hit.current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10#if HAS_BED_PROBE- zprobe_zoffset#endif);feedrate_mm_s = homing_feedrate(X_AXIS);buffer_line_to_current_position();planner.synchronize();// Re-enable stealthChop if used. Disable diag1 pin on driver.#if ENABLED(SENSORLESS_HOMING)delta_sensorless_homing(false);#endifendstops.validate_homing_move();// At least one carriage has reached the top.// Now re-home each carriage separately.homeaxis(A_AXIS);homeaxis(B_AXIS);homeaxis(C_AXIS);// Set all carriages to their home positions// Do this here all at once for Delta, because// XYZ isn't ABC. Applying this per-tower would// give the impression that they are the same.LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);SYNC_PLAN_POSITION_KINEMATIC();#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);#endif}#elif ENABLED(HANGPRINTER)/*** A hangprinter cannot home itself*/inline void home_hangprinter() {SERIAL_ECHOLNPGM("Warning: G28 is not implemented for Hangprinter.");}#endif#ifdef Z_AFTER_PROBINGvoid move_z_after_probing() {if (current_position[Z_AXIS] != Z_AFTER_PROBING) {do_blocking_move_to_z(Z_AFTER_PROBING);current_position[Z_AXIS] = Z_AFTER_PROBING;}}#endif#if ENABLED(Z_SAFE_HOMING)inline void home_z_safely() {// Disallow Z homing if X or Y are unknownif (!TEST(axis_known_position, X_AXIS) || !TEST(axis_known_position, Y_AXIS)) {LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);SERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);return;}#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");#endifSYNC_PLAN_POSITION_KINEMATIC();/*** Move the Z probe (or just the nozzle) to the safe homing point*/destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height#if HOMING_Z_WITH_PROBEdestination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;#endifif (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);#endif// This causes the carriage on Dual X to unpark#if ENABLED(DUAL_X_CARRIAGE)active_extruder_parked = false;#endif#if ENABLED(SENSORLESS_HOMING)safe_delay(500); // Short delay needed to settle#endifdo_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);homeaxis(Z_AXIS);}else {LCD_MESSAGEPGM(MSG_ZPROBE_OUT);SERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);}#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");#endif}#endif // Z_SAFE_HOMING#if ENABLED(PROBE_MANUALLY)bool g29_in_progress = false;#elseconstexpr bool g29_in_progress = false;#endif/*** G28: Home all axes according to settings** Parameters** None Home to all axes with no parameters.* With QUICK_HOME enabled XY will home together, then Z.** O Home only if position is unknown** Rn Raise by n mm/inches before homing** Cartesian parameters** X Home to the X endstop* Y Home to the Y endstop* Z Home to the Z endstop**/inline void gcode_G28(const bool always_home_all) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM(">>> G28");log_machine_info();}#endif#if ENABLED(MARLIN_DEV_MODE)if (parser.seen('S')) {LOOP_XYZ(a) set_axis_is_at_home((AxisEnum)a);SYNC_PLAN_POSITION_KINEMATIC();SERIAL_ECHOLNPGM("Simulated Homing");report_current_position();#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G28");#endifreturn;}#endifif (all_axes_known() && parser.boolval('O')) { // home only if needed#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM("> homing not needed, skip");SERIAL_ECHOLNPGM("<<< G28");}#endifreturn;}// Wait for planner moves to finish!planner.synchronize();// Cancel the active G29 session#if ENABLED(PROBE_MANUALLY)g29_in_progress = false;#endif// Disable the leveling matrix before homing#if HAS_LEVELING#if ENABLED(RESTORE_LEVELING_AFTER_G28)const bool leveling_was_active = planner.leveling_active;#endifset_bed_leveling_enabled(false);#endif#if ENABLED(CNC_WORKSPACE_PLANES)workspace_plane = PLANE_XY;#endif#if ENABLED(BLTOUCH)// Make sure any BLTouch error condition is clearedbltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY);set_bltouch_deployed(false);#endif// Always home with tool 0 active#if HOTENDS > 1#if DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE)const uint8_t old_tool_index = active_extruder;#endiftool_change(0, 0, true);#endif#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)extruder_duplication_enabled = false;#endifsetup_for_endstop_or_probe_move();#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");#endifendstops.enable(true); // Enable endstops for next homing move#if ENABLED(DELTA)home_delta();UNUSED(always_home_all);#elif ENABLED(HANGPRINTER)home_hangprinter();UNUSED(always_home_all);#else // NOT Delta or Hangprinterconst bool homeX = always_home_all || parser.seen('X'),homeY = always_home_all || parser.seen('Y'),homeZ = always_home_all || parser.seen('Z'),home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);set_destination_from_current();#if Z_HOME_DIR > 0 // If homing away from BED do Z firstif (home_all || homeZ) homeaxis(Z_AXIS);#endifconst float z_homing_height = (#if ENABLED(UNKNOWN_Z_NO_RAISE)!TEST(axis_known_position, Z_AXIS) ? 0 :#endif(parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT));if (z_homing_height && (home_all || homeX || homeY)) {// Raise Z before homing any other axes and z is not already high enough (never lower z)destination[Z_AXIS] = z_homing_height;if (destination[Z_AXIS] > current_position[Z_AXIS]) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING))SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);#endifdo_blocking_move_to_z(destination[Z_AXIS]);}}#if ENABLED(QUICK_HOME)if (home_all || (homeX && homeY)) quick_home_xy();#endif// Home Y (before X)#if ENABLED(HOME_Y_BEFORE_X)if (home_all || homeY#if ENABLED(CODEPENDENT_XY_HOMING)|| homeX#endif) homeaxis(Y_AXIS);#endif// Home Xif (home_all || homeX#if ENABLED(CODEPENDENT_XY_HOMING) && DISABLED(HOME_Y_BEFORE_X)|| homeY#endif) {#if ENABLED(DUAL_X_CARRIAGE)// Always home the 2nd (right) extruder firstactive_extruder = 1;homeaxis(X_AXIS);// Remember this extruder's position for later tool changeinactive_extruder_x_pos = current_position[X_AXIS];// Home the 1st (left) extruderactive_extruder = 0;homeaxis(X_AXIS);// Consider the active extruder to be parkedCOPY(raised_parked_position, current_position);delayed_move_time = 0;active_extruder_parked = true;#elsehomeaxis(X_AXIS);#endif}// Home Y (after X)#if DISABLED(HOME_Y_BEFORE_X)if (home_all || homeY) homeaxis(Y_AXIS);#endif// Home Z last if homing towards the bed#if Z_HOME_DIR < 0if (home_all || homeZ) {#if ENABLED(Z_SAFE_HOMING)home_z_safely();#elsehomeaxis(Z_AXIS);#endif#if HOMING_Z_WITH_PROBE && defined(Z_AFTER_PROBING)move_z_after_probing();#endif} // home_all || homeZ#endif // Z_HOME_DIR < 0SYNC_PLAN_POSITION_KINEMATIC();#endif // !DELTA (gcode_G28)endstops.not_homing();#if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)// move to a height where we can use the full xy-areado_blocking_move_to_z(delta_clip_start_height);#endif#if ENABLED(RESTORE_LEVELING_AFTER_G28)set_bed_leveling_enabled(leveling_was_active);#endifclean_up_after_endstop_or_probe_move();// Restore the active tool after homing#if HOTENDS > 1 && (DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE))#if ENABLED(PARKING_EXTRUDER)#define NO_FETCH false // fetch the previous toolhead#else#define NO_FETCH true#endiftool_change(old_tool_index, 0, NO_FETCH);#endiflcd_refresh();report_current_position();#if ENABLED(NANODLP_Z_SYNC)#if ENABLED(NANODLP_ALL_AXIS)#define _HOME_SYNC true // For any axis, output sync text.#else#define _HOME_SYNC (home_all || homeZ) // Only for Z-axis#endifif (_HOME_SYNC)SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G28");#endif} // G28void home_all_axes() { gcode_G28(true); }#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)inline void _manual_goto_xy(const float &rx, const float &ry) {#ifdef MANUAL_PROBE_START_Z#if MANUAL_PROBE_HEIGHT > 0do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);do_blocking_move_to_z(MAX(0,MANUAL_PROBE_START_Z));#elsedo_blocking_move_to(rx, ry, MAX(0,MANUAL_PROBE_START_Z));#endif#elif MANUAL_PROBE_HEIGHT > 0const float prev_z = current_position[Z_AXIS];do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);do_blocking_move_to_z(prev_z);#elsedo_blocking_move_to_xy(rx, ry);#endifcurrent_position[X_AXIS] = rx;current_position[Y_AXIS] = ry;#if ENABLED(LCD_BED_LEVELING)lcd_wait_for_move = false;#endif}#endif#if ENABLED(MESH_BED_LEVELING)// Save 130 bytes with non-duplication of PSTRvoid echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }/*** G29: Mesh-based Z probe, probes a grid and produces a* mesh to compensate for variable bed height** Parameters With MESH_BED_LEVELING:** S0 Produce a mesh report* S1 Start probing mesh points* S2 Probe the next mesh point* S3 Xn Yn Zn.nn Manually modify a single point* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.* S5 Reset and disable mesh** The S0 report the points as below** +----> X-axis 1-n* |* |* v Y-axis 1-n**/inline void gcode_G29() {static int mbl_probe_index = -1;#if HAS_SOFTWARE_ENDSTOPSstatic bool enable_soft_endstops;#endifMeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);if (!WITHIN(state, 0, 5)) {SERIAL_PROTOCOLLNPGM("S out of range (0-5).");return;}int8_t px, py;switch (state) {case MeshReport:if (leveling_is_valid()) {SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);mbl.report_mesh();}elseSERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");break;case MeshStart:mbl.reset();mbl_probe_index = 0;if (!lcd_wait_for_move) {enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));return;}state = MeshNext;case MeshNext:if (mbl_probe_index < 0) {SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");return;}// For each G29 S2...if (mbl_probe_index == 0) {#if HAS_SOFTWARE_ENDSTOPS// For the initial G29 S2 save software endstop stateenable_soft_endstops = soft_endstops_enabled;#endif// Move close to the bed before the first pointdo_blocking_move_to_z(0);}else {// Save Z for the previous mesh positionmbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);#if HAS_SOFTWARE_ENDSTOPSsoft_endstops_enabled = enable_soft_endstops;#endif}// If there's another point to sample, move there with optional lift.if (mbl_probe_index < GRID_MAX_POINTS) {#if HAS_SOFTWARE_ENDSTOPS// Disable software endstops to allow manual adjustment// If G29 is not completed, they will not be re-enabledsoft_endstops_enabled = false;#endifmbl.zigzag(mbl_probe_index++, px, py);_manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);}else {// One last "return to the bed" (as originally coded) at completioncurrent_position[Z_AXIS] = MANUAL_PROBE_HEIGHT;buffer_line_to_current_position();planner.synchronize();// After recording the last point, activate home and activatembl_probe_index = -1;SERIAL_PROTOCOLLNPGM("Mesh probing done.");BUZZ(100, 659);BUZZ(100, 698);home_all_axes();set_bed_leveling_enabled(true);#if ENABLED(MESH_G28_REST_ORIGIN)current_position[Z_AXIS] = 0;set_destination_from_current();buffer_line_to_destination(homing_feedrate(Z_AXIS));planner.synchronize();#endif#if ENABLED(LCD_BED_LEVELING)lcd_wait_for_move = false;#endif}break;case MeshSet:if (parser.seenval('X')) {px = parser.value_int() - 1;if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {SERIAL_PROTOCOLPAIR("X out of range (1-", int(GRID_MAX_POINTS_X));SERIAL_PROTOCOLLNPGM(")");return;}}else {SERIAL_CHAR('X'); echo_not_entered();return;}if (parser.seenval('Y')) {py = parser.value_int() - 1;if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {SERIAL_PROTOCOLPAIR("Y out of range (1-", int(GRID_MAX_POINTS_Y));SERIAL_PROTOCOLLNPGM(")");return;}}else {SERIAL_CHAR('Y'); echo_not_entered();return;}if (parser.seenval('Z'))mbl.z_values[px][py] = parser.value_linear_units();else {SERIAL_CHAR('Z'); echo_not_entered();return;}break;case MeshSetZOffset:if (parser.seenval('Z'))mbl.z_offset = parser.value_linear_units();else {SERIAL_CHAR('Z'); echo_not_entered();return;}break;case MeshReset:reset_bed_level();break;} // switch (state)if (state == MeshNext) {SERIAL_PROTOCOLPAIR("MBL G29 point ", MIN(mbl_probe_index, GRID_MAX_POINTS));SERIAL_PROTOCOLLNPAIR(" of ", int(GRID_MAX_POINTS));}report_current_position();}#elif OLDSCHOOL_ABL#if ABL_GRID#if ENABLED(PROBE_Y_FIRST)#define PR_OUTER_VAR xCount#define PR_OUTER_END abl_grid_points_x#define PR_INNER_VAR yCount#define PR_INNER_END abl_grid_points_y#else#define PR_OUTER_VAR yCount#define PR_OUTER_END abl_grid_points_y#define PR_INNER_VAR xCount#define PR_INNER_END abl_grid_points_x#endif#endif/*** G29: Detailed Z probe, probes the bed at 3 or more points.* Will fail if the printer has not been homed with G28.** Enhanced G29 Auto Bed Leveling Probe Routine** O Auto-level only if needed** D Dry-Run mode. Just evaluate the bed Topology - Don't apply* or alter the bed level data. Useful to check the topology* after a first run of G29.** J Jettison current bed leveling data** V Set the verbose level (0-4). Example: "G29 V3"** Parameters With LINEAR leveling only:** P Set the size of the grid that will be probed (P x P points).* Example: "G29 P4"** X Set the X size of the grid that will be probed (X x Y points).* Example: "G29 X7 Y5"** Y Set the Y size of the grid that will be probed (X x Y points).** T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.* This is useful for manual bed leveling and finding flaws in the bed (to* assist with part placement).* Not supported by non-linear delta printer bed leveling.** Parameters With LINEAR and BILINEAR leveling only:** S Set the XY travel speed between probe points (in units/min)** F Set the Front limit of the probing grid* B Set the Back limit of the probing grid* L Set the Left limit of the probing grid* R Set the Right limit of the probing grid** Parameters with DEBUG_LEVELING_FEATURE only:** C Make a totally fake grid with no actual probing.* For use in testing when no probing is possible.** Parameters with BILINEAR leveling only:** Z Supply an additional Z probe offset** Extra parameters with PROBE_MANUALLY:** To do manual probing simply repeat G29 until the procedure is complete.* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.** Q Query leveling and G29 state** A Abort current leveling procedure** Extra parameters with BILINEAR only:** W Write a mesh point. (If G29 is idle.)* I X index for mesh point* J Y index for mesh point* X X for mesh point, overrides I* Y Y for mesh point, overrides J* Z Z for mesh point. Otherwise, raw current Z.** Without PROBE_MANUALLY:** E By default G29 will engage the Z probe, test the bed, then disengage.* Include "E" to engage/disengage the Z probe for each sample.* There's no extra effect if you have a fixed Z probe.**/inline void gcode_G29() {#if ENABLED(DEBUG_LEVELING_FEATURE) || ENABLED(PROBE_MANUALLY)const bool seenQ = parser.seen('Q');#elseconstexpr bool seenQ = false;#endif// G29 Q is also available if debugging#if ENABLED(DEBUG_LEVELING_FEATURE)const uint8_t old_debug_flags = marlin_debug_flags;if (seenQ) marlin_debug_flags |= DEBUG_LEVELING;if (DEBUGGING(LEVELING)) {DEBUG_POS(">>> G29", current_position);log_machine_info();}marlin_debug_flags = old_debug_flags;#if DISABLED(PROBE_MANUALLY)if (seenQ) return;#endif#endif#if ENABLED(PROBE_MANUALLY)const bool seenA = parser.seen('A');#elseconstexpr bool seenA = false;#endifconst bool no_action = seenA || seenQ,faux =#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)parser.boolval('C')#elseno_action#endif;// Don't allow auto-leveling without homing firstif (axis_unhomed_error()) return;if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM("> Auto-level not needed, skip");SERIAL_ECHOLNPGM("<<< G29");}#endifreturn;}// Define local vars 'static' for manual probing, 'auto' otherwise#if ENABLED(PROBE_MANUALLY)#define ABL_VAR static#else#define ABL_VAR#endifABL_VAR int verbose_level;ABL_VAR float xProbe, yProbe, measured_z;ABL_VAR bool dryrun, abl_should_enable;#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)ABL_VAR int16_t abl_probe_index;#endif#if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)ABL_VAR bool enable_soft_endstops = true;#endif#if ABL_GRID#if ENABLED(PROBE_MANUALLY)ABL_VAR uint8_t PR_OUTER_VAR;ABL_VAR int8_t PR_INNER_VAR;#endifABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;#if ENABLED(AUTO_BED_LEVELING_LINEAR)ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,abl_grid_points_y = GRID_MAX_POINTS_Y;ABL_VAR bool do_topography_map;#else // Bilinearuint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,abl_grid_points_y = GRID_MAX_POINTS_Y;#endif#if ENABLED(AUTO_BED_LEVELING_LINEAR)ABL_VAR int16_t abl_points;#elif ENABLED(PROBE_MANUALLY) // Bilinearint16_t constexpr abl_points = GRID_MAX_POINTS;#endif#if ENABLED(AUTO_BED_LEVELING_BILINEAR)ABL_VAR float zoffset;#elif ENABLED(AUTO_BED_LEVELING_LINEAR)ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equationseqnBVector[GRID_MAX_POINTS], // "B" vector of Z pointsmean;#endif#elif ENABLED(AUTO_BED_LEVELING_3POINT)#if ENABLED(PROBE_MANUALLY)int8_t constexpr abl_points = 3; // used to show total points#endif// Probe at 3 arbitrary pointsABL_VAR vector_3 points[3] = {vector_3(PROBE_PT_1_X, PROBE_PT_1_Y, 0),vector_3(PROBE_PT_2_X, PROBE_PT_2_Y, 0),vector_3(PROBE_PT_3_X, PROBE_PT_3_Y, 0)};#endif // AUTO_BED_LEVELING_3POINT#if ENABLED(AUTO_BED_LEVELING_LINEAR)struct linear_fit_data lsf_results;incremental_LSF_reset(&lsf_results);#endif/*** On the initial G29 fetch command parameters.*/if (!g29_in_progress) {#if ENABLED(DUAL_X_CARRIAGE)if (active_extruder != 0) tool_change(0);#endif#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)abl_probe_index = -1;#endifabl_should_enable = planner.leveling_active;#if ENABLED(AUTO_BED_LEVELING_BILINEAR)const bool seen_w = parser.seen('W');if (seen_w) {if (!leveling_is_valid()) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("No bilinear grid");return;}const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];if (!WITHIN(rz, -10, 10)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("Bad Z value");return;}const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),ry = RAW_Y_POSITION(parser.linearval('Y', NAN));int8_t i = parser.byteval('I', -1),j = parser.byteval('J', -1);if (!isnan(rx) && !isnan(ry)) {// Get nearest i / j from rx / ryi = (rx - bilinear_start[X_AXIS] + 0.5f * xGridSpacing) / xGridSpacing;j = (ry - bilinear_start[Y_AXIS] + 0.5f * yGridSpacing) / yGridSpacing;i = constrain(i, 0, GRID_MAX_POINTS_X - 1);j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);}if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {set_bed_leveling_enabled(false);z_values[i][j] = rz;#if ENABLED(ABL_BILINEAR_SUBDIVISION)bed_level_virt_interpolate();#endifset_bed_leveling_enabled(abl_should_enable);if (abl_should_enable) report_current_position();}return;} // parser.seen('W')#elseconstexpr bool seen_w = false;#endif// Jettison bed leveling dataif (!seen_w && parser.seen('J')) {reset_bed_level();return;}verbose_level = parser.intval('V');if (!WITHIN(verbose_level, 0, 4)) {SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");return;}dryrun = parser.boolval('D')#if ENABLED(PROBE_MANUALLY)|| no_action#endif;#if ENABLED(AUTO_BED_LEVELING_LINEAR)do_topography_map = verbose_level > 2 || parser.boolval('T');// X and Y specify points in each direction, overriding the default// These values may be saved with the completed meshabl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();if (!WITHIN(abl_grid_points_x, 2, GRID_MAX_POINTS_X)) {SERIAL_PROTOCOLLNPGM("?Probe points (X) is implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");return;}if (!WITHIN(abl_grid_points_y, 2, GRID_MAX_POINTS_Y)) {SERIAL_PROTOCOLLNPGM("?Probe points (Y) is implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");return;}abl_points = abl_grid_points_x * abl_grid_points_y;mean = 0;#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)zoffset = parser.linearval('Z');#endif#if ABL_GRIDxy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));left_probe_bed_position = parser.seenval('L') ? int(RAW_X_POSITION(parser.value_linear_units())) : LEFT_PROBE_BED_POSITION;right_probe_bed_position = parser.seenval('R') ? int(RAW_X_POSITION(parser.value_linear_units())) : RIGHT_PROBE_BED_POSITION;front_probe_bed_position = parser.seenval('F') ? int(RAW_Y_POSITION(parser.value_linear_units())) : FRONT_PROBE_BED_POSITION;back_probe_bed_position = parser.seenval('B') ? int(RAW_Y_POSITION(parser.value_linear_units())) : BACK_PROBE_BED_POSITION;if (#if IS_SCARA || ENABLED(DELTA)!position_is_reachable_by_probe(left_probe_bed_position, 0)|| !position_is_reachable_by_probe(right_probe_bed_position, 0)|| !position_is_reachable_by_probe(0, front_probe_bed_position)|| !position_is_reachable_by_probe(0, back_probe_bed_position)#else!position_is_reachable_by_probe(left_probe_bed_position, front_probe_bed_position)|| !position_is_reachable_by_probe(right_probe_bed_position, back_probe_bed_position)#endif) {SERIAL_PROTOCOLLNPGM("? (L,R,F,B) out of bounds.");return;}// probe at the points of a lattice gridxGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);#endif // ABL_GRIDif (verbose_level > 0) {SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling");if (dryrun) SERIAL_PROTOCOLPGM(" (DRYRUN)");SERIAL_EOL();}planner.synchronize();// Disable auto bed leveling during G29.// Be formal so G29 can be done successively without G28.if (!no_action) set_bed_leveling_enabled(false);#if HAS_BED_PROBE// Deploy the probe. Probe will raise if needed.if (DEPLOY_PROBE()) {set_bed_leveling_enabled(abl_should_enable);return;}#endifif (!faux) setup_for_endstop_or_probe_move();#if ENABLED(AUTO_BED_LEVELING_BILINEAR)#if ENABLED(PROBE_MANUALLY)if (!no_action)#endifif ( xGridSpacing != bilinear_grid_spacing[X_AXIS]|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]|| left_probe_bed_position != bilinear_start[X_AXIS]|| front_probe_bed_position != bilinear_start[Y_AXIS]) {// Reset grid to 0.0 or "not probed". (Also disables ABL)reset_bed_level();// Initialize a grid with the given dimensionsbilinear_grid_spacing[X_AXIS] = xGridSpacing;bilinear_grid_spacing[Y_AXIS] = yGridSpacing;bilinear_start[X_AXIS] = left_probe_bed_position;bilinear_start[Y_AXIS] = front_probe_bed_position;// Can't re-enable (on error) until the new grid is writtenabl_should_enable = false;}#endif // AUTO_BED_LEVELING_BILINEAR#if ENABLED(AUTO_BED_LEVELING_3POINT)#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");#endif// Probe at 3 arbitrary pointspoints[0].z = points[1].z = points[2].z = 0;#endif // AUTO_BED_LEVELING_3POINT} // !g29_in_progress#if ENABLED(PROBE_MANUALLY)// For manual probing, get the next index to probe now.// On the first probe this will be incremented to 0.if (!no_action) {++abl_probe_index;g29_in_progress = true;}// Abort current G29 procedure, go back to idle stateif (seenA && g29_in_progress) {SERIAL_PROTOCOLLNPGM("Manual G29 aborted");#if HAS_SOFTWARE_ENDSTOPSsoft_endstops_enabled = enable_soft_endstops;#endifset_bed_leveling_enabled(abl_should_enable);g29_in_progress = false;#if ENABLED(LCD_BED_LEVELING)lcd_wait_for_move = false;#endif}// Query G29 statusif (verbose_level || seenQ) {SERIAL_PROTOCOLPGM("Manual G29 ");if (g29_in_progress) {SERIAL_PROTOCOLPAIR("point ", MIN(abl_probe_index + 1, abl_points));SERIAL_PROTOCOLLNPAIR(" of ", abl_points);}elseSERIAL_PROTOCOLLNPGM("idle");}if (no_action) return;if (abl_probe_index == 0) {// For the initial G29 save software endstop state#if HAS_SOFTWARE_ENDSTOPSenable_soft_endstops = soft_endstops_enabled;#endif// Move close to the bed before the first pointdo_blocking_move_to_z(0);}else {#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)const uint16_t index = abl_probe_index - 1;#endif// For G29 after adjusting Z.// Save the previous Z before going to the next pointmeasured_z = current_position[Z_AXIS];#if ENABLED(AUTO_BED_LEVELING_LINEAR)mean += measured_z;eqnBVector[index] = measured_z;eqnAMatrix[index + 0 * abl_points] = xProbe;eqnAMatrix[index + 1 * abl_points] = yProbe;eqnAMatrix[index + 2 * abl_points] = 1;incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);#elif ENABLED(AUTO_BED_LEVELING_3POINT)points[index].z = measured_z;#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)z_values[xCount][yCount] = measured_z + zoffset;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_PROTOCOLPAIR("Save X", xCount);SERIAL_PROTOCOLPAIR(" Y", yCount);SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);}#endif#endif}//// If there's another point to sample, move there with optional lift.//#if ABL_GRID// Skip any unreachable pointswhile (abl_probe_index < abl_points) {// Set xCount, yCount based on abl_probe_index, with zig-zagPR_OUTER_VAR = abl_probe_index / PR_INNER_END;PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);// Probe in reverse order for every other row/columnbool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;const float xBase = xCount * xGridSpacing + left_probe_bed_position,yBase = yCount * yGridSpacing + front_probe_bed_position;xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));#if ENABLED(AUTO_BED_LEVELING_LINEAR)indexIntoAB[xCount][yCount] = abl_probe_index;#endif// Keep looping till a reachable point is foundif (position_is_reachable(xProbe, yProbe)) break;++abl_probe_index;}// Is there a next point to move to?if (abl_probe_index < abl_points) {_manual_goto_xy(xProbe, yProbe); // Can be used here too!#if HAS_SOFTWARE_ENDSTOPS// Disable software endstops to allow manual adjustment// If G29 is not completed, they will not be re-enabledsoft_endstops_enabled = false;#endifreturn;}else {// Leveling done! Fall through to G29 finishing code belowSERIAL_PROTOCOLLNPGM("Grid probing done.");// Re-enable software endstops, if needed#if HAS_SOFTWARE_ENDSTOPSsoft_endstops_enabled = enable_soft_endstops;#endif}#elif ENABLED(AUTO_BED_LEVELING_3POINT)// Probe at 3 arbitrary pointsif (abl_probe_index < abl_points) {xProbe = points[abl_probe_index].x;yProbe = points[abl_probe_index].y;_manual_goto_xy(xProbe, yProbe);#if HAS_SOFTWARE_ENDSTOPS// Disable software endstops to allow manual adjustment// If G29 is not completed, they will not be re-enabledsoft_endstops_enabled = false;#endifreturn;}else {SERIAL_PROTOCOLLNPGM("3-point probing done.");// Re-enable software endstops, if needed#if HAS_SOFTWARE_ENDSTOPSsoft_endstops_enabled = enable_soft_endstops;#endifif (!dryrun) {vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();if (planeNormal.z < 0) {planeNormal.x *= -1;planeNormal.y *= -1;planeNormal.z *= -1;}planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);// Can't re-enable (on error) until the new grid is writtenabl_should_enable = false;}}#endif // AUTO_BED_LEVELING_3POINT#else // !PROBE_MANUALLY{const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;measured_z = 0;#if ABL_GRIDbool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITIONmeasured_z = 0;// Outer loop is Y with PROBE_Y_FIRST disabledfor (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {int8_t inStart, inStop, inInc;if (zig) { // away from origininStart = 0;inStop = PR_INNER_END;inInc = 1;}else { // towards origininStart = PR_INNER_END - 1;inStop = -1;inInc = -1;}zig ^= true; // zag// Inner loop is Y with PROBE_Y_FIRST enabledfor (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {float xBase = left_probe_bed_position + xGridSpacing * xCount,yBase = front_probe_bed_position + yGridSpacing * yCount;xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));#if ENABLED(AUTO_BED_LEVELING_LINEAR)indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...#endif#if IS_KINEMATIC// Avoid probing outside the round or hexagonal areaif (!position_is_reachable_by_probe(xProbe, yProbe)) continue;#endifmeasured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, raise_after, verbose_level);if (isnan(measured_z)) {set_bed_leveling_enabled(abl_should_enable);break;}#if ENABLED(AUTO_BED_LEVELING_LINEAR)mean += measured_z;eqnBVector[abl_probe_index] = measured_z;eqnAMatrix[abl_probe_index + 0 * abl_points] = xProbe;eqnAMatrix[abl_probe_index + 1 * abl_points] = yProbe;eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)z_values[xCount][yCount] = measured_z + zoffset;#endifabl_should_enable = false;idle();} // inner} // outer#elif ENABLED(AUTO_BED_LEVELING_3POINT)// Probe at 3 arbitrary pointsfor (uint8_t i = 0; i < 3; ++i) {// Retain the last probe positionxProbe = points[i].x;yProbe = points[i].y;measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, raise_after, verbose_level);if (isnan(measured_z)) {set_bed_leveling_enabled(abl_should_enable);break;}points[i].z = measured_z;}if (!dryrun && !isnan(measured_z)) {vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();if (planeNormal.z < 0) {planeNormal.x *= -1;planeNormal.y *= -1;planeNormal.z *= -1;}planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);// Can't re-enable (on error) until the new grid is writtenabl_should_enable = false;}#endif // AUTO_BED_LEVELING_3POINT// Stow the probe. No raise for FIX_MOUNTED_PROBE.if (STOW_PROBE()) {set_bed_leveling_enabled(abl_should_enable);measured_z = NAN;}}#endif // !PROBE_MANUALLY//// G29 Finishing Code//// Unless this is a dry run, auto bed leveling will// definitely be enabled after this point.//// If code above wants to continue leveling, it should// return or loop before this point.//#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);#endif#if ENABLED(PROBE_MANUALLY)g29_in_progress = false;#if ENABLED(LCD_BED_LEVELING)lcd_wait_for_move = false;#endif#endif// Calculate leveling, print reports, correct the positionif (!isnan(measured_z)) {#if ENABLED(AUTO_BED_LEVELING_BILINEAR)if (!dryrun) extrapolate_unprobed_bed_level();print_bilinear_leveling_grid();refresh_bed_level();#if ENABLED(ABL_BILINEAR_SUBDIVISION)print_bilinear_leveling_grid_virt();#endif#elif ENABLED(AUTO_BED_LEVELING_LINEAR)// For LINEAR leveling calculate matrix, print reports, correct the position/*** solve the plane equation ax + by + d = z* A is the matrix with rows [x y 1] for all the probed points* B is the vector of the Z positions* the normal vector to the plane is formed by the coefficients of the* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z*/float plane_equation_coefficients[3];finish_incremental_LSF(&lsf_results);plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down belowplane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.plane_equation_coefficients[2] = -lsf_results.D;mean /= abl_points;if (verbose_level) {SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);SERIAL_PROTOCOLPGM(" b: ");SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);SERIAL_PROTOCOLPGM(" d: ");SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);SERIAL_EOL();if (verbose_level > 2) {SERIAL_PROTOCOLPGM("Mean of sampled points: ");SERIAL_PROTOCOL_F(mean, 8);SERIAL_EOL();}}// Create the matrix but don't correct the position yetif (!dryrun)planner.bed_level_matrix = matrix_3x3::create_look_at(vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above);// Show the Topography map if enabledif (do_topography_map) {SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"" +--- BACK --+\n"" | |\n"" L | (+) | R\n"" E | | I\n"" F | (-) N (+) | G\n"" T | | H\n"" | (-) | T\n"" | |\n"" O-- FRONT --+\n"" (0,0)");float min_diff = 999;for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {int ind = indexIntoAB[xx][yy];float diff = eqnBVector[ind] - mean,x_tmp = eqnAMatrix[ind + 0 * abl_points],y_tmp = eqnAMatrix[ind + 1 * abl_points],z_tmp = 0;apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);NOMORE(min_diff, eqnBVector[ind] - z_tmp);if (diff >= 0.0)SERIAL_PROTOCOLPGM(" +"); // Include + for column alignmentelseSERIAL_PROTOCOLCHAR(' ');SERIAL_PROTOCOL_F(diff, 5);} // xxSERIAL_EOL();} // yySERIAL_EOL();if (verbose_level > 3) {SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {int ind = indexIntoAB[xx][yy];float x_tmp = eqnAMatrix[ind + 0 * abl_points],y_tmp = eqnAMatrix[ind + 1 * abl_points],z_tmp = 0;apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);float diff = eqnBVector[ind] - z_tmp - min_diff;if (diff >= 0.0)SERIAL_PROTOCOLPGM(" +");// Include + for column alignmentelseSERIAL_PROTOCOLCHAR(' ');SERIAL_PROTOCOL_F(diff, 5);} // xxSERIAL_EOL();} // yySERIAL_EOL();}} //do_topography_map#endif // AUTO_BED_LEVELING_LINEAR#if ABL_PLANAR// For LINEAR and 3POINT leveling correct the current positionif (verbose_level > 0)planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));if (!dryrun) {//// Correct the current XYZ position based on the tilted plane.//#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);#endiffloat converted[XYZ];COPY(converted, current_position);planner.leveling_active = true;planner.unapply_leveling(converted); // use conversion machineryplanner.leveling_active = false;// Use the last measured distance to the bed, if possibleif ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))) {const float simple_z = current_position[Z_AXIS] - measured_z;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("Z from Probe:", simple_z);SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);}#endifconverted[Z_AXIS] = simple_z;}// The rotated XY and corrected Z are now current_positionCOPY(current_position, converted);#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);#endif}#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)if (!dryrun) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);#endif// Unapply the offset because it is going to be immediately applied// and cause compensation movement in Z#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)const float fade_scaling_factor = planner.fade_scaling_factor_for_z(current_position[Z_AXIS]);#elseconstexpr float fade_scaling_factor = 1.0f;#endifcurrent_position[Z_AXIS] -= fade_scaling_factor * bilinear_z_offset(current_position);#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);#endif}#endif // ABL_PLANAR#ifdef Z_PROBE_END_SCRIPT#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);#endifplanner.synchronize();enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));#endif// Auto Bed Leveling is complete! Enable if possible.planner.leveling_active = dryrun ? abl_should_enable : true;} // !isnan(measured_z)// Restore state after probingif (!faux) clean_up_after_endstop_or_probe_move();#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G29");#endifKEEPALIVE_STATE(IN_HANDLER);if (planner.leveling_active)SYNC_PLAN_POSITION_KINEMATIC();#if HAS_BED_PROBE && defined(Z_AFTER_PROBING)move_z_after_probing();#endifreport_current_position();}#endif // OLDSCHOOL_ABL#if HAS_BED_PROBE/*** G30: Do a single Z probe at the current XY** Parameters:** X Probe X position (default current X)* Y Probe Y position (default current Y)* E Engage the probe for each probe (default 1)*/inline void gcode_G30() {const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);if (!position_is_reachable_by_probe(xpos, ypos)) return;// Disable leveling so the planner won't mess with us#if HAS_LEVELINGset_bed_leveling_enabled(false);#endifsetup_for_endstop_or_probe_move();const ProbePtRaise raise_after = parser.boolval('E', true) ? PROBE_PT_STOW : PROBE_PT_NONE;const float measured_z = probe_pt(xpos, ypos, raise_after, parser.intval('V', 1));if (!isnan(measured_z)) {SERIAL_PROTOCOLPAIR_F("Bed X: ", xpos);SERIAL_PROTOCOLPAIR_F(" Y: ", ypos);SERIAL_PROTOCOLLNPAIR_F(" Z: ", measured_z);}clean_up_after_endstop_or_probe_move();#ifdef Z_AFTER_PROBINGif (raise_after == PROBE_PT_STOW) move_z_after_probing();#endifreport_current_position();}#if ENABLED(Z_PROBE_SLED)/*** G31: Deploy the Z probe*/inline void gcode_G31() { DEPLOY_PROBE(); }/*** G32: Stow the Z probe*/inline void gcode_G32() { STOW_PROBE(); }#endif // Z_PROBE_SLED#endif // HAS_BED_PROBE#if ENABLED(DELTA_AUTO_CALIBRATION)constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points_4P_STEP = _7P_STEP * 2, // 4-point stepNPP = _7P_STEP * 6; // number of calibration points on the radiusenum CalEnum : char { // the 7 main calibration points - add definitions if neededCEN = 0,__A = 1,_AB = __A + _7P_STEP,__B = _AB + _7P_STEP,_BC = __B + _7P_STEP,__C = _BC + _7P_STEP,_CA = __C + _7P_STEP,};#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)#if HOTENDS > 1const uint8_t old_tool_index = active_extruder;#define AC_CLEANUP() ac_cleanup(old_tool_index)#else#define AC_CLEANUP() ac_cleanup()#endiffloat lcd_probe_pt(const float &rx, const float &ry);void ac_home() {endstops.enable(true);home_delta();endstops.not_homing();}void ac_setup(const bool reset_bed) {#if HOTENDS > 1tool_change(0, 0, true);#endifplanner.synchronize();setup_for_endstop_or_probe_move();#if HAS_LEVELINGif (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid#endif}void ac_cleanup(#if HOTENDS > 1const uint8_t old_tool_index#endif) {#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)do_blocking_move_to_z(delta_clip_start_height);#endif#if HAS_BED_PROBESTOW_PROBE();#endifclean_up_after_endstop_or_probe_move();#if HOTENDS > 1tool_change(old_tool_index, 0, true);#endif}void print_signed_float(const char * const prefix, const float &f) {SERIAL_PROTOCOLPGM(" ");serialprintPGM(prefix);SERIAL_PROTOCOLCHAR(':');if (f >= 0) SERIAL_CHAR('+');SERIAL_PROTOCOL_F(f, 2);}/*** - Print the delta settings*/static void print_calibration_settings(const bool end_stops, const bool tower_angles) {SERIAL_PROTOCOLPAIR(".Height:", delta_height);if (end_stops) {print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);}if (end_stops && tower_angles) {SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);SERIAL_EOL();SERIAL_CHAR('.');SERIAL_PROTOCOL_SP(13);}if (tower_angles) {print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);}if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XORSERIAL_PROTOCOLPAIR(" Radius:", delta_radius);}SERIAL_EOL();}/*** - Print the probe results*/static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {SERIAL_PROTOCOLPGM(". ");print_signed_float(PSTR("c"), z_pt[CEN]);if (tower_points) {print_signed_float(PSTR(" x"), z_pt[__A]);print_signed_float(PSTR(" y"), z_pt[__B]);print_signed_float(PSTR(" z"), z_pt[__C]);}if (tower_points && opposite_points) {SERIAL_EOL();SERIAL_CHAR('.');SERIAL_PROTOCOL_SP(13);}if (opposite_points) {print_signed_float(PSTR("yz"), z_pt[_BC]);print_signed_float(PSTR("zx"), z_pt[_CA]);print_signed_float(PSTR("xy"), z_pt[_AB]);}SERIAL_EOL();}/*** - Calculate the standard deviation from the zero plane*/static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {if (!_0p_cal) {float S2 = sq(z_pt[CEN]);int16_t N = 1;if (!_1p_cal) { // std dev from zero planeLOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {S2 += sq(z_pt[rad]);N++;}return LROUND(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;}}return 0.00001;}/*** - Probe a point*/static float calibration_probe(const float &nx, const float &ny, const bool stow) {#if HAS_BED_PROBEreturn probe_pt(nx, ny, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, false);#elseUNUSED(stow);return lcd_probe_pt(nx, ny);#endif}/*** - Probe a grid*/static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {const bool _0p_calibration = probe_points == 0,_1p_calibration = probe_points == 1 || probe_points == -1,_4p_calibration = probe_points == 2,_4p_opposite_points = _4p_calibration && !towers_set,_7p_calibration = probe_points >= 3,_7p_no_intermediates = probe_points == 3,_7p_1_intermediates = probe_points == 4,_7p_2_intermediates = probe_points == 5,_7p_4_intermediates = probe_points == 6,_7p_6_intermediates = probe_points == 7,_7p_8_intermediates = probe_points == 8,_7p_11_intermediates = probe_points == 9,_7p_14_intermediates = probe_points == 10,_7p_intermed_points = probe_points >= 4,_7p_6_center = probe_points >= 5 && probe_points <= 7,_7p_9_center = probe_points >= 8;LOOP_CAL_ALL(rad) z_pt[rad] = 0.0;if (!_0p_calibration) {if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the centerz_pt[CEN] += calibration_probe(0, 0, stow_after_each);if (isnan(z_pt[CEN])) return false;}if (_7p_calibration) { // probe extra center pointsconst float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0 : _7p_6_center ? float(_CA) : float(__C),steps = _7p_9_center ? _4P_STEP / 3.0 : _7p_6_center ? _7P_STEP : _4P_STEP;I_LOOP_CAL_PT(rad, start, steps) {const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),r = delta_calibration_radius * 0.1;z_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);if (isnan(z_pt[CEN])) return false;}z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);}if (!_1p_calibration) { // probe the radiusconst CalEnum start = _4p_opposite_points ? _AB : __A;const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9_4P_STEP; // .5r * 6 + 1c = 4bool zig_zag = true;F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {const int8_t offset = _7p_9_center ? 2 : 0;for (int8_t circle = 0; circle <= offset; circle++) {const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),r = delta_calibration_radius * (1 - 0.1 * (zig_zag ? offset - circle : circle)),interpol = fmod(rad, 1);const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);if (isnan(z_temp)) return false;// split probe point to neighbouring calibration pointsz_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));}zig_zag = !zig_zag;}if (_7p_intermed_points)LOOP_CAL_RAD(rad)z_pt[rad] /= _7P_STEP / steps;do_blocking_move_to_xy(0.0, 0.0);}}return true;}/*** kinematics routines and auto tune matrix scaling parameters:* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for* - formulae for approximative forward kinematics in the end-stop displacement matrix* - definition of the matrix scaling parameters*/static void reverse_kinematics_probe_points(float z_pt[NPP + 1], float mm_at_pt_axis[NPP + 1][ABC]) {float pos[XYZ] = { 0.0 };LOOP_CAL_ALL(rad) {const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),r = (rad == CEN ? 0.0 : delta_calibration_radius);pos[X_AXIS] = cos(a) * r;pos[Y_AXIS] = sin(a) * r;pos[Z_AXIS] = z_pt[rad];inverse_kinematics(pos);LOOP_XYZ(axis) mm_at_pt_axis[rad][axis] = delta[axis];}}static void forward_kinematics_probe_points(float mm_at_pt_axis[NPP + 1][ABC], float z_pt[NPP + 1]) {const float r_quot = delta_calibration_radius / delta_radius;#define ZPP(N,I,A) ((1 / 3.0 + r_quot * (N) / 3.0 ) * mm_at_pt_axis[I][A])#define Z00(I, A) ZPP( 0, I, A)#define Zp1(I, A) ZPP(+1, I, A)#define Zm1(I, A) ZPP(-1, I, A)#define Zp2(I, A) ZPP(+2, I, A)#define Zm2(I, A) ZPP(-2, I, A)z_pt[CEN] = Z00(CEN, A_AXIS) + Z00(CEN, B_AXIS) + Z00(CEN, C_AXIS);z_pt[__A] = Zp2(__A, A_AXIS) + Zm1(__A, B_AXIS) + Zm1(__A, C_AXIS);z_pt[__B] = Zm1(__B, A_AXIS) + Zp2(__B, B_AXIS) + Zm1(__B, C_AXIS);z_pt[__C] = Zm1(__C, A_AXIS) + Zm1(__C, B_AXIS) + Zp2(__C, C_AXIS);z_pt[_BC] = Zm2(_BC, A_AXIS) + Zp1(_BC, B_AXIS) + Zp1(_BC, C_AXIS);z_pt[_CA] = Zp1(_CA, A_AXIS) + Zm2(_CA, B_AXIS) + Zp1(_CA, C_AXIS);z_pt[_AB] = Zp1(_AB, A_AXIS) + Zp1(_AB, B_AXIS) + Zm2(_AB, C_AXIS);}static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], float delta_e[ABC], float delta_r, float delta_t[ABC]) {const float z_center = z_pt[CEN];float diff_mm_at_pt_axis[NPP + 1][ABC],new_mm_at_pt_axis[NPP + 1][ABC];reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);delta_radius += delta_r;LOOP_XYZ(axis) delta_tower_angle_trim[axis] += delta_t[axis];recalc_delta_settings();reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);LOOP_XYZ(axis) LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad][axis] -= new_mm_at_pt_axis[rad][axis] + delta_e[axis];forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;z_pt[CEN] = z_center;delta_radius -= delta_r;LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= delta_t[axis];recalc_delta_settings();}static float auto_tune_h() {const float r_quot = delta_calibration_radius / delta_radius;float h_fac = 0.0;h_fac = r_quot / (2.0 / 3.0);h_fac = 1.0f / h_fac; // (2/3)/CRreturn h_fac;}static float auto_tune_r() {const float diff = 0.01;float r_fac = 0.0,z_pt[NPP + 1] = { 0.0 },delta_e[ABC] = {0.0},delta_r = {0.0},delta_t[ABC] = {0.0};delta_r = diff;calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0;r_fac = diff / r_fac / 3.0; // 1/(3*delta_Z)return r_fac;}static float auto_tune_a() {const float diff = 0.01;float a_fac = 0.0,z_pt[NPP + 1] = { 0.0 },delta_e[ABC] = {0.0},delta_r = {0.0},delta_t[ABC] = {0.0};LOOP_XYZ(axis) {LOOP_XYZ(axis_2) delta_t[axis_2] = 0.0;delta_t[axis] = diff;calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0;a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0;}a_fac = diff / a_fac / 3.0; // 1/(3*delta_Z)return a_fac;}/*** G33 - Delta '1-4-7-point' Auto-Calibration* Calibrate height, z_offset, endstops, delta radius, and tower angles.** Parameters:** Pn Number of probe points:* P0 Normalizes calibration.* P1 Calibrates height only with center probe.* P2 Probe center and towers. Calibrate height, endstops and delta radius.* P3 Probe all positions: center, towers and opposite towers. Calibrate all.* P4-P10 Probe all positions at different intermediate locations and average them.** T Don't calibrate tower angle corrections** Cn.nn Calibration precision; when omitted calibrates to maximum precision** Fn Force to run at least n iterations and take the best result** Vn Verbose level:* V0 Dry-run mode. Report settings and probe results. No calibration.* V1 Report start and end settings only* V2 Report settings at each iteration* V3 Report settings and probe results** E Engage the probe for each point*/inline void gcode_G33() {const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);if (!WITHIN(probe_points, 0, 10)) {SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");return;}const bool towers_set = !parser.seen('T');const float calibration_precision = parser.floatval('C', 0.0);if (calibration_precision < 0) {SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");return;}const int8_t force_iterations = parser.intval('F', 0);if (!WITHIN(force_iterations, 0, 30)) {SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");return;}const int8_t verbose_level = parser.byteval('V', 1);if (!WITHIN(verbose_level, 0, 3)) {SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");return;}const bool stow_after_each = parser.seen('E');const bool _0p_calibration = probe_points == 0,_1p_calibration = probe_points == 1 || probe_points == -1,_4p_calibration = probe_points == 2,_4p_opposite_points = _4p_calibration && !towers_set,_7p_9_center = probe_points >= 8,_tower_results = (_4p_calibration && towers_set) || probe_points >= 3,_opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,_endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,_angle_results = probe_points >= 3 && towers_set;static const char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";int8_t iterations = 0;float test_precision,zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced endzero_std_dev_min = zero_std_dev,zero_std_dev_old = zero_std_dev,h_factor,r_factor,a_factor,e_old[ABC] = {delta_endstop_adj[A_AXIS],delta_endstop_adj[B_AXIS],delta_endstop_adj[C_AXIS]},r_old = delta_radius,h_old = delta_height,a_old[ABC] = {delta_tower_angle_trim[A_AXIS],delta_tower_angle_trim[B_AXIS],delta_tower_angle_trim[C_AXIS]};SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachableLOOP_CAL_RAD(axis) {const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),r = delta_calibration_radius;if (!position_is_reachable(cos(a) * r, sin(a) * r)) {SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");return;}}}// Report settingsconst char *checkingac = PSTR("Checking... AC");serialprintPGM(checkingac);if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");SERIAL_EOL();lcd_setstatusPGM(checkingac);print_calibration_settings(_endstop_results, _angle_results);ac_setup(!_0p_calibration && !_1p_calibration);if (!_0p_calibration) ac_home();do { // start iterationsfloat z_at_pt[NPP + 1] = { 0.0 };test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;iterations++;// Probe the pointszero_std_dev_old = zero_std_dev;if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) {SERIAL_PROTOCOLLNPGM("Correct delta settings with M665 and M666");return AC_CLEANUP();}zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);// Solve matricesif ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {#if !HAS_BED_PROBEtest_precision = 0.00; // forced end#endifif (zero_std_dev < zero_std_dev_min) {// set roll-back pointCOPY(e_old, delta_endstop_adj);r_old = delta_radius;h_old = delta_height;COPY(a_old, delta_tower_angle_trim);}float e_delta[ABC] = { 0.0 },r_delta = 0.0,t_delta[ABC] = { 0.0 };/*** convergence matrices:* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for* - definition of the matrix scaling parameters* - matrices for 4 and 7 point calibration*/#define ZP(N,I) ((N) * z_at_pt[I] / 4.0) // 4.0 = divider to normalize to integers#define Z12(I) ZP(12, I)#define Z4(I) ZP(4, I)#define Z2(I) ZP(2, I)#define Z1(I) ZP(1, I)#define Z0(I) ZP(0, I)// calculate factorsconst float cr_old = delta_calibration_radius;if (_7p_9_center) delta_calibration_radius *= 0.9;h_factor = auto_tune_h();r_factor = auto_tune_r();a_factor = auto_tune_a();delta_calibration_radius = cr_old;switch (probe_points) {case 0:test_precision = 0.00; // forced endbreak;case 1:test_precision = 0.00; // forced endLOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);break;case 2:if (towers_set) { // see 4 point calibration (towers) matrixe_delta[A_AXIS] = (+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN);e_delta[B_AXIS] = (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN);e_delta[C_AXIS] = (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN);r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;}else { // see 4 point calibration (opposites) matrixe_delta[A_AXIS] = (-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN);e_delta[B_AXIS] = (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN);e_delta[C_AXIS] = (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN);r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;}break;default: // see 7 point calibration (towers & opposites) matrixe_delta[A_AXIS] = (+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN);e_delta[B_AXIS] = (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN);e_delta[C_AXIS] = (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN);r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrixt_delta[A_AXIS] = (+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor;t_delta[B_AXIS] = (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor;t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor;}break;}LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];delta_radius += r_delta;LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];}else if (zero_std_dev >= test_precision) {// roll backCOPY(delta_endstop_adj, e_old);delta_radius = r_old;delta_height = h_old;COPY(delta_tower_angle_trim, a_old);}if (verbose_level != 0) { // !dry run// normalise angles to least squaresif (_angle_results) {float a_sum = 0.0;LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;}// adjust delta_height and endstops by the max amountconst float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);delta_height -= z_temp;LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;}recalc_delta_settings();NOMORE(zero_std_dev_min, zero_std_dev);// print reportif (verbose_level == 3)print_calibration_results(z_at_pt, _tower_results, _opposite_results);if (verbose_level != 0) { // !dry runif ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterationsSERIAL_PROTOCOLPGM("Calibration OK");SERIAL_PROTOCOL_SP(32);#if HAS_BED_PROBEif (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)SERIAL_PROTOCOLPGM("rolling back.");else#endif{SERIAL_PROTOCOLPGM("std dev:");SERIAL_PROTOCOL_F(zero_std_dev_min, 3);}SERIAL_EOL();char mess[21];strcpy_P(mess, PSTR("Calibration sd:"));if (zero_std_dev_min < 1)sprintf_P(&mess[15], PSTR("0.%03i"), int(LROUND(zero_std_dev_min * 1000.0)));elsesprintf_P(&mess[15], PSTR("%03i.x"), int(LROUND(zero_std_dev_min)));lcd_setstatus(mess);print_calibration_settings(_endstop_results, _angle_results);serialprintPGM(save_message);SERIAL_EOL();}else { // !end iterationschar mess[15];if (iterations < 31)sprintf_P(mess, PSTR("Iteration : %02i"), int(iterations));elsestrcpy_P(mess, PSTR("No convergence"));SERIAL_PROTOCOL(mess);SERIAL_PROTOCOL_SP(32);SERIAL_PROTOCOLPGM("std dev:");SERIAL_PROTOCOL_F(zero_std_dev, 3);SERIAL_EOL();lcd_setstatus(mess);if (verbose_level > 1)print_calibration_settings(_endstop_results, _angle_results);}}else { // dry runconst char *enddryrun = PSTR("End DRY-RUN");serialprintPGM(enddryrun);SERIAL_PROTOCOL_SP(35);SERIAL_PROTOCOLPGM("std dev:");SERIAL_PROTOCOL_F(zero_std_dev, 3);SERIAL_EOL();char mess[21];strcpy_P(mess, enddryrun);strcpy_P(&mess[11], PSTR(" sd:"));if (zero_std_dev < 1)sprintf_P(&mess[15], PSTR("0.%03i"), int(LROUND(zero_std_dev * 1000.0)));elsesprintf_P(&mess[15], PSTR("%03i.x"), int(LROUND(zero_std_dev)));lcd_setstatus(mess);}ac_home();}while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);AC_CLEANUP();}#endif // DELTA_AUTO_CALIBRATION#if ENABLED(G38_PROBE_TARGET)static bool G38_run_probe() {bool G38_pass_fail = false;#if MULTIPLE_PROBING > 1// Get direction of move and retractfloat retract_mm[XYZ];LOOP_XYZ(i) {float dist = destination[i] - current_position[i];retract_mm[i] = ABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);}#endif// Move until destination reached or target hitplanner.synchronize();endstops.enable(true);G38_move = true;G38_endstop_hit = false;prepare_move_to_destination();planner.synchronize();G38_move = false;endstops.hit_on_purpose();set_current_from_steppers_for_axis(ALL_AXES);SYNC_PLAN_POSITION_KINEMATIC();if (G38_endstop_hit) {G38_pass_fail = true;#if MULTIPLE_PROBING > 1// Move away by the retract distanceset_destination_from_current();LOOP_XYZ(i) destination[i] += retract_mm[i];endstops.enable(false);prepare_move_to_destination();feedrate_mm_s /= 4;// Bump the target more slowlyLOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;planner.synchronize();endstops.enable(true);G38_move = true;prepare_move_to_destination();planner.synchronize();G38_move = false;set_current_from_steppers_for_axis(ALL_AXES);SYNC_PLAN_POSITION_KINEMATIC();#endif}endstops.hit_on_purpose();endstops.not_homing();return G38_pass_fail;}/*** G38.2 - probe toward workpiece, stop on contact, signal error if failure* G38.3 - probe toward workpiece, stop on contact** Like G28 except uses Z min probe for all axes*/inline void gcode_G38(bool is_38_2) {// Get X Y Z E Fgcode_get_destination();setup_for_endstop_or_probe_move();// If any axis has enough movement, do the moveLOOP_XYZ(i)if (ABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);// If G38.2 fails throw an errorif (!G38_run_probe() && is_38_2) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("Failed to reach target");}break;}clean_up_after_endstop_or_probe_move();}#endif // G38_PROBE_TARGET#if HAS_MESH/*** G42: Move X & Y axes to mesh coordinates (I & J)*/inline void gcode_G42() {#if ENABLED(NO_MOTION_BEFORE_HOMING)if (axis_unhomed_error()) return;#endifif (IsRunning()) {const bool hasI = parser.seenval('I');const int8_t ix = hasI ? parser.value_int() : 0;const bool hasJ = parser.seenval('J');const int8_t iy = hasJ ? parser.value_int() : 0;if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);return;}set_destination_from_current();if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);if (parser.boolval('P')) {if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;}const float fval = parser.linearval('F');if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);// SCARA kinematic has "safe" XY raw moves#if IS_SCARAprepare_uninterpolated_move_to_destination();#elseprepare_move_to_destination();#endif}}#endif // HAS_MESH/*** G92: Set current position to given X Y Z E*/inline void gcode_G92() {#if ENABLED(CNC_COORDINATE_SYSTEMS)switch (parser.subcode) {case 1:// Zero the G92 values and restore current position#if !IS_SCARALOOP_XYZ(i) {const float v = position_shift[i];if (v) {position_shift[i] = 0;update_software_endstops((AxisEnum)i);}}#endif // Not SCARAreturn;}#endif#if ENABLED(CNC_COORDINATE_SYSTEMS)#define IS_G92_0 (parser.subcode == 0)#else#define IS_G92_0 true#endifbool didE = false;#if IS_SCARA || !HAS_POSITION_SHIFT || ENABLED(HANGPRINTER)bool didXYZ = false;#elseconstexpr bool didXYZ = false;#endifif (IS_G92_0) LOOP_XYZE(i) {if (parser.seenval(axis_codes[i])) {const float l = parser.value_axis_units((AxisEnum)i),v = i == E_CART ? l : LOGICAL_TO_NATIVE(l, i),d = v - current_position[i];if (!NEAR_ZERO(d)#if ENABLED(HANGPRINTER)|| true // Hangprinter needs to update its line lengths whether current_position changed or not#endif) {#if IS_SCARA || !HAS_POSITION_SHIFT || ENABLED(HANGPRINTER)if (i == E_CART) didE = true; else didXYZ = true;current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior#elif HAS_POSITION_SHIFTif (i == E_CART) {didE = true;current_position[E_CART] = v; // When using coordinate spaces, only E is set directly}else {position_shift[i] += d; // Other axes simply offset the coordinate spaceupdate_software_endstops((AxisEnum)i);}#endif}}}#if ENABLED(CNC_COORDINATE_SYSTEMS)// Apply workspace offset to the active coordinate systemif (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))COPY(coordinate_system[active_coordinate_system], position_shift);#endif// Update planner/steppers only if the native coordinates changedif (didXYZ) SYNC_PLAN_POSITION_KINEMATIC();else if (didE) sync_plan_position_e();report_current_position();}#if ENABLED(MECHADUINO_I2C_COMMANDS)/*** G95: Set torque mode*/inline void gcode_G95() {i2cFloat torques[NUM_AXIS]; // Assumes 4-byte floats here and in Mechaduino firmwareLOOP_NUM_AXIS(i)torques[i].fval = parser.floatval(RAW_AXIS_CODES(i), 999.9); // 999.9 chosen to satisfy fabs(999.9) > 255.0// 0x5f == 95#define G95_SEND(LETTER) do { \if (fabs(torques[_AXIS(LETTER)].fval) < 255.0){ \torques[_AXIS(LETTER)].fval = -fabs(torques[_AXIS(LETTER)].fval); \if(!INVERT_##LETTER##_DIR) torques[_AXIS(LETTER)].fval = -torques[_AXIS(LETTER)].fval; \i2c.address(LETTER##_MOTOR_I2C_ADDR); \i2c.reset(); \i2c.addbyte(0x5f); \i2c.addbytes(torques[_AXIS(LETTER)].bval, sizeof(float)); \i2c.send(); \}} while(0)#if ENABLED(HANGPRINTER)#if ENABLED(A_IS_MECHADUINO)G95_SEND(A);#endif#if ENABLED(B_IS_MECHADUINO)G95_SEND(B);#endif#if ENABLED(C_IS_MECHADUINO)G95_SEND(C);#endif#if ENABLED(D_IS_MECHADUINO)G95_SEND(D);#endif#else#if ENABLED(X_IS_MECHADUINO)G95_SEND(X);#endif#if ENABLED(Y_IS_MECHADUINO)G95_SEND(Y);#endif#if ENABLED(Z_IS_MECHADUINO)G95_SEND(Z);#endif#endif#if ENABLED(E_IS_MECHADUINO)G95_SEND(E);#endif}/*** G96: Mark encoder reference point*/inline void gcode_G96() {bool mark[NUM_AXIS] = { false };if (!parser.seen_any())LOOP_NUM_AXIS(i)mark[i] = true;elseLOOP_NUM_AXIS(i)if (parser.seen(RAW_AXIS_CODES(i)))mark[i] = true;// 0x60 == 96#define G96_SEND(LETTER) do {\if (mark[LETTER##_AXIS]){ \i2c.address(LETTER##_MOTOR_I2C_ADDR); \i2c.reset(); \i2c.addbyte(0x60); \i2c.send(); \}} while(0)#if ENABLED(HANGPRINTER)#if ENABLED(A_IS_MECHADUINO)G96_SEND(A);#endif#if ENABLED(B_IS_MECHADUINO)G96_SEND(B);#endif#if ENABLED(C_IS_MECHADUINO)G96_SEND(C);#endif#if ENABLED(D_IS_MECHADUINO)G96_SEND(D);#endif#else#if ENABLED(X_IS_MECHADUINO)G96_SEND(X);#endif#if ENABLED(Y_IS_MECHADUINO)G96_SEND(Y);#endif#if ENABLED(Z_IS_MECHADUINO)G96_SEND(Z);#endif#endif#if ENABLED(E_IS_MECHADUINO)G96_SEND(E); // E ref point not used by any other commands (Feb 7, 2018)#endif}float ang_to_mm(float ang, const AxisEnum axis) {const float abs_step_in_origin =#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)planner.k0[axis] * (SQRT(planner.k1[axis] + planner.k2[axis] * line_lengths_origin[axis]) - planner.sqrtk1[axis])#elseline_lengths_origin[axis] * planner.axis_steps_per_mm[axis]#endif;const float c = abs_step_in_origin + ang * float(STEPS_PER_MOTOR_REVOLUTION) / 360.0; // current step countreturn#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)// Inverse function found in planner.cpp, where target[AXIS_A] is calculated((c / planner.k0[axis] + planner.sqrtk1[axis]) * (c / planner.k0[axis] + planner.sqrtk1[axis]) - planner.k1[axis]) / planner.k2[axis] - line_lengths_origin[axis]#elsec / planner.axis_steps_per_mm[axis] - line_lengths_origin[axis]#endif;}void report_axis_position_from_encoder_data() {i2cFloat ang;#define M114_S1_RECEIVE(LETTER) do { \i2c.address(LETTER##_MOTOR_I2C_ADDR); \i2c.request(sizeof(float)); \i2c.capture(ang.bval, sizeof(float)); \if(LETTER##_INVERT_REPORTED_ANGLE == INVERT_##LETTER##_DIR) ang.fval = -ang.fval; \SERIAL_PROTOCOL(ang_to_mm(ang.fval, LETTER##_AXIS)); \} while(0)SERIAL_CHAR('[');#if ENABLED(HANGPRINTER)#if ENABLED(A_IS_MECHADUINO)M114_S1_RECEIVE(A);#endif#if ENABLED(B_IS_MECHADUINO)SERIAL_PROTOCOLPGM(", ");M114_S1_RECEIVE(B);#endif#if ENABLED(C_IS_MECHADUINO)SERIAL_PROTOCOLPGM(", ");M114_S1_RECEIVE(C);#endif#if ENABLED(D_IS_MECHADUINO)SERIAL_PROTOCOLPGM(", ");M114_S1_RECEIVE(D);#endif#else#if ENABLED(X_IS_MECHADUINO)M114_S1_RECEIVE(X);#endif#if ENABLED(Y_IS_MECHADUINO)SERIAL_PROTOCOLPGM(", ");M114_S1_RECEIVE(Y);#endif#if ENABLED(Z_IS_MECHADUINO)SERIAL_PROTOCOLPGM(", ");M114_S1_RECEIVE(Z);#endif#endifSERIAL_CHAR(']');SERIAL_EOL();}#endif // MECHADUINO_I2C_COMMANDSvoid report_xyz_from_stepper_position() {get_cartesian_from_steppers(); // writes to cartes[XYZ]SERIAL_CHAR('[');SERIAL_PROTOCOL(cartes[X_AXIS]);SERIAL_PROTOCOLPAIR(", ", cartes[Y_AXIS]);SERIAL_PROTOCOLPAIR(", ", cartes[Z_AXIS]);SERIAL_CHAR(']');SERIAL_EOL();}#if HAS_RESUME_CONTINUE/*** M0: Unconditional stop - Wait for user button press on LCD* M1: Conditional stop - Wait for user button press on LCD*/inline void gcode_M0_M1() {const char * const args = parser.string_arg;millis_t ms = 0;bool hasP = false, hasS = false;if (parser.seenval('P')) {ms = parser.value_millis(); // milliseconds to waithasP = ms > 0;}if (parser.seenval('S')) {ms = parser.value_millis_from_seconds(); // seconds to waithasS = ms > 0;}const bool has_message = !hasP && !hasS && args && *args;planner.synchronize();#if ENABLED(ULTIPANEL)if (has_message)lcd_setstatus(args, true);else {LCD_MESSAGEPGM(MSG_USERWAIT);#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0dontExpireStatus();#endif}#elseif (has_message) {SERIAL_ECHO_START();SERIAL_ECHOLN(args);}#endifKEEPALIVE_STATE(PAUSED_FOR_USER);wait_for_user = true;if (ms > 0) {ms += millis(); // wait until this time for a clickwhile (PENDING(millis(), ms) && wait_for_user) idle();}elsewhile (wait_for_user) idle();#if ENABLED(PRINTER_EVENT_LEDS) && ENABLED(SDSUPPORT)if (lights_off_after_print) {leds.set_off();lights_off_after_print = false;}#endiflcd_reset_status();wait_for_user = false;KEEPALIVE_STATE(IN_HANDLER);}#endif // HAS_RESUME_CONTINUE#if ENABLED(SPINDLE_LASER_ENABLE)/*** M3: Spindle Clockwise* M4: Spindle Counter-clockwise** S0 turns off spindle.** If no speed PWM output is defined then M3/M4 just turns it on.** At least 12.8KHz (50Hz * 256) is needed for spindle PWM.* Hardware PWM is required. ISRs are too slow.** NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.* No other settings give a PWM signal that goes from 0 to 5 volts.** The system automatically sets WGM to Mode 1, so no special* initialization is needed.** WGM bits for timer 2 are automatically set by the system to* Mode 1. This produces an acceptable 0 to 5 volt signal.* No special initialization is needed.** NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler* factors for timers 2, 3, 4, and 5 are acceptable.** SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on* the spindle/laser during power-up or when connecting to the host* (usually goes through a reset which sets all I/O pins to tri-state)** PWM duty cycle goes from 0 (off) to 255 (always on).*/// Wait for spindle to come up to speedinline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }// Wait for spindle to stop turninginline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }/*** ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line** it accepts inputs of 0-255*/inline void ocr_val_mode() {uint8_t spindle_laser_power = parser.value_byte();WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);}inline void gcode_M3_M4(bool is_M3) {planner.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle#if SPINDLE_DIR_CHANGEconst bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;if (SPINDLE_STOP_ON_DIR_CHANGE \&& READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \&& READ(SPINDLE_DIR_PIN) != rotation_dir) {WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle offdelay_for_power_down();}WRITE(SPINDLE_DIR_PIN, rotation_dir);#endif/*** Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.* Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.* Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.*/#if ENABLED(SPINDLE_LASER_PWM)if (parser.seen('O')) ocr_val_mode();else {const float spindle_laser_power = parser.floatval('S');if (spindle_laser_power == 0) {WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low bytedelay_for_power_down();}else {int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycleNOMORE(ocr_val, 255); // limit to max the Atmel PWM will supportif (spindle_laser_power <= SPEED_POWER_MIN)ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // minimum settingif (spindle_laser_power >= SPEED_POWER_MAX)ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // limit to max RPMif (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low bytedelay_for_power_up();}}#elseWRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enableddelay_for_power_up();#endif}/*** M5 turn off spindle*/inline void gcode_M5() {planner.synchronize();WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);#if ENABLED(SPINDLE_LASER_PWM)analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0);#endifdelay_for_power_down();}#endif // SPINDLE_LASER_ENABLE/*** M17: Enable power on all stepper motors*/inline void gcode_M17() {LCD_MESSAGEPGM(MSG_NO_MOVE);enable_all_steppers();}#if ENABLED(ADVANCED_PAUSE_FEATURE)void do_pause_e_move(const float &length, const float &fr) {set_destination_from_current();destination[E_CART] += length / planner.e_factor[active_extruder];planner.buffer_line_kinematic(destination, fr, active_extruder);set_current_from_destination();planner.synchronize();}static float resume_position[XYZE];int8_t did_pause_print = 0;#if HAS_BUZZERstatic void filament_change_beep(const int8_t max_beep_count, const bool init=false) {static millis_t next_buzz = 0;static int8_t runout_beep = 0;if (init) next_buzz = runout_beep = 0;const millis_t ms = millis();if (ELAPSED(ms, next_buzz)) {if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed tonext_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 1000 : 500);BUZZ(50, 880 - (runout_beep & 1) * 220);runout_beep++;}}}#endif/*** Ensure a safe temperature for extrusion** - Fail if the TARGET temperature is too low* - Display LCD placard with temperature status* - Return when heating is done or aborted** Returns 'true' if heating was completed, 'false' for abort*/static bool ensure_safe_temperature(const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT) {#if ENABLED(PREVENT_COLD_EXTRUSION)if (!DEBUGGING(DRYRUN) && thermalManager.targetTooColdToExtrude(active_extruder)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_HOTEND_TOO_COLD);return false;}#endif#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT, mode);#elseUNUSED(mode);#endifwait_for_heatup = true; // M108 will clear thiswhile (wait_for_heatup && thermalManager.wait_for_heating(active_extruder)) idle();const bool status = wait_for_heatup;wait_for_heatup = false;return status;}/*** Load filament into the hotend** - Fail if the a safe temperature was not reached* - If pausing for confirmation, wait for a click or M108* - Show "wait for load" placard* - Load and purge filament* - Show "Purge more" / "Continue" menu* - Return when "Continue" is selected** Returns 'true' if load was completed, 'false' for abort*/static bool load_filament(const float &slow_load_length=0, const float &fast_load_length=0, const float &purge_length=0, const int8_t max_beep_count=0,const bool show_lcd=false, const bool pause_for_user=false,const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT) {#if DISABLED(ULTIPANEL)UNUSED(show_lcd);#endifif (!ensure_safe_temperature(mode)) {#if ENABLED(ULTIPANEL)if (show_lcd) // Show status screenlcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);#endifreturn false;}if (pause_for_user) {#if ENABLED(ULTIPANEL)if (show_lcd) // Show "insert filament"lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT, mode);#endifSERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_FILAMENT_CHANGE_INSERT);#if HAS_BUZZERfilament_change_beep(max_beep_count, true);#elseUNUSED(max_beep_count);#endifKEEPALIVE_STATE(PAUSED_FOR_USER);wait_for_user = true; // LCD click or M108 will clear thiswhile (wait_for_user) {#if HAS_BUZZERfilament_change_beep(max_beep_count);#endifidle(true);}KEEPALIVE_STATE(IN_HANDLER);}#if ENABLED(ULTIPANEL)if (show_lcd) // Show "wait for load" messagelcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD, mode);#endif// Slow Load filamentif (slow_load_length) do_pause_e_move(slow_load_length, FILAMENT_CHANGE_SLOW_LOAD_FEEDRATE);// Fast Load Filamentif (fast_load_length) {#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0const float saved_acceleration = planner.retract_acceleration;planner.retract_acceleration = FILAMENT_CHANGE_FAST_LOAD_ACCEL;#endifdo_pause_e_move(fast_load_length, FILAMENT_CHANGE_FAST_LOAD_FEEDRATE);#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0planner.retract_acceleration = saved_acceleration;#endif}#if ENABLED(ADVANCED_PAUSE_CONTINUOUS_PURGE)#if ENABLED(ULTIPANEL)if (show_lcd)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CONTINUOUS_PURGE);#endifwait_for_user = true;for (float purge_count = purge_length; purge_count > 0 && wait_for_user; --purge_count)do_pause_e_move(1, ADVANCED_PAUSE_PURGE_FEEDRATE);wait_for_user = false;#elsedo {if (purge_length > 0) {// "Wait for filament purge"#if ENABLED(ULTIPANEL)if (show_lcd)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_PURGE, mode);#endif// Extrude filament to get into hotenddo_pause_e_move(purge_length, ADVANCED_PAUSE_PURGE_FEEDRATE);}// Show "Purge More" / "Resume" menu and wait for reply#if ENABLED(ULTIPANEL)if (show_lcd) {KEEPALIVE_STATE(PAUSED_FOR_USER);wait_for_user = false;lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION, mode);while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);KEEPALIVE_STATE(IN_HANDLER);}#endif// Keep looping if "Purge More" was selected} while (#if ENABLED(ULTIPANEL)show_lcd && advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE#else0#endif);#endifreturn true;}/*** Unload filament from the hotend** - Fail if the a safe temperature was not reached* - Show "wait for unload" placard* - Retract, pause, then unload filament* - Disable E stepper (on most machines)** Returns 'true' if unload was completed, 'false' for abort*/static bool unload_filament(const float &unload_length, const bool show_lcd=false,const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT) {if (!ensure_safe_temperature(mode)) {#if ENABLED(ULTIPANEL)if (show_lcd) // Show status screenlcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);#endifreturn false;}#if DISABLED(ULTIPANEL)UNUSED(show_lcd);#elseif (show_lcd)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD, mode);#endif// Retract filamentdo_pause_e_move(-FILAMENT_UNLOAD_RETRACT_LENGTH, PAUSE_PARK_RETRACT_FEEDRATE);// Wait for filament to coolsafe_delay(FILAMENT_UNLOAD_DELAY);// Quickly purgedo_pause_e_move(FILAMENT_UNLOAD_RETRACT_LENGTH + FILAMENT_UNLOAD_PURGE_LENGTH, planner.max_feedrate_mm_s[E_AXIS]);// Unload filament#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0const float saved_acceleration = planner.retract_acceleration;planner.retract_acceleration = FILAMENT_CHANGE_UNLOAD_ACCEL;#endifdo_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0planner.retract_acceleration = saved_acceleration;#endif// Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PINdisable_e_stepper(active_extruder);safe_delay(100);#endifreturn true;}/*** Pause procedure** - Abort if already paused* - Send host action for pause, if configured* - Abort if TARGET temperature is too low* - Display "wait for start of filament change" (if a length was specified)* - Initial retract, if current temperature is hot enough* - Park the nozzle at the given position* - Call unload_filament (if a length was specified)** Returns 'true' if pause was completed, 'false' for abort*/static bool pause_print(const float &retract, const point_t &park_point, const float &unload_length=0, const bool show_lcd=false) {if (did_pause_print) return false; // already paused#ifdef ACTION_ON_PAUSESERIAL_ECHOLNPGM("//action:" ACTION_ON_PAUSE);#endifif (!DEBUGGING(DRYRUN) && unload_length && thermalManager.targetTooColdToExtrude(active_extruder)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_HOTEND_TOO_COLD);#if ENABLED(ULTIPANEL)if (show_lcd) // Show status screenlcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);LCD_MESSAGEPGM(MSG_M600_TOO_COLD);#endifreturn false; // unable to reach safe temperature}// Indicate that the printer is paused++did_pause_print;// Pause the print job and timer#if ENABLED(SDSUPPORT)if (card.sdprinting) {card.pauseSDPrint();++did_pause_print; // Indicate SD pause also}#endifprint_job_timer.pause();// Save current positionCOPY(resume_position, current_position);// Wait for synchronize steppersplanner.synchronize();// Initial retract before move to filament change positionif (retract && thermalManager.hotEnoughToExtrude(active_extruder))do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);// Park the nozzle by moving up by z_lift and then moving to (x_pos, y_pos)if (!axis_unhomed_error())Nozzle::park(2, park_point);// Unload the filamentif (unload_length)unload_filament(unload_length, show_lcd);return true;}/*** - Show "Insert filament and press button to continue"* - Wait for a click before returning* - Heaters can time out, reheated before accepting a click** Used by M125 and M600*/static void wait_for_filament_reload(const int8_t max_beep_count=0) {bool nozzle_timed_out = false;#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);#endifSERIAL_ECHO_START();SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT);#if HAS_BUZZERfilament_change_beep(max_beep_count, true);#endif// Start the heater idle timersconst millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;HOTEND_LOOP()thermalManager.start_heater_idle_timer(e, nozzle_timeout);// Wait for filament insert by user and press buttonKEEPALIVE_STATE(PAUSED_FOR_USER);wait_for_user = true; // LCD click or M108 will clear thiswhile (wait_for_user) {#if HAS_BUZZERfilament_change_beep(max_beep_count);#endif// If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then// re-heat the nozzle, re-show the insert screen, restart the idle timers, and start overif (!nozzle_timed_out)HOTEND_LOOP()nozzle_timed_out |= thermalManager.is_heater_idle(e);if (nozzle_timed_out) {#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);#endifSERIAL_ECHO_START();#if ENABLED(ULTIPANEL) && ENABLED(EMERGENCY_PARSER)SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT);#elif ENABLED(EMERGENCY_PARSER)SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT_M108);#elseSERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT_LCD);#endif// Wait for LCD click or M108while (wait_for_user) idle(true);// Re-enable the heaters if they timed outHOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);// Wait for the heaters to reach the target temperaturesensure_safe_temperature();#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);#endifSERIAL_ECHO_START();#if ENABLED(ULTIPANEL) && ENABLED(EMERGENCY_PARSER)SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT);#elif ENABLED(EMERGENCY_PARSER)SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT_M108);#elseSERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT_LCD);#endif// Start the heater idle timersconst millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;HOTEND_LOOP()thermalManager.start_heater_idle_timer(e, nozzle_timeout);wait_for_user = true; // Wait for user to load filamentnozzle_timed_out = false;#if HAS_BUZZERfilament_change_beep(max_beep_count, true);#endif}idle(true);}KEEPALIVE_STATE(IN_HANDLER);}/*** Resume or Start print procedure** - Abort if not paused* - Reset heater idle timers* - Load filament if specified, but only if:* - a nozzle timed out, or* - the nozzle is already heated.* - Display "wait for print to resume"* - Re-prime the nozzle...* - FWRETRACT: Recover/prime from the prior G10.* - !FWRETRACT: Retract by resume_position[E], if negative.* Not sure how this logic comes into use.* - Move the nozzle back to resume_position* - Sync the planner E to resume_position[E]* - Send host action for resume, if configured* - Resume the current SD print job, if any*/static void resume_print(const float &slow_load_length=0, const float &fast_load_length=0, const float &purge_length=ADVANCED_PAUSE_PURGE_LENGTH, const int8_t max_beep_count=0) {if (!did_pause_print) return;// Re-enable the heaters if they timed outbool nozzle_timed_out = false;HOTEND_LOOP() {nozzle_timed_out |= thermalManager.is_heater_idle(e);thermalManager.reset_heater_idle_timer(e);}if (nozzle_timed_out || thermalManager.hotEnoughToExtrude(active_extruder)) {// Load the new filamentload_filament(slow_load_length, fast_load_length, purge_length, max_beep_count, true, nozzle_timed_out);}#if ENABLED(ULTIPANEL)// "Wait for print to resume"lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);#endif// Intelligent resuming#if ENABLED(FWRETRACT)// If retracted before goto pauseif (fwretract.retracted[active_extruder])do_pause_e_move(-fwretract.retract_length, fwretract.retract_feedrate_mm_s);#endif// If resume_position is negativeif (resume_position[E_CART] < 0) do_pause_e_move(resume_position[E_CART], PAUSE_PARK_RETRACT_FEEDRATE);// Move XY to starting position, then Zdo_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], NOZZLE_PARK_XY_FEEDRATE);// Set Z_AXIS to saved positiondo_blocking_move_to_z(resume_position[Z_AXIS], NOZZLE_PARK_Z_FEEDRATE);// Now all extrusion positions are resumed and ready to be confirmed// Set extruder to saved positionplanner.set_e_position_mm((destination[E_CART] = current_position[E_CART] = resume_position[E_CART]));#if ENABLED(FILAMENT_RUNOUT_SENSOR)runout.reset();#endif#if ENABLED(ULTIPANEL)// Show status screenlcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);#endif#ifdef ACTION_ON_RESUMESERIAL_ECHOLNPGM("//action:" ACTION_ON_RESUME);#endif--did_pause_print;#if ENABLED(SDSUPPORT)if (did_pause_print) {card.startFileprint();--did_pause_print;}#endif}#endif // ADVANCED_PAUSE_FEATURE#if ENABLED(SDSUPPORT)/*** M20: List SD card to serial output*/inline void gcode_M20() {SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);card.ls();SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);}/*** M21: Init SD Card*/inline void gcode_M21() { card.initsd(); }/*** M22: Release SD Card*/inline void gcode_M22() { card.release(); }/*** M23: Open a file*/inline void gcode_M23() {#if ENABLED(POWER_LOSS_RECOVERY)card.removeJobRecoveryFile();#endif// Simplify3D includes the size, so zero out all spaces (#7227)for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';card.openFile(parser.string_arg, true);}/*** M24: Start or Resume SD Print*/inline void gcode_M24() {#if ENABLED(PARK_HEAD_ON_PAUSE)resume_print();#endif#if ENABLED(POWER_LOSS_RECOVERY)if (parser.seenval('S')) card.setIndex(parser.value_long());#endifcard.startFileprint();#if ENABLED(POWER_LOSS_RECOVERY)if (parser.seenval('T'))print_job_timer.resume(parser.value_long());else#endifprint_job_timer.start();}/*** M25: Pause SD Print*/inline void gcode_M25() {card.pauseSDPrint();print_job_timer.pause();#if ENABLED(PARK_HEAD_ON_PAUSE)enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer#endif}/*** M26: Set SD Card file index*/inline void gcode_M26() {if (card.cardOK && parser.seenval('S'))card.setIndex(parser.value_long());}/*** M27: Get SD Card status* OR, with 'S<seconds>' set the SD status auto-report interval. (Requires AUTO_REPORT_SD_STATUS)* OR, with 'C' get the current filename.*/inline void gcode_M27() {if (parser.seen('C')) {SERIAL_ECHOPGM("Current file: ");card.printFilename();}#if ENABLED(AUTO_REPORT_SD_STATUS)else if (parser.seenval('S'))card.set_auto_report_interval(parser.value_byte());#endifelsecard.getStatus();}/*** M28: Start SD Write*/inline void gcode_M28() { card.openFile(parser.string_arg, false); }/*** M29: Stop SD Write* Processed in write to file routine above*/inline void gcode_M29() {// card.saving = false;}/*** M30 <filename>: Delete SD Card file*/inline void gcode_M30() {if (card.cardOK) {card.closefile();card.removeFile(parser.string_arg);}}#endif // SDSUPPORT/*** M31: Get the time since the start of SD Print (or last M109)*/inline void gcode_M31() {char buffer[21];duration_t elapsed = print_job_timer.duration();elapsed.toString(buffer);lcd_setstatus(buffer);SERIAL_ECHO_START();SERIAL_ECHOLNPAIR("Print time: ", buffer);}#if ENABLED(SDSUPPORT)/*** M32: Select file and start SD Print** Examples:** M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO* M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure* M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60**/inline void gcode_M32() {if (card.sdprinting) planner.synchronize();if (card.cardOK) {const bool call_procedure = parser.boolval('P');card.openFile(parser.string_arg, true, call_procedure);if (parser.seenval('S')) card.setIndex(parser.value_long());card.startFileprint();// Procedure calls count as normal print time.if (!call_procedure) print_job_timer.start();}}#if ENABLED(LONG_FILENAME_HOST_SUPPORT)/*** M33: Get the long full path of a file or folder** Parameters:* <dospath> Case-insensitive DOS-style path to a file or folder** Example:* M33 miscel~1/armchair/armcha~1.gco** Output:* /Miscellaneous/Armchair/Armchair.gcode*/inline void gcode_M33() {card.printLongPath(parser.string_arg);}#endif#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)/*** M34: Set SD Card Sorting Options*/inline void gcode_M34() {if (parser.seen('S')) card.setSortOn(parser.value_bool());if (parser.seenval('F')) {const int v = parser.value_long();card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);}//if (parser.seen('R')) card.setSortReverse(parser.value_bool());}#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE/*** M928: Start SD Write*/inline void gcode_M928() {card.openLogFile(parser.string_arg);}#endif // SDSUPPORT/*** Sensitive pin test for M42, M226*/static bool pin_is_protected(const pin_t pin) {static const pin_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)if (pin == (pin_t)pgm_read_byte(&sensitive_pins[i])) return true;return false;}inline void protected_pin_err() {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);}/*** M42: Change pin status via GCode** P<pin> Pin number (LED if omitted)* S<byte> Pin status from 0 - 255* I Flag to ignore Marlin's pin protection*/inline void gcode_M42() {if (!parser.seenval('S')) return;const byte pin_status = parser.value_byte();const pin_t pin_number = parser.byteval('P', LED_PIN);if (pin_number < 0) return;if (!parser.boolval('I') && pin_is_protected(pin_number)) return protected_pin_err();pinMode(pin_number, OUTPUT);digitalWrite(pin_number, pin_status);analogWrite(pin_number, pin_status);#if FAN_COUNT > 0switch (pin_number) {#if HAS_FAN0case FAN_PIN: fanSpeeds[0] = pin_status; break;#endif#if HAS_FAN1case FAN1_PIN: fanSpeeds[1] = pin_status; break;#endif#if HAS_FAN2case FAN2_PIN: fanSpeeds[2] = pin_status; break;#endif}#endif}#if ENABLED(PINS_DEBUGGING)#include "pinsDebug.h"inline void toggle_pins() {const bool ignore_protection = parser.boolval('I');const int repeat = parser.intval('R', 1),start = parser.intval('S'),end = parser.intval('L', NUM_DIGITAL_PINS - 1),wait = parser.intval('W', 500);for (uint8_t pin = start; pin <= end; pin++) {//report_pin_state_extended(pin, ignore_protection, false);if (!ignore_protection && pin_is_protected(pin)) {report_pin_state_extended(pin, ignore_protection, true, "Untouched ");SERIAL_EOL();}else {report_pin_state_extended(pin, ignore_protection, true, "Pulsing ");#if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIOif (pin == TEENSY_E2) {SET_OUTPUT(TEENSY_E2);for (int16_t j = 0; j < repeat; j++) {WRITE(TEENSY_E2, LOW); safe_delay(wait);WRITE(TEENSY_E2, HIGH); safe_delay(wait);WRITE(TEENSY_E2, LOW); safe_delay(wait);}}else if (pin == TEENSY_E3) {SET_OUTPUT(TEENSY_E3);for (int16_t j = 0; j < repeat; j++) {WRITE(TEENSY_E3, LOW); safe_delay(wait);WRITE(TEENSY_E3, HIGH); safe_delay(wait);WRITE(TEENSY_E3, LOW); safe_delay(wait);}}else#endif{pinMode(pin, OUTPUT);for (int16_t j = 0; j < repeat; j++) {digitalWrite(pin, 0); safe_delay(wait);digitalWrite(pin, 1); safe_delay(wait);digitalWrite(pin, 0); safe_delay(wait);}}}SERIAL_EOL();}SERIAL_ECHOLNPGM("Done.");} // toggle_pinsinline void servo_probe_test() {#if !(NUM_SERVOS > 0 && HAS_SERVO_0)SERIAL_ERROR_START();SERIAL_ERRORLNPGM("SERVO not setup");#elif !HAS_Z_SERVO_PROBESERIAL_ERROR_START();SERIAL_ERRORLNPGM("Z_PROBE_SERVO_NR not setup");#else // HAS_Z_SERVO_PROBEconst uint8_t probe_index = parser.byteval('P', Z_PROBE_SERVO_NR);SERIAL_PROTOCOLLNPGM("Servo probe test");SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);bool probe_inverting;#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)#define PROBE_TEST_PIN Z_MIN_PINSERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");#if Z_MIN_ENDSTOP_INVERTINGSERIAL_PROTOCOLLNPGM("true");#elseSERIAL_PROTOCOLLNPGM("false");#endifprobe_inverting = Z_MIN_ENDSTOP_INVERTING;#elif ENABLED(Z_MIN_PROBE_ENDSTOP)#define PROBE_TEST_PIN Z_MIN_PROBE_PINSERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");#if Z_MIN_PROBE_ENDSTOP_INVERTINGSERIAL_PROTOCOLLNPGM("true");#elseSERIAL_PROTOCOLLNPGM("false");#endifprobe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;#endifSERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");SET_INPUT_PULLUP(PROBE_TEST_PIN);bool deploy_state, stow_state;for (uint8_t i = 0; i < 4; i++) {MOVE_SERVO(probe_index, z_servo_angle[0]); //deploysafe_delay(500);deploy_state = READ(PROBE_TEST_PIN);MOVE_SERVO(probe_index, z_servo_angle[1]); //stowsafe_delay(500);stow_state = READ(PROBE_TEST_PIN);}if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");if (deploy_state != stow_state) {SERIAL_PROTOCOLLNPGM("BLTouch clone detected");if (deploy_state) {SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");}else {SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");}#if ENABLED(BLTOUCH)SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");#endif}else { // measure active signal lengthMOVE_SERVO(probe_index, z_servo_angle[0]); // deploysafe_delay(500);SERIAL_PROTOCOLLNPGM("please trigger probe");uint16_t probe_counter = 0;// Allow 30 seconds max for operator to trigger probefor (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {safe_delay(2);if (0 == j % (500 * 1)) reset_stepper_timeout(); // Keep steppers poweredif (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggeredfor (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)safe_delay(2);if (probe_counter == 50)SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active timeelse if (probe_counter >= 2)SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulseelseSERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulseMOVE_SERVO(probe_index, z_servo_angle[1]); //stow} // pulse detected} // for loop waiting for triggerif (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");} // measure active signal length#endif} // servo_probe_test/*** M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report** M43 - report name and state of pin(s)* P<pin> Pin to read or watch. If omitted, reads all pins.* I Flag to ignore Marlin's pin protection.** M43 W - Watch pins -reporting changes- until reset, click, or M108.* P<pin> Pin to read or watch. If omitted, read/watch all pins.* I Flag to ignore Marlin's pin protection.** M43 E<bool> - Enable / disable background endstop monitoring* - Machine continues to operate* - Reports changes to endstops* - Toggles LED_PIN when an endstop changes* - Can not reliably catch the 5mS pulse from BLTouch type probes** M43 T - Toggle pin(s) and report which pin is being toggled* S<pin> - Start Pin number. If not given, will default to 0* L<pin> - End Pin number. If not given, will default to last pin defined for this board* I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!* R - Repeat pulses on each pin this number of times before continueing to next pin* W - Wait time (in miliseconds) between pulses. If not given will default to 500** M43 S - Servo probe test* P<index> - Probe index (optional - defaults to 0*/inline void gcode_M43() {if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo testtoggle_pins();return;}// Enable or disable endstop monitoringif (parser.seen('E')) {endstops.monitor_flag = parser.value_bool();SERIAL_PROTOCOLPGM("endstop monitor ");serialprintPGM(endstops.monitor_flag ? PSTR("en") : PSTR("dis"));SERIAL_PROTOCOLLNPGM("abled");return;}if (parser.seen('S')) {servo_probe_test();return;}// Get the range of pins to test or watchconst pin_t first_pin = parser.byteval('P'),last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;if (first_pin > last_pin) return;const bool ignore_protection = parser.boolval('I');// Watch until click, M108, or resetif (parser.boolval('W')) {SERIAL_PROTOCOLLNPGM("Watching pins");byte pin_state[last_pin - first_pin + 1];for (pin_t pin = first_pin; pin <= last_pin; pin++) {if (!ignore_protection && pin_is_protected(pin)) continue;pinMode(pin, INPUT_PULLUP);delay(1);/*if (IS_ANALOG(pin))pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]else//*/pin_state[pin - first_pin] = digitalRead(pin);}#if HAS_RESUME_CONTINUEwait_for_user = true;KEEPALIVE_STATE(PAUSED_FOR_USER);#endiffor (;;) {for (pin_t pin = first_pin; pin <= last_pin; pin++) {if (!ignore_protection && pin_is_protected(pin)) continue;const byte val =/*IS_ANALOG(pin)? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val://*/digitalRead(pin);if (val != pin_state[pin - first_pin]) {report_pin_state_extended(pin, ignore_protection, false);pin_state[pin - first_pin] = val;}}#if HAS_RESUME_CONTINUEif (!wait_for_user) {KEEPALIVE_STATE(IN_HANDLER);break;}#endifsafe_delay(200);}return;}// Report current state of selected pin(s)for (pin_t pin = first_pin; pin <= last_pin; pin++)report_pin_state_extended(pin, ignore_protection, true);}#endif // PINS_DEBUGGING#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)/*** M48: Z probe repeatability measurement function.** Usage:* M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>* P = Number of sampled points (4-50, default 10)* X = Sample X position* Y = Sample Y position* V = Verbose level (0-4, default=1)* E = Engage Z probe for each reading* L = Number of legs of movement before probe* S = Schizoid (Or Star if you prefer)** This function requires the machine to be homed before invocation.*/inline void gcode_M48() {if (axis_unhomed_error()) return;const int8_t verbose_level = parser.byteval('V', 1);if (!WITHIN(verbose_level, 0, 4)) {SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");return;}if (verbose_level > 0)SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");const int8_t n_samples = parser.byteval('P', 10);if (!WITHIN(n_samples, 4, 50)) {SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");return;}const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;float X_current = current_position[X_AXIS],Y_current = current_position[Y_AXIS];const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {SERIAL_PROTOCOLLNPGM("? (X,Y) out of bounds.");return;}bool seen_L = parser.seen('L');uint8_t n_legs = seen_L ? parser.value_byte() : 0;if (n_legs > 15) {SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");return;}if (n_legs == 1) n_legs = 2;const bool schizoid_flag = parser.boolval('S');if (schizoid_flag && !seen_L) n_legs = 7;/*** Now get everything to the specified probe point So we can safely do a* probe to get us close to the bed. If the Z-Axis is far from the bed,* we don't want to use that as a starting point for each probe.*/if (verbose_level > 2)SERIAL_PROTOCOLLNPGM("Positioning the probe...");// Disable bed level correction in M48 because we want the raw data when we probe#if HAS_LEVELINGconst bool was_enabled = planner.leveling_active;set_bed_leveling_enabled(false);#endifsetup_for_endstop_or_probe_move();float mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];// Move to the first point, deploy, and probeconst float t = probe_pt(X_probe_location, Y_probe_location, raise_after, verbose_level);bool probing_good = !isnan(t);if (probing_good) {randomSeed(millis());for (uint8_t n = 0; n < n_samples; n++) {if (n_legs) {const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwisefloat angle = random(0.0, 360.0);const float radius = random(#if ENABLED(DELTA)0.1250000000 * (DELTA_PRINTABLE_RADIUS),0.3333333333 * (DELTA_PRINTABLE_RADIUS)#else5.0, 0.125 * MIN(X_BED_SIZE, Y_BED_SIZE)#endif);if (verbose_level > 3) {SERIAL_ECHOPAIR("Starting radius: ", radius);SERIAL_ECHOPAIR(" angle: ", angle);SERIAL_ECHOPGM(" Direction: ");if (dir > 0) SERIAL_ECHOPGM("Counter-");SERIAL_ECHOLNPGM("Clockwise");}for (uint8_t l = 0; l < n_legs - 1; l++) {float delta_angle;if (schizoid_flag)// The points of a 5 point star are 72 degrees apart. We need to// skip a point and go to the next one on the star.delta_angle = dir * 2.0 * 72.0;else// If we do this line, we are just trying to move further// around the circle.delta_angle = dir * (float) random(25, 45);angle += delta_angle;while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but theangle -= 360.0; // Arduino documentation says the trig functions should not be given valueswhile (angle < 0.0) // outside of this range. It looks like they behave correctly withangle += 360.0; // numbers outside of the range, but just to be safe we clamp them.X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;#if DISABLED(DELTA)X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);#else// If we have gone out too far, we can do a simple fix and scale the numbers// back in closer to the origin.while (!position_is_reachable_by_probe(X_current, Y_current)) {X_current *= 0.8;Y_current *= 0.8;if (verbose_level > 3) {SERIAL_ECHOPAIR("Pulling point towards center:", X_current);SERIAL_ECHOLNPAIR(", ", Y_current);}}#endifif (verbose_level > 3) {SERIAL_PROTOCOLPGM("Going to:");SERIAL_ECHOPAIR(" X", X_current);SERIAL_ECHOPAIR(" Y", Y_current);SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);}do_blocking_move_to_xy(X_current, Y_current);} // n_legs loop} // n_legs// Probe a single pointsample_set[n] = probe_pt(X_probe_location, Y_probe_location, raise_after);// Break the loop if the probe failsprobing_good = !isnan(sample_set[n]);if (!probing_good) break;/*** Get the current mean for the data points we have so far*/float sum = 0.0;for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];mean = sum / (n + 1);NOMORE(min, sample_set[n]);NOLESS(max, sample_set[n]);/*** Now, use that mean to calculate the standard deviation for the* data points we have so far*/sum = 0.0;for (uint8_t j = 0; j <= n; j++)sum += sq(sample_set[j] - mean);sigma = SQRT(sum / (n + 1));if (verbose_level > 0) {if (verbose_level > 1) {SERIAL_PROTOCOL(n + 1);SERIAL_PROTOCOLPGM(" of ");SERIAL_PROTOCOL(int(n_samples));SERIAL_PROTOCOLPGM(": z: ");SERIAL_PROTOCOL_F(sample_set[n], 3);if (verbose_level > 2) {SERIAL_PROTOCOLPGM(" mean: ");SERIAL_PROTOCOL_F(mean, 4);SERIAL_PROTOCOLPGM(" sigma: ");SERIAL_PROTOCOL_F(sigma, 6);SERIAL_PROTOCOLPGM(" min: ");SERIAL_PROTOCOL_F(min, 3);SERIAL_PROTOCOLPGM(" max: ");SERIAL_PROTOCOL_F(max, 3);SERIAL_PROTOCOLPGM(" range: ");SERIAL_PROTOCOL_F(max-min, 3);}SERIAL_EOL();}}} // n_samples loop}STOW_PROBE();if (probing_good) {SERIAL_PROTOCOLLNPGM("Finished!");if (verbose_level > 0) {SERIAL_PROTOCOLPGM("Mean: ");SERIAL_PROTOCOL_F(mean, 6);SERIAL_PROTOCOLPGM(" Min: ");SERIAL_PROTOCOL_F(min, 3);SERIAL_PROTOCOLPGM(" Max: ");SERIAL_PROTOCOL_F(max, 3);SERIAL_PROTOCOLPGM(" Range: ");SERIAL_PROTOCOL_F(max-min, 3);SERIAL_EOL();}SERIAL_PROTOCOLPGM("Standard Deviation: ");SERIAL_PROTOCOL_F(sigma, 6);SERIAL_EOL();SERIAL_EOL();}clean_up_after_endstop_or_probe_move();// Re-enable bed level correction if it had been on#if HAS_LEVELINGset_bed_leveling_enabled(was_enabled);#endif#ifdef Z_AFTER_PROBINGmove_z_after_probing();#endifreport_current_position();}#endif // Z_MIN_PROBE_REPEATABILITY_TEST#if ENABLED(G26_MESH_VALIDATION)inline void gcode_M49() {g26_debug_flag ^= true;SERIAL_PROTOCOLPGM("G26 Debug ");serialprintPGM(g26_debug_flag ? PSTR("on.\n") : PSTR("off.\n"));}#endif // G26_MESH_VALIDATION#if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)/*** M73: Set percentage complete (for display on LCD)** Example:* M73 P25 ; Set progress to 25%** Notes:* This has no effect during an SD print job*/inline void gcode_M73() {if (!IS_SD_PRINTING() && parser.seen('P')) {progress_bar_percent = parser.value_byte();NOMORE(progress_bar_percent, 100);}}#endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY/*** M75: Start print timer*/inline void gcode_M75() { print_job_timer.start(); }/*** M76: Pause print timer*/inline void gcode_M76() { print_job_timer.pause(); }/*** M77: Stop print timer*/inline void gcode_M77() { print_job_timer.stop(); }#if ENABLED(PRINTCOUNTER)/*** M78: Show print statistics*/inline void gcode_M78() {// "M78 S78" will reset the statisticsif (parser.intval('S') == 78)print_job_timer.initStats();elseprint_job_timer.showStats();}#endif/*** M104: Set hot end temperature*/inline void gcode_M104() {if (get_target_extruder_from_command(104)) return;if (DEBUGGING(DRYRUN)) return;#if ENABLED(SINGLENOZZLE)if (target_extruder != active_extruder) return;#endifif (parser.seenval('S')) {const int16_t temp = parser.value_celsius();thermalManager.setTargetHotend(temp, target_extruder);#if ENABLED(DUAL_X_CARRIAGE)if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);#endif#if ENABLED(PRINTJOB_TIMER_AUTOSTART)/*** Stop the timer at the end of print. Start is managed by 'heat and wait' M109.* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot* standby mode, for instance in a dual extruder setup, without affecting* the running print timer.*/if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {print_job_timer.stop();lcd_reset_status();}#endif}#if ENABLED(AUTOTEMP)planner.autotemp_M104_M109();#endif}/*** M105: Read hot end and bed temperature*/inline void gcode_M105() {if (get_target_extruder_from_command(105)) return;#if HAS_TEMP_SENSORSERIAL_PROTOCOLPGM(MSG_OK);thermalManager.print_heaterstates();#else // !HAS_TEMP_SENSORSERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);#endifSERIAL_EOL();}#if ENABLED(AUTO_REPORT_TEMPERATURES)/*** M155: Set temperature auto-report interval. M155 S<seconds>*/inline void gcode_M155() {if (parser.seenval('S'))thermalManager.set_auto_report_interval(parser.value_byte());}#endif // AUTO_REPORT_TEMPERATURES#if FAN_COUNT > 0/*** M106: Set Fan Speed** S<int> Speed between 0-255* P<index> Fan index, if more than one fan** With EXTRA_FAN_SPEED enabled:** T<int> Restore/Use/Set Temporary Speed:* 1 = Restore previous speed after T2* 2 = Use temporary speed set with T3-255* 3-255 = Set the speed for use with T2*/inline void gcode_M106() {const uint8_t p = parser.byteval('P');if (p < FAN_COUNT) {#if ENABLED(EXTRA_FAN_SPEED)const int16_t t = parser.intval('T');if (t > 0) {switch (t) {case 1:fanSpeeds[p] = old_fanSpeeds[p];break;case 2:old_fanSpeeds[p] = fanSpeeds[p];fanSpeeds[p] = new_fanSpeeds[p];break;default:new_fanSpeeds[p] = MIN(t, 255);break;}return;}#endif // EXTRA_FAN_SPEEDconst uint16_t s = parser.ushortval('S', 255);fanSpeeds[p] = MIN(s, 255U);}}/*** M107: Fan Off*/inline void gcode_M107() {const uint16_t p = parser.ushortval('P');if (p < FAN_COUNT) fanSpeeds[p] = 0;}#endif // FAN_COUNT > 0#if DISABLED(EMERGENCY_PARSER)/*** M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.*/inline void gcode_M108() { wait_for_heatup = false; }/*** M112: Emergency Stop*/inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }/*** M410: Quickstop - Abort all planned moves** This will stop the carriages mid-move, so most likely they* will be out of sync with the stepper position after this.*/inline void gcode_M410() { quickstop_stepper(); }#endif/*** M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.*/#ifndef MIN_COOLING_SLOPE_DEG#define MIN_COOLING_SLOPE_DEG 1.50#endif#ifndef MIN_COOLING_SLOPE_TIME#define MIN_COOLING_SLOPE_TIME 60#endifinline void gcode_M109() {if (get_target_extruder_from_command(109)) return;if (DEBUGGING(DRYRUN)) return;#if ENABLED(SINGLENOZZLE)if (target_extruder != active_extruder) return;#endifconst bool no_wait_for_cooling = parser.seenval('S'),set_temp = no_wait_for_cooling || parser.seenval('R');if (set_temp) {const int16_t temp = parser.value_celsius();thermalManager.setTargetHotend(temp, target_extruder);#if ENABLED(DUAL_X_CARRIAGE)if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);#endif#if ENABLED(PRINTJOB_TIMER_AUTOSTART)/*** Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot* standby mode, (e.g., in a dual extruder setup) without affecting* the running print timer.*/if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {print_job_timer.stop();lcd_reset_status();}elseprint_job_timer.start();#endif#if ENABLED(ULTRA_LCD)const bool heating = thermalManager.isHeatingHotend(target_extruder);if (heating || !no_wait_for_cooling)#if HOTENDS > 1lcd_status_printf_P(0, heating ? PSTR("E%i " MSG_HEATING) : PSTR("E%i " MSG_COOLING), target_extruder + 1);#elselcd_setstatusPGM(heating ? PSTR("E " MSG_HEATING) : PSTR("E " MSG_COOLING));#endif#endif}#if ENABLED(AUTOTEMP)planner.autotemp_M104_M109();#endifif (!set_temp) return;#if TEMP_RESIDENCY_TIME > 0millis_t residency_start_ms = 0;// Loop until the temperature has stabilized#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))#else// Loop until the temperature is very close target#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))#endiffloat target_temp = -1, old_temp = 9999;bool wants_to_cool = false;wait_for_heatup = true;millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;#if DISABLED(BUSY_WHILE_HEATING)KEEPALIVE_STATE(NOT_BUSY);#endif#if ENABLED(PRINTER_EVENT_LEDS)const float start_temp = thermalManager.degHotend(target_extruder);uint8_t old_blue = 0;#endifdo {// Target temperature might be changed during the loopif (target_temp != thermalManager.degTargetHotend(target_extruder)) {wants_to_cool = thermalManager.isCoolingHotend(target_extruder);target_temp = thermalManager.degTargetHotend(target_extruder);// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>if (no_wait_for_cooling && wants_to_cool) break;}now = millis();if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waitingnext_temp_ms = now + 1000UL;thermalManager.print_heaterstates();#if TEMP_RESIDENCY_TIME > 0SERIAL_PROTOCOLPGM(" W:");if (residency_start_ms)SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));elseSERIAL_PROTOCOLCHAR('?');#endifSERIAL_EOL();}idle();reset_stepper_timeout(); // Keep steppers poweredconst float temp = thermalManager.degHotend(target_extruder);#if ENABLED(PRINTER_EVENT_LEDS)// Gradually change LED strip from violet to red as nozzle heats upif (!wants_to_cool) {const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);if (blue != old_blue) {old_blue = blue;leds.set_color(MakeLEDColor(255, 0, blue, 0, pixels.getBrightness())#if ENABLED(NEOPIXEL_IS_SEQUENTIAL), true#endif);}}#endif#if TEMP_RESIDENCY_TIME > 0const float temp_diff = ABS(target_temp - temp);if (!residency_start_ms) {// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.if (temp_diff < TEMP_WINDOW) residency_start_ms = now;}else if (temp_diff > TEMP_HYSTERESIS) {// Restart the timer whenever the temperature falls outside the hysteresis.residency_start_ms = now;}#endif// Prevent a wait-forever situation if R is misused i.e. M109 R0if (wants_to_cool) {// break after MIN_COOLING_SLOPE_TIME seconds// if the temperature did not drop at least MIN_COOLING_SLOPE_DEGif (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;old_temp = temp;}}} while (wait_for_heatup && TEMP_CONDITIONS);if (wait_for_heatup) {lcd_reset_status();#if ENABLED(PRINTER_EVENT_LEDS)leds.set_white();#endif}#if DISABLED(BUSY_WHILE_HEATING)KEEPALIVE_STATE(IN_HANDLER);#endif}#if HAS_HEATED_BED/*** M140: Set bed temperature*/inline void gcode_M140() {if (DEBUGGING(DRYRUN)) return;if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());}#ifndef MIN_COOLING_SLOPE_DEG_BED#define MIN_COOLING_SLOPE_DEG_BED 1.50#endif#ifndef MIN_COOLING_SLOPE_TIME_BED#define MIN_COOLING_SLOPE_TIME_BED 60#endif/*** M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling*/inline void gcode_M190() {if (DEBUGGING(DRYRUN)) return;const bool no_wait_for_cooling = parser.seenval('S');if (no_wait_for_cooling || parser.seenval('R')) {thermalManager.setTargetBed(parser.value_celsius());#if ENABLED(PRINTJOB_TIMER_AUTOSTART)if (parser.value_celsius() > BED_MINTEMP)print_job_timer.start();#endif}else return;lcd_setstatusPGM(thermalManager.isHeatingBed() ? PSTR(MSG_BED_HEATING) : PSTR(MSG_BED_COOLING));#if TEMP_BED_RESIDENCY_TIME > 0millis_t residency_start_ms = 0;// Loop until the temperature has stabilized#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))#else// Loop until the temperature is very close target#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())#endiffloat target_temp = -1.0, old_temp = 9999.0;bool wants_to_cool = false;wait_for_heatup = true;millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;#if DISABLED(BUSY_WHILE_HEATING)KEEPALIVE_STATE(NOT_BUSY);#endiftarget_extruder = active_extruder; // for print_heaterstates#if ENABLED(PRINTER_EVENT_LEDS)const float start_temp = thermalManager.degBed();uint8_t old_red = 127;#endifdo {// Target temperature might be changed during the loopif (target_temp != thermalManager.degTargetBed()) {wants_to_cool = thermalManager.isCoolingBed();target_temp = thermalManager.degTargetBed();// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>if (no_wait_for_cooling && wants_to_cool) break;}now = millis();if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.next_temp_ms = now + 1000UL;thermalManager.print_heaterstates();#if TEMP_BED_RESIDENCY_TIME > 0SERIAL_PROTOCOLPGM(" W:");if (residency_start_ms)SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));elseSERIAL_PROTOCOLCHAR('?');#endifSERIAL_EOL();}idle();reset_stepper_timeout(); // Keep steppers poweredconst float temp = thermalManager.degBed();#if ENABLED(PRINTER_EVENT_LEDS)// Gradually change LED strip from blue to violet as bed heats upif (!wants_to_cool) {const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);if (red != old_red) {old_red = red;leds.set_color(MakeLEDColor(red, 0, 255, 0, pixels.getBrightness())#if ENABLED(NEOPIXEL_IS_SEQUENTIAL), true#endif);}}#endif#if TEMP_BED_RESIDENCY_TIME > 0const float temp_diff = ABS(target_temp - temp);if (!residency_start_ms) {// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;}else if (temp_diff > TEMP_BED_HYSTERESIS) {// Restart the timer whenever the temperature falls outside the hysteresis.residency_start_ms = now;}#endif // TEMP_BED_RESIDENCY_TIME > 0// Prevent a wait-forever situation if R is misused i.e. M190 R0if (wants_to_cool) {// Break after MIN_COOLING_SLOPE_TIME_BED seconds// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BEDif (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;old_temp = temp;}}} while (wait_for_heatup && TEMP_BED_CONDITIONS);if (wait_for_heatup) lcd_reset_status();#if DISABLED(BUSY_WHILE_HEATING)KEEPALIVE_STATE(IN_HANDLER);#endif}#endif // HAS_HEATED_BED/*** M110: Set Current Line Number*/inline void gcode_M110() {if (parser.seenval('N')) gcode_LastN = parser.value_long();}/*** M111: Set the debug level*/inline void gcode_M111() {if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');static const char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,str_debug_2[] PROGMEM = MSG_DEBUG_INFO,str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION#if ENABLED(DEBUG_LEVELING_FEATURE), str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING#endif;static const char* const debug_strings[] PROGMEM = {str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16#if ENABLED(DEBUG_LEVELING_FEATURE), str_debug_32#endif};SERIAL_ECHO_START();SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);if (marlin_debug_flags) {uint8_t comma = 0;for (uint8_t i = 0; i < COUNT(debug_strings); i++) {if (TEST(marlin_debug_flags, i)) {if (comma++) SERIAL_CHAR(',');serialprintPGM((char*)pgm_read_ptr(&debug_strings[i]));}}}else {SERIAL_ECHOPGM(MSG_DEBUG_OFF);#if !defined(__AVR__) || !defined(USBCON)#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)SERIAL_ECHOPAIR("\nBuffer Overruns: ", customizedSerial.buffer_overruns());#endif#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)SERIAL_ECHOPAIR("\nFraming Errors: ", customizedSerial.framing_errors());#endif#if ENABLED(SERIAL_STATS_DROPPED_RX)SERIAL_ECHOPAIR("\nDropped bytes: ", customizedSerial.dropped());#endif#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)SERIAL_ECHOPAIR("\nMax RX Queue Size: ", customizedSerial.rxMaxEnqueued());#endif#endif // !__AVR__ || !USBCON}SERIAL_EOL();}#if ENABLED(HOST_KEEPALIVE_FEATURE)/*** M113: Get or set Host Keepalive interval (0 to disable)** S<seconds> Optional. Set the keepalive interval.*/inline void gcode_M113() {if (parser.seenval('S')) {host_keepalive_interval = parser.value_byte();NOMORE(host_keepalive_interval, 60);}else {SERIAL_ECHO_START();SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);}}#endif#if ENABLED(BARICUDA)#if HAS_HEATER_1/*** M126: Heater 1 valve open*/inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }/*** M127: Heater 1 valve close*/inline void gcode_M127() { baricuda_valve_pressure = 0; }#endif#if HAS_HEATER_2/*** M128: Heater 2 valve open*/inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }/*** M129: Heater 2 valve close*/inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }#endif#endif // BARICUDA#if ENABLED(ULTIPANEL)/*** M145: Set the heatup state for a material in the LCD menu** S<material> (0=PLA, 1=ABS)* H<hotend temp>* B<bed temp>* F<fan speed>*/inline void gcode_M145() {const uint8_t material = (uint8_t)parser.intval('S');if (material >= COUNT(lcd_preheat_hotend_temp)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);}else {int v;if (parser.seenval('H')) {v = parser.value_int();lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);}if (parser.seenval('F')) {v = parser.value_int();lcd_preheat_fan_speed[material] = constrain(v, 0, 255);}#if TEMP_SENSOR_BED != 0if (parser.seenval('B')) {v = parser.value_int();lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);}#endif}}#endif // ULTIPANEL#if ENABLED(TEMPERATURE_UNITS_SUPPORT)/*** M149: Set temperature units*/inline void gcode_M149() {if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);}#endif#if HAS_POWER_SWITCH/*** M80 : Turn on the Power Supply* M80 S : Report the current state and exit*/inline void gcode_M80() {// S: Report the current power supply state and exitif (parser.seen('S')) {serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));return;}PSU_ON();/*** If you have a switch on suicide pin, this is useful* if you want to start another print with suicide feature after* a print without suicide...*/#if HAS_SUICIDEOUT_WRITE(SUICIDE_PIN, HIGH);#endif#if DISABLED(AUTO_POWER_CONTROL)delay(100); // Wait for power to settlerestore_stepper_drivers();#endif#if ENABLED(ULTIPANEL)lcd_reset_status();#endif}#endif // HAS_POWER_SWITCH/*** M81: Turn off Power, including Power Supply, if there is one.** This code should ALWAYS be available for EMERGENCY SHUTDOWN!*/inline void gcode_M81() {thermalManager.disable_all_heaters();planner.finish_and_disable();#if FAN_COUNT > 0for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;#if ENABLED(PROBING_FANS_OFF)fans_paused = false;ZERO(paused_fanSpeeds);#endif#endifsafe_delay(1000); // Wait 1 second before switching off#if HAS_SUICIDEsuicide();#elif HAS_POWER_SWITCHPSU_OFF();#endif#if ENABLED(ULTIPANEL)LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");#endif}/*** M82: Set E codes absolute (default)*/inline void gcode_M82() { axis_relative_modes[E_CART] = false; }/*** M83: Set E codes relative while in Absolute Coordinates (G90) mode*/inline void gcode_M83() { axis_relative_modes[E_CART] = true; }/*** M18, M84: Disable stepper motors*/inline void gcode_M18_M84() {if (parser.seenval('S')) {stepper_inactive_time = parser.value_millis_from_seconds();}else {bool all_axis = !(parser.seen('X') || parser.seen('Y') || parser.seen('Z') || parser.seen('E'));if (all_axis) {planner.finish_and_disable();}else {planner.synchronize();if (parser.seen('X')) disable_X();if (parser.seen('Y')) disable_Y();if (parser.seen('Z')) disable_Z();#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only disable on boards that have separate ENABLE_PINSif (parser.seen('E')) disable_e_steppers();#endif}#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) // Only needed with an LCDif (ubl.lcd_map_control) ubl.lcd_map_control = defer_return_to_status = false;#endif}}/*** M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)*/inline void gcode_M85() {if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();}/*** Multi-stepper support for M92, M201, M203*/#if ENABLED(DISTINCT_E_FACTORS)#define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return#define TARGET_EXTRUDER target_extruder#else#define GET_TARGET_EXTRUDER(CMD) NOOP#define TARGET_EXTRUDER 0#endif/*** M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.* (for Hangprinter: A, B, C, D, and E)* (Follows the same syntax as G92)** With multiple extruders use T to specify which one.*/inline void gcode_M92() {GET_TARGET_EXTRUDER(92);LOOP_NUM_AXIS(i) {if (parser.seen(RAW_AXIS_CODES(i))) {if (i == E_AXIS) {const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));if (value < 20) {const float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.#if DISABLED(JUNCTION_DEVIATION)planner.max_jerk[E_AXIS] *= factor;#endifplanner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;}planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;}else {#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)SERIAL_ECHOLNPGM("Warning: ""M92 A, B, C, and D only affect acceleration planning ""when BUILDUP_COMPENSATION_FEATURE is enabled.");#endifplanner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);}}}planner.refresh_positioning();}/*** Output the current position to serial*/void report_current_position() {SERIAL_PROTOCOLPAIR("X:", LOGICAL_X_POSITION(current_position[X_AXIS]));SERIAL_PROTOCOLPAIR(" Y:", LOGICAL_Y_POSITION(current_position[Y_AXIS]));SERIAL_PROTOCOLPAIR(" Z:", LOGICAL_Z_POSITION(current_position[Z_AXIS]));SERIAL_PROTOCOLPAIR(" E:", current_position[E_CART]);#if ENABLED(HANGPRINTER)SERIAL_EOL();SERIAL_PROTOCOLPAIR("A:", line_lengths[A_AXIS]);SERIAL_PROTOCOLPAIR(" B:", line_lengths[B_AXIS]);SERIAL_PROTOCOLPAIR(" C:", line_lengths[C_AXIS]);SERIAL_PROTOCOLLNPAIR(" D:", line_lengths[D_AXIS]);#endifstepper.report_positions();#if IS_SCARASERIAL_PROTOCOLPAIR("SCARA Theta:", planner.get_axis_position_degrees(A_AXIS));SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", planner.get_axis_position_degrees(B_AXIS));SERIAL_EOL();#endif}#ifdef M114_DETAILvoid report_xyze(const float pos[], const uint8_t n = 4, const uint8_t precision = 3) {char str[12];for (uint8_t i = 0; i < n; i++) {SERIAL_CHAR(' ');SERIAL_CHAR(axis_codes[i]);SERIAL_CHAR(':');SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));}SERIAL_EOL();}inline void report_xyz(const float pos[]) { report_xyze(pos, 3); }void report_current_position_detail() {SERIAL_PROTOCOLPGM("\nLogical:");const float logical[XYZ] = {LOGICAL_X_POSITION(current_position[X_AXIS]),LOGICAL_Y_POSITION(current_position[Y_AXIS]),LOGICAL_Z_POSITION(current_position[Z_AXIS])};report_xyz(logical);SERIAL_PROTOCOLPGM("Raw: ");report_xyz(current_position);float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };#if PLANNER_LEVELINGSERIAL_PROTOCOLPGM("Leveled:");planner.apply_leveling(leveled);report_xyz(leveled);SERIAL_PROTOCOLPGM("UnLevel:");float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };planner.unapply_leveling(unleveled);report_xyz(unleveled);#endif#if IS_KINEMATIC#if IS_SCARASERIAL_PROTOCOLPGM("ScaraK: ");#elseSERIAL_PROTOCOLPGM("DeltaK: ");#endifinverse_kinematics(leveled); // writes delta[]report_xyz(delta);#endifplanner.synchronize();SERIAL_PROTOCOLPGM("Stepper:");LOOP_NUM_AXIS(i) {SERIAL_CHAR(' ');SERIAL_CHAR(RAW_AXIS_CODES(i));SERIAL_CHAR(':');SERIAL_PROTOCOL(stepper.position((AxisEnum)i));}SERIAL_EOL();#if IS_SCARAconst float deg[XYZ] = {planner.get_axis_position_degrees(A_AXIS),planner.get_axis_position_degrees(B_AXIS)};SERIAL_PROTOCOLPGM("Degrees:");report_xyze(deg, 2);#endifSERIAL_PROTOCOLPGM("FromStp:");get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], planner.get_axis_position_mm(E_AXIS) };report_xyze(from_steppers);const float diff[XYZE] = {from_steppers[X_AXIS] - leveled[X_AXIS],from_steppers[Y_AXIS] - leveled[Y_AXIS],from_steppers[Z_AXIS] - leveled[Z_AXIS],from_steppers[E_CART] - current_position[E_CART]};SERIAL_PROTOCOLPGM("Differ: ");report_xyze(diff);}#endif // M114_DETAIL/*** M114: Report current position to host*/inline void gcode_M114() {#ifdef M114_DETAILif (parser.seen('D')) return report_current_position_detail();#endifplanner.synchronize();const uint16_t sval = parser.ushortval('S');#if ENABLED(MECHADUINO_I2C_COMMANDS)if (sval == 1) return report_axis_position_from_encoder_data();#endifif (sval == 2) return report_xyz_from_stepper_position();report_current_position();}/*** M115: Capabilities string*/#if ENABLED(EXTENDED_CAPABILITIES_REPORT)static void cap_line(const char * const name, bool ena=false) {SERIAL_PROTOCOLPGM("Cap:");serialprintPGM(name);SERIAL_PROTOCOLPGM(":");SERIAL_PROTOCOLLN(int(ena ? 1 : 0));}#endifinline void gcode_M115() {SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);#if ENABLED(EXTENDED_CAPABILITIES_REPORT)// SERIAL_XON_XOFFcap_line(PSTR("SERIAL_XON_XOFF")#if ENABLED(SERIAL_XON_XOFF), true#endif);// EEPROM (M500, M501)cap_line(PSTR("EEPROM")#if ENABLED(EEPROM_SETTINGS), true#endif);// Volumetric Extrusion (M200)cap_line(PSTR("VOLUMETRIC")#if DISABLED(NO_VOLUMETRICS), true#endif);// AUTOREPORT_TEMP (M155)cap_line(PSTR("AUTOREPORT_TEMP")#if ENABLED(AUTO_REPORT_TEMPERATURES), true#endif);// PROGRESS (M530 S L, M531 <file>, M532 X L)cap_line(PSTR("PROGRESS"));// Print Job timer M75, M76, M77cap_line(PSTR("PRINT_JOB"), true);// AUTOLEVEL (G29)cap_line(PSTR("AUTOLEVEL")#if HAS_AUTOLEVEL, true#endif);// Z_PROBE (G30)cap_line(PSTR("Z_PROBE")#if HAS_BED_PROBE, true#endif);// MESH_REPORT (M420 V)cap_line(PSTR("LEVELING_DATA")#if HAS_LEVELING, true#endif);// BUILD_PERCENT (M73)cap_line(PSTR("BUILD_PERCENT")#if ENABLED(LCD_SET_PROGRESS_MANUALLY), true#endif);// SOFTWARE_POWER (M80, M81)cap_line(PSTR("SOFTWARE_POWER")#if HAS_POWER_SWITCH, true#endif);// CASE LIGHTS (M355)cap_line(PSTR("TOGGLE_LIGHTS")#if HAS_CASE_LIGHT, true#endif);cap_line(PSTR("CASE_LIGHT_BRIGHTNESS")#if HAS_CASE_LIGHT, USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)#endif);// EMERGENCY_PARSER (M108, M112, M410)cap_line(PSTR("EMERGENCY_PARSER")#if ENABLED(EMERGENCY_PARSER), true#endif);// AUTOREPORT_SD_STATUS (M27 extension)cap_line(PSTR("AUTOREPORT_SD_STATUS")#if ENABLED(AUTO_REPORT_SD_STATUS), true#endif);// THERMAL_PROTECTIONcap_line(PSTR("THERMAL_PROTECTION")#if ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(THERMAL_PROTECTION_BED), true#endif);#endif // EXTENDED_CAPABILITIES_REPORT}/*** M117: Set LCD Status Message*/inline void gcode_M117() {if (parser.string_arg[0])lcd_setstatus(parser.string_arg);elselcd_reset_status();}/*** M118: Display a message in the host console.** A1 Prepend '// ' for an action command, as in OctoPrint* E1 Have the host 'echo:' the text*/inline void gcode_M118() {bool hasE = false, hasA = false;char *p = parser.string_arg;for (uint8_t i = 2; i--;)if ((p[0] == 'A' || p[0] == 'E') && p[1] == '1') {if (p[0] == 'A') hasA = true;if (p[0] == 'E') hasE = true;p += 2;while (*p == ' ') ++p;}if (hasE) SERIAL_ECHO_START();if (hasA) SERIAL_ECHOPGM("// ");SERIAL_ECHOLN(p);}/*** M119: Output endstop states to serial output*/inline void gcode_M119() { endstops.M119(); }/*** M120: Enable endstops and set non-homing endstop state to "enabled"*/inline void gcode_M120() { endstops.enable_globally(true); }/*** M121: Disable endstops and set non-homing endstop state to "disabled"*/inline void gcode_M121() { endstops.enable_globally(false); }#if ENABLED(PARK_HEAD_ON_PAUSE)/*** M125: Store current position and move to filament change position.* Called on pause (by M25) to prevent material leaking onto the* object. On resume (M24) the head will be moved back and the* print will resume.** If Marlin is compiled without SD Card support, M125 can be* used directly to pause the print and move to park position,* resuming with a button click or M108.** L = override retract length* X = override X* Y = override Y* Z = override Z raise*/inline void gcode_M125() {// Initial retract before move to filament change positionconst float retract = -ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0#ifdef PAUSE_PARK_RETRACT_LENGTH+ (PAUSE_PARK_RETRACT_LENGTH)#endif);point_t park_point = NOZZLE_PARK_POINT;// Move XY axes to filament change position or given positionif (parser.seenval('X')) park_point.x = parser.linearval('X');if (parser.seenval('Y')) park_point.y = parser.linearval('Y');// Lift Z axisif (parser.seenval('Z')) park_point.z = parser.linearval('Z');#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) && DISABLED(DELTA)park_point.x += (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0);park_point.y += (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0);#endif#if DISABLED(SDSUPPORT)const bool job_running = print_job_timer.isRunning();#endifif (pause_print(retract, park_point)) {#if DISABLED(SDSUPPORT)// Wait for lcd click or M108wait_for_filament_reload();// Return to print position and continueresume_print();if (job_running) print_job_timer.start();#endif}}#endif // PARK_HEAD_ON_PAUSE#if HAS_COLOR_LEDS/*** M150: Set Status LED Color - Use R-U-B-W for R-G-B-W* and Brightness - Use P (for NEOPIXEL only)** Always sets all 3 or 4 components. If a component is left out, set to 0.* If brightness is left out, no value changed** Examples:** M150 R255 ; Turn LED red* M150 R255 U127 ; Turn LED orange (PWM only)* M150 ; Turn LED off* M150 R U B ; Turn LED white* M150 W ; Turn LED white using a white LED* M150 P127 ; Set LED 50% brightness* M150 P ; Set LED full brightness*/inline void gcode_M150() {leds.set_color(MakeLEDColor(parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0,parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0,parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()));}#endif // HAS_COLOR_LEDS#if DISABLED(NO_VOLUMETRICS)/*** M200: Set filament diameter and set E axis units to cubic units** T<extruder> - Optional extruder number. Current extruder if omitted.* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.*/inline void gcode_M200() {if (get_target_extruder_from_command(200)) return;if (parser.seen('D')) {// setting any extruder filament size disables volumetric on the assumption that// slicers either generate in extruder values as cubic mm or as as filament feeds// for all extrudersif ( (parser.volumetric_enabled = (parser.value_linear_units() != 0)) )planner.set_filament_size(target_extruder, parser.value_linear_units());}planner.calculate_volumetric_multipliers();}#endif // !NO_VOLUMETRICS/*** M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)** With multiple extruders use T to specify which one.*/inline void gcode_M201() {GET_TARGET_EXTRUDER(201);LOOP_NUM_AXIS(i) {if (parser.seen(RAW_AXIS_CODES(i))) {const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);}}// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)planner.reset_acceleration_rates();}#if 0 // Not used for Sprinter/grbl gen6inline void gcode_M202() {LOOP_XYZE(i) {if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];}}#endif/*** M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec** With multiple extruders use T to specify which one.*/inline void gcode_M203() {GET_TARGET_EXTRUDER(203);LOOP_NUM_AXIS(i)if (parser.seen(RAW_AXIS_CODES(i))) {const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);}}/*** M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)** P = Printing moves* R = Retract only (no X, Y, Z) moves* T = Travel (non printing) moves*/inline void gcode_M204() {bool report = true;if (parser.seenval('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.planner.travel_acceleration = planner.acceleration = parser.value_linear_units();report = false;}if (parser.seenval('P')) {planner.acceleration = parser.value_linear_units();report = false;}if (parser.seenval('R')) {planner.retract_acceleration = parser.value_linear_units();report = false;}if (parser.seenval('T')) {planner.travel_acceleration = parser.value_linear_units();report = false;}if (report) {SERIAL_ECHOPAIR("Acceleration: P", planner.acceleration);SERIAL_ECHOPAIR(" R", planner.retract_acceleration);SERIAL_ECHOLNPAIR(" T", planner.travel_acceleration);}}/*** M205: Set Advanced Settings** Q = Min Segment Time (µs)* S = Min Feed Rate (units/s)* T = Min Travel Feed Rate (units/s)* X = Max X Jerk (units/sec^2)* Y = Max Y Jerk (units/sec^2)* Z = Max Z Jerk (units/sec^2)* E = Max E Jerk (units/sec^2)* J = Junction Deviation (mm) (Requires JUNCTION_DEVIATION)*/inline void gcode_M205() {if (parser.seen('Q')) planner.min_segment_time_us = parser.value_ulong();if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();#if ENABLED(JUNCTION_DEVIATION)if (parser.seen('J')) {const float junc_dev = parser.value_linear_units();if (WITHIN(junc_dev, 0.01f, 0.3f)) {planner.junction_deviation_mm = junc_dev;planner.recalculate_max_e_jerk();}else {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("?J out of range (0.01 to 0.3)");}}#else#if ENABLED(HANGPRINTER)if (parser.seen('A')) planner.max_jerk[A_AXIS] = parser.value_linear_units();if (parser.seen('B')) planner.max_jerk[B_AXIS] = parser.value_linear_units();if (parser.seen('C')) planner.max_jerk[C_AXIS] = parser.value_linear_units();if (parser.seen('D')) planner.max_jerk[D_AXIS] = parser.value_linear_units();#elseif (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();if (parser.seen('Z')) {planner.max_jerk[Z_AXIS] = parser.value_linear_units();#if HAS_MESHif (planner.max_jerk[Z_AXIS] <= 0.1f)SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");#endif}#endifif (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();#endif}#if HAS_M206_COMMAND/*** M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y** *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.* *** M206 for SCARA will remain enabled in 1.1.x for compatibility.* *** In the next 1.2 release, it will simply be disabled by default.*/inline void gcode_M206() {LOOP_XYZ(i)if (parser.seen(axis_codes[i]))set_home_offset((AxisEnum)i, parser.value_linear_units());#if ENABLED(MORGAN_SCARA)if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Thetaif (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi#endifreport_current_position();}#endif // HAS_M206_COMMAND#if ENABLED(DELTA)/*** M665: Set delta configurations** H = delta height* L = diagonal rod* R = delta radius* S = segments per second* B = delta calibration radius* X = Alpha (Tower 1) angle trim* Y = Beta (Tower 2) angle trim* Z = Gamma (Tower 3) angle trim*/inline void gcode_M665() {if (parser.seen('H')) delta_height = parser.value_linear_units();if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();if (parser.seen('R')) delta_radius = parser.value_linear_units();if (parser.seen('S')) delta_segments_per_second = parser.value_float();if (parser.seen('B')) delta_calibration_radius = parser.value_float();if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();recalc_delta_settings();}/*** M666: Set delta endstop adjustment*/inline void gcode_M666() {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM(">>> gcode_M666");}#endifLOOP_XYZ(i) {if (parser.seen(axis_codes[i])) {if (parser.value_linear_units() * Z_HOME_DIR <= 0)delta_endstop_adj[i] = parser.value_linear_units();#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);}#endif}}#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPGM("<<< gcode_M666");}#endif}#elif IS_SCARA/*** M665: Set SCARA settings** Parameters:** S[segments-per-second] - Segments-per-second* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle** A, P, and X are all aliases for the shoulder angle* B, T, and Y are all aliases for the elbow angle*/inline void gcode_M665() {if (parser.seen('S')) delta_segments_per_second = parser.value_float();const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');const uint8_t sumAPX = hasA + hasP + hasX;if (sumAPX == 1)home_offset[A_AXIS] = parser.value_float();else if (sumAPX > 1) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");return;}const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');const uint8_t sumBTY = hasB + hasT + hasY;if (sumBTY == 1)home_offset[B_AXIS] = parser.value_float();else if (sumBTY > 1) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");return;}}#elif ENABLED(HANGPRINTER)/*** M665: Set HANGPRINTER settings** Parameters:** W[anchor_A_y] - A-anchor's y coordinate (see note)* E[anchor_A_z] - A-anchor's z coordinate (see note)* R[anchor_B_x] - B-anchor's x coordinate (see note)* T[anchor_B_y] - B-anchor's y coordinate (see note)* Y[anchor_B_z] - B-anchor's z coordinate (see note)* U[anchor_C_x] - C-anchor's x coordinate (see note)* I[anchor_C_y] - C-anchor's y coordinate (see note)* O[anchor_C_z] - C-anchor's z coordinate (see note)* P[anchor_D_z] - D-anchor's z coordinate (see note)* S[segments-per-second] - Segments-per-second** Note: All xyz coordinates are measured relative to the line's pivot point in the mover,* when it is at its home position (nozzle in (0,0,0), and lines tight).* The y-axis is defined to be horizontal right above/below the A-lines when mover is at home.* The z-axis is along the vertical direction.*/inline void gcode_M665() {if (parser.seen('W')) anchor_A_y = parser.value_float();if (parser.seen('E')) anchor_A_z = parser.value_float();if (parser.seen('R')) anchor_B_x = parser.value_float();if (parser.seen('T')) anchor_B_y = parser.value_float();if (parser.seen('Y')) anchor_B_z = parser.value_float();if (parser.seen('U')) anchor_C_x = parser.value_float();if (parser.seen('I')) anchor_C_y = parser.value_float();if (parser.seen('O')) anchor_C_z = parser.value_float();if (parser.seen('P')) anchor_D_z = parser.value_float();if (parser.seen('S')) delta_segments_per_second = parser.value_float();recalc_hangprinter_settings();}#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)/*** M666: Set Dual Endstops offsets for X, Y, and/or Z.* With no parameters report current offsets.*/inline void gcode_M666() {bool report = true;#if ENABLED(X_DUAL_ENDSTOPS)if (parser.seenval('X')) {endstops.x_endstop_adj = parser.value_linear_units();report = false;}#endif#if ENABLED(Y_DUAL_ENDSTOPS)if (parser.seenval('Y')) {endstops.y_endstop_adj = parser.value_linear_units();report = false;}#endif#if ENABLED(Z_DUAL_ENDSTOPS)if (parser.seenval('Z')) {endstops.z_endstop_adj = parser.value_linear_units();report = false;}#endifif (report) {SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");#if ENABLED(X_DUAL_ENDSTOPS)SERIAL_ECHOPAIR(" X", endstops.x_endstop_adj);#endif#if ENABLED(Y_DUAL_ENDSTOPS)SERIAL_ECHOPAIR(" Y", endstops.y_endstop_adj);#endif#if ENABLED(Z_DUAL_ENDSTOPS)SERIAL_ECHOPAIR(" Z", endstops.z_endstop_adj);#endifSERIAL_EOL();}}#endif // X_DUAL_ENDSTOPS || Y_DUAL_ENDSTOPS || Z_DUAL_ENDSTOPS#if ENABLED(FWRETRACT)/*** M207: Set firmware retraction values** S[+units] retract_length* W[+units] swap_retract_length (multi-extruder)* F[units/min] retract_feedrate_mm_s* Z[units] retract_zlift*/inline void gcode_M207() {if (parser.seen('S')) fwretract.retract_length = parser.value_axis_units(E_AXIS);if (parser.seen('F')) fwretract.retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));if (parser.seen('Z')) fwretract.retract_zlift = parser.value_linear_units();if (parser.seen('W')) fwretract.swap_retract_length = parser.value_axis_units(E_AXIS);}/*** M208: Set firmware un-retraction values** S[+units] retract_recover_length (in addition to M207 S*)* W[+units] swap_retract_recover_length (multi-extruder)* F[units/min] retract_recover_feedrate_mm_s* R[units/min] swap_retract_recover_feedrate_mm_s*/inline void gcode_M208() {if (parser.seen('S')) fwretract.retract_recover_length = parser.value_axis_units(E_AXIS);if (parser.seen('F')) fwretract.retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));if (parser.seen('R')) fwretract.swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));if (parser.seen('W')) fwretract.swap_retract_recover_length = parser.value_axis_units(E_AXIS);}/*** M209: Enable automatic retract (M209 S1)* For slicers that don't support G10/11, reversed extrude-only* moves will be classified as retraction.*/inline void gcode_M209() {if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {if (parser.seen('S')) {fwretract.autoretract_enabled = parser.value_bool();for (uint8_t i = 0; i < EXTRUDERS; i++) fwretract.retracted[i] = false;}}}#endif // FWRETRACT/*** M211: Enable, Disable, and/or Report software endstops** Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report*/inline void gcode_M211() {SERIAL_ECHO_START();#if HAS_SOFTWARE_ENDSTOPSif (parser.seen('S')) soft_endstops_enabled = parser.value_bool();SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));#elseSERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);SERIAL_ECHOPGM(MSG_OFF);#endifSERIAL_ECHOPGM(MSG_SOFT_MIN);SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_min[X_AXIS]));SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_min[Y_AXIS]));SERIAL_ECHOPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_min[Z_AXIS]));SERIAL_ECHOPGM(MSG_SOFT_MAX);SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_max[X_AXIS]));SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_max[Y_AXIS]));SERIAL_ECHOLNPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_max[Z_AXIS]));}#if HOTENDS > 1/*** M218 - Set/get hotend offset (in linear units)** T<tool>* X<xoffset>* Y<yoffset>* Z<zoffset> - Available with DUAL_X_CARRIAGE, SWITCHING_NOZZLE, and PARKING_EXTRUDER*/inline void gcode_M218() {if (get_target_extruder_from_command(218) || target_extruder == 0) return;bool report = true;if (parser.seenval('X')) {hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();report = false;}if (parser.seenval('Y')) {hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();report = false;}#if HAS_HOTEND_OFFSET_Zif (parser.seenval('Z')) {hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();report = false;}#endifif (report) {SERIAL_ECHO_START();SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);HOTEND_LOOP() {SERIAL_CHAR(' ');SERIAL_ECHO(hotend_offset[X_AXIS][e]);SERIAL_CHAR(',');SERIAL_ECHO(hotend_offset[Y_AXIS][e]);#if HAS_HOTEND_OFFSET_ZSERIAL_CHAR(',');SERIAL_ECHO(hotend_offset[Z_AXIS][e]);#endif}SERIAL_EOL();}#if ENABLED(DELTA)if (target_extruder == active_extruder)do_blocking_move_to_xy(current_position[X_AXIS], current_position[Y_AXIS], planner.max_feedrate_mm_s[X_AXIS]);#endif}#endif // HOTENDS > 1/*** M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)*/inline void gcode_M220() {if (parser.seenval('S')) feedrate_percentage = parser.value_int();}/*** M221: Set extrusion percentage (M221 T0 S95)*/inline void gcode_M221() {if (get_target_extruder_from_command(221)) return;if (parser.seenval('S')) {planner.flow_percentage[target_extruder] = parser.value_int();planner.refresh_e_factor(target_extruder);}else {SERIAL_ECHO_START();SERIAL_CHAR('E');SERIAL_CHAR('0' + target_extruder);SERIAL_ECHOPAIR(" Flow: ", planner.flow_percentage[target_extruder]);SERIAL_CHAR('%');SERIAL_EOL();}}/*** M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)*/inline void gcode_M226() {if (parser.seen('P')) {const int pin = parser.value_int(), pin_state = parser.intval('S', -1);if (WITHIN(pin_state, -1, 1) && pin > -1) {if (pin_is_protected(pin))protected_pin_err();else {int target = LOW;planner.synchronize();pinMode(pin, INPUT);switch (pin_state) {case 1: target = HIGH; break;case 0: target = LOW; break;case -1: target = !digitalRead(pin); break;}while (digitalRead(pin) != target) idle();}} // pin_state -1 0 1 && pin > -1} // parser.seen('P')}#if ENABLED(EXPERIMENTAL_I2CBUS)/*** M260: Send data to a I2C slave device** This is a PoC, the formating and arguments for the GCODE will* change to be more compatible, the current proposal is:** M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to** M260 B<byte-1 value in base 10>* M260 B<byte-2 value in base 10>* M260 B<byte-3 value in base 10>** M260 S1 ; Send the buffered data and reset the buffer* M260 R1 ; Reset the buffer without sending data**/inline void gcode_M260() {// Set the target addressif (parser.seen('A')) i2c.address(parser.value_byte());// Add a new byte to the bufferif (parser.seen('B')) i2c.addbyte(parser.value_byte());// Flush the buffer to the busif (parser.seen('S')) i2c.send();// Reset and rewind the bufferelse if (parser.seen('R')) i2c.reset();}/*** M261: Request X bytes from I2C slave device** Usage: M261 A<slave device address base 10> B<number of bytes>*/inline void gcode_M261() {if (parser.seen('A')) i2c.address(parser.value_byte());uint8_t bytes = parser.byteval('B', 1);if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {i2c.relay(bytes);}else {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("Bad i2c request");}}#endif // EXPERIMENTAL_I2CBUS#if HAS_SERVOS/*** M280: Get or set servo position. P<index> [S<angle>]*/inline void gcode_M280() {if (!parser.seen('P')) return;const int servo_index = parser.value_int();if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {if (parser.seen('S'))MOVE_SERVO(servo_index, parser.value_int());else {SERIAL_ECHO_START();SERIAL_ECHOPAIR(" Servo ", servo_index);SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());}}else {SERIAL_ERROR_START();SERIAL_ECHOPAIR("Servo ", servo_index);SERIAL_ECHOLNPGM(" out of range");}}#endif // HAS_SERVOS#if ENABLED(BABYSTEPPING)#if ENABLED(BABYSTEP_ZPROBE_OFFSET)FORCE_INLINE void mod_zprobe_zoffset(const float &offs) {zprobe_zoffset += offs;SERIAL_ECHO_START();SERIAL_ECHOLNPAIR(MSG_PROBE_Z_OFFSET ": ", zprobe_zoffset);}#endif/*** M290: Babystepping*/inline void gcode_M290() {#if ENABLED(BABYSTEP_XY)for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);#if ENABLED(BABYSTEP_ZPROBE_OFFSET)if (a == Z_AXIS && (!parser.seen('P') || parser.value_bool())) mod_zprobe_zoffset(offs);#endif}#elseif (parser.seenval('Z') || parser.seenval('S')) {const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);#if ENABLED(BABYSTEP_ZPROBE_OFFSET)if (!parser.seen('P') || parser.value_bool()) mod_zprobe_zoffset(offs);#endif}#endif}#endif // BABYSTEPPING#if HAS_BUZZER/*** M300: Play beep sound S<frequency Hz> P<duration ms>*/inline void gcode_M300() {uint16_t const frequency = parser.ushortval('S', 260);uint16_t duration = parser.ushortval('P', 1000);// Limits the tone duration to 0-5 seconds.NOMORE(duration, 5000);BUZZ(duration, frequency);}#endif // HAS_BUZZER#if ENABLED(PIDTEMP)/*** M301: Set PID parameters P I D (and optionally C, L)** P[float] Kp term* I[float] Ki term (unscaled)* D[float] Kd term (unscaled)** With PID_EXTRUSION_SCALING:** C[float] Kc term* L[int] LPQ length*/inline void gcode_M301() {// multi-extruder PID patch: M301 updates or prints a single extruder's PID values// default behaviour (omitting E parameter) is to update for extruder 0 onlyconst uint8_t e = parser.byteval('E'); // extruder being updatedif (e < HOTENDS) { // catch bad input valueif (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());#if ENABLED(PID_EXTRUSION_SCALING)if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();if (parser.seen('L')) thermalManager.lpq_len = parser.value_float();NOMORE(thermalManager.lpq_len, LPQ_MAX_LEN);NOLESS(thermalManager.lpq_len, 0);#endifthermalManager.update_pid();SERIAL_ECHO_START();#if ENABLED(PID_PARAMS_PER_HOTEND)SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output#endif // PID_PARAMS_PER_HOTENDSERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));#if ENABLED(PID_EXTRUSION_SCALING)//Kc does not have scaling applied above, or in resetting defaultsSERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));#endifSERIAL_EOL();}else {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER);}}#endif // PIDTEMP#if ENABLED(PIDTEMPBED)inline void gcode_M304() {if (parser.seen('P')) thermalManager.bedKp = parser.value_float();if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());SERIAL_ECHO_START();SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));}#endif // PIDTEMPBED#if defined(CHDK) || HAS_PHOTOGRAPH/*** M240: Trigger a camera by emulating a Canon RC-1* See http://www.doc-diy.net/photo/rc-1_hacked/*/inline void gcode_M240() {#ifdef CHDKOUT_WRITE(CHDK, HIGH);chdkHigh = millis();chdkActive = true;#elif HAS_PHOTOGRAPHconst uint8_t NUM_PULSES = 16;const float PULSE_LENGTH = 0.01524;for (int i = 0; i < NUM_PULSES; i++) {WRITE(PHOTOGRAPH_PIN, HIGH);_delay_ms(PULSE_LENGTH);WRITE(PHOTOGRAPH_PIN, LOW);_delay_ms(PULSE_LENGTH);}delay(7.33);for (int i = 0; i < NUM_PULSES; i++) {WRITE(PHOTOGRAPH_PIN, HIGH);_delay_ms(PULSE_LENGTH);WRITE(PHOTOGRAPH_PIN, LOW);_delay_ms(PULSE_LENGTH);}#endif // !CHDK && HAS_PHOTOGRAPH}#endif // CHDK || PHOTOGRAPH_PIN#if HAS_LCD_CONTRAST/*** M250: Read and optionally set the LCD contrast*/inline void gcode_M250() {if (parser.seen('C')) set_lcd_contrast(parser.value_int());SERIAL_PROTOCOLPGM("lcd contrast value: ");SERIAL_PROTOCOL(lcd_contrast);SERIAL_EOL();}#endif // HAS_LCD_CONTRAST#if ENABLED(PREVENT_COLD_EXTRUSION)/*** M302: Allow cold extrudes, or set the minimum extrude temperature** S<temperature> sets the minimum extrude temperature* P<bool> enables (1) or disables (0) cold extrusion** Examples:** M302 ; report current cold extrusion state* M302 P0 ; enable cold extrusion checking* M302 P1 ; disables cold extrusion checking* M302 S0 ; always allow extrusion (disables checking)* M302 S170 ; only allow extrusion above 170* M302 S170 P1 ; set min extrude temp to 170 but leave disabled*/inline void gcode_M302() {const bool seen_S = parser.seen('S');if (seen_S) {thermalManager.extrude_min_temp = parser.value_celsius();thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);}if (parser.seen('P'))thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();else if (!seen_S) {// Report current stateSERIAL_ECHO_START();SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);SERIAL_ECHOLNPGM("C)");}}#endif // PREVENT_COLD_EXTRUSION/*** M303: PID relay autotune** S<temperature> sets the target temperature. (default 150C / 70C)* E<extruder> (-1 for the bed) (default 0)* C<cycles>* U<bool> with a non-zero value will apply the result to current settings*/inline void gcode_M303() {#if HAS_PID_HEATINGconst int e = parser.intval('E'), c = parser.intval('C', 5);const bool u = parser.boolval('U');int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);if (WITHIN(e, 0, HOTENDS - 1))target_extruder = e;#if DISABLED(BUSY_WHILE_HEATING)KEEPALIVE_STATE(NOT_BUSY);#endifthermalManager.pid_autotune(temp, e, c, u);#if DISABLED(BUSY_WHILE_HEATING)KEEPALIVE_STATE(IN_HANDLER);#endif#elseSERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);#endif}#if ENABLED(MORGAN_SCARA)bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {if (IsRunning()) {forward_kinematics_SCARA(delta_a, delta_b);destination[X_AXIS] = cartes[X_AXIS];destination[Y_AXIS] = cartes[Y_AXIS];destination[Z_AXIS] = current_position[Z_AXIS];prepare_move_to_destination();return true;}return false;}/*** M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)*/inline bool gcode_M360() {SERIAL_ECHOLNPGM(" Cal: Theta 0");return SCARA_move_to_cal(0, 120);}/*** M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)*/inline bool gcode_M361() {SERIAL_ECHOLNPGM(" Cal: Theta 90");return SCARA_move_to_cal(90, 130);}/*** M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)*/inline bool gcode_M362() {SERIAL_ECHOLNPGM(" Cal: Psi 0");return SCARA_move_to_cal(60, 180);}/*** M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)*/inline bool gcode_M363() {SERIAL_ECHOLNPGM(" Cal: Psi 90");return SCARA_move_to_cal(50, 90);}/*** M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)*/inline bool gcode_M364() {SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");return SCARA_move_to_cal(45, 135);}#endif // SCARA#if ENABLED(EXT_SOLENOID)void enable_solenoid(const uint8_t num) {switch (num) {case 0:OUT_WRITE(SOL0_PIN, HIGH);break;#if HAS_SOLENOID_1 && EXTRUDERS > 1case 1:OUT_WRITE(SOL1_PIN, HIGH);break;#endif#if HAS_SOLENOID_2 && EXTRUDERS > 2case 2:OUT_WRITE(SOL2_PIN, HIGH);break;#endif#if HAS_SOLENOID_3 && EXTRUDERS > 3case 3:OUT_WRITE(SOL3_PIN, HIGH);break;#endif#if HAS_SOLENOID_4 && EXTRUDERS > 4case 4:OUT_WRITE(SOL4_PIN, HIGH);break;#endifdefault:SERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);break;}}void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }void disable_all_solenoids() {OUT_WRITE(SOL0_PIN, LOW);#if HAS_SOLENOID_1 && EXTRUDERS > 1OUT_WRITE(SOL1_PIN, LOW);#endif#if HAS_SOLENOID_2 && EXTRUDERS > 2OUT_WRITE(SOL2_PIN, LOW);#endif#if HAS_SOLENOID_3 && EXTRUDERS > 3OUT_WRITE(SOL3_PIN, LOW);#endif#if HAS_SOLENOID_4 && EXTRUDERS > 4OUT_WRITE(SOL4_PIN, LOW);#endif}/*** M380: Enable solenoid on the active extruder*/inline void gcode_M380() { enable_solenoid_on_active_extruder(); }/*** M381: Disable all solenoids*/inline void gcode_M381() { disable_all_solenoids(); }#endif // EXT_SOLENOID/*** M400: Finish all moves*/inline void gcode_M400() { planner.synchronize(); }#if HAS_BED_PROBE/*** M401: Deploy and activate the Z probe*/inline void gcode_M401() {DEPLOY_PROBE();report_current_position();}/*** M402: Deactivate and stow the Z probe*/inline void gcode_M402() {STOW_PROBE();#ifdef Z_AFTER_PROBINGmove_z_after_probing();#endifreport_current_position();}#endif // HAS_BED_PROBE#if ENABLED(FILAMENT_WIDTH_SENSOR)/*** M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>*/inline void gcode_M404() {if (parser.seen('W')) {filament_width_nominal = parser.value_linear_units();planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);}else {SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");SERIAL_PROTOCOLLN(filament_width_nominal);}}/*** M405: Turn on filament sensor for control*/inline void gcode_M405() {// This is technically a linear measurement, but since it's quantized to centimeters and is a different// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().if (parser.seen('D')) {meas_delay_cm = parser.value_byte();NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);}if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startupconst int8_t temp_ratio = thermalManager.widthFil_to_size_ratio();for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)measurement_delay[i] = temp_ratio;filwidth_delay_index[0] = filwidth_delay_index[1] = 0;}filament_sensor = true;}/*** M406: Turn off filament sensor for control*/inline void gcode_M406() {filament_sensor = false;planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value}/*** M407: Get measured filament diameter on serial output*/inline void gcode_M407() {SERIAL_PROTOCOLPGM("Filament dia (measured mm):");SERIAL_PROTOCOLLN(filament_width_meas);}#endif // FILAMENT_WIDTH_SENSORvoid quickstop_stepper() {planner.quick_stop();planner.synchronize();set_current_from_steppers_for_axis(ALL_AXES);SYNC_PLAN_POSITION_KINEMATIC();}#if HAS_LEVELING//#define M420_C_USE_MEAN/*** M420: Enable/Disable Bed Leveling and/or set the Z fade height.** S[bool] Turns leveling on or off* Z[height] Sets the Z fade height (0 or none to disable)* V[bool] Verbose - Print the leveling grid** With AUTO_BED_LEVELING_UBL only:** L[index] Load UBL mesh from index (0 is default)* T[map] 0:Human-readable 1:CSV 2:"LCD" 4:Compact** With mesh-based leveling only:** C Center mesh on the mean of the lowest and highest*/inline void gcode_M420() {const bool seen_S = parser.seen('S');bool to_enable = seen_S ? parser.value_bool() : planner.leveling_active;// If disabling leveling do it right away// (Don't disable for just M420 or M420 V)if (seen_S && !to_enable) set_bed_leveling_enabled(false);const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };#if ENABLED(AUTO_BED_LEVELING_UBL)// L to load a mesh from the EEPROMif (parser.seen('L')) {set_bed_leveling_enabled(false);#if ENABLED(EEPROM_SETTINGS)const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;const int16_t a = settings.calc_num_meshes();if (!a) {SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");return;}if (!WITHIN(storage_slot, 0, a - 1)) {SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);return;}settings.load_mesh(storage_slot);ubl.storage_slot = storage_slot;#elseSERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");return;#endif}// L or V display the map infoif (parser.seen('L') || parser.seen('V')) {ubl.display_map(parser.byteval('T'));SERIAL_ECHOPGM("Mesh is ");if (!ubl.mesh_is_valid()) SERIAL_ECHOPGM("in");SERIAL_ECHOLNPAIR("valid\nStorage slot: ", ubl.storage_slot);}#endif // AUTO_BED_LEVELING_UBL#if HAS_MESH#if ENABLED(MESH_BED_LEVELING)#define Z_VALUES(X,Y) mbl.z_values[X][Y]#else#define Z_VALUES(X,Y) z_values[X][Y]#endif// Subtract the given value or the mean from all mesh valuesif (leveling_is_valid() && parser.seen('C')) {const float cval = parser.value_float();#if ENABLED(AUTO_BED_LEVELING_UBL)set_bed_leveling_enabled(false);ubl.adjust_mesh_to_mean(true, cval);#else#if ENABLED(M420_C_USE_MEAN)// Get the sum and average of all mesh valuesfloat mesh_sum = 0;for (uint8_t x = GRID_MAX_POINTS_X; x--;)for (uint8_t y = GRID_MAX_POINTS_Y; y--;)mesh_sum += Z_VALUES(x, y);const float zmean = mesh_sum / float(GRID_MAX_POINTS);#else// Find the low and high mesh valuesfloat lo_val = 100, hi_val = -100;for (uint8_t x = GRID_MAX_POINTS_X; x--;)for (uint8_t y = GRID_MAX_POINTS_Y; y--;) {const float z = Z_VALUES(x, y);NOMORE(lo_val, z);NOLESS(hi_val, z);}// Take the mean of the lowest and highestconst float zmean = (lo_val + hi_val) / 2.0 + cval;#endif// If not very close to 0, adjust the meshif (!NEAR_ZERO(zmean)) {set_bed_leveling_enabled(false);// Subtract the mean from all valuesfor (uint8_t x = GRID_MAX_POINTS_X; x--;)for (uint8_t y = GRID_MAX_POINTS_Y; y--;)Z_VALUES(x, y) -= zmean;#if ENABLED(ABL_BILINEAR_SUBDIVISION)bed_level_virt_interpolate();#endif}#endif}#endif // HAS_MESH// V to print the matrix or meshif (parser.seen('V')) {#if ABL_PLANARplanner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));#elseif (leveling_is_valid()) {#if ENABLED(AUTO_BED_LEVELING_BILINEAR)print_bilinear_leveling_grid();#if ENABLED(ABL_BILINEAR_SUBDIVISION)print_bilinear_leveling_grid_virt();#endif#elif ENABLED(MESH_BED_LEVELING)SERIAL_ECHOLNPGM("Mesh Bed Level data:");mbl.report_mesh();#endif}#endif}#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units(), false);#endif// Enable leveling if specified, or if previously activeset_bed_leveling_enabled(to_enable);// Error if leveling failed to enable or reenableif (to_enable && !planner.leveling_active) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);}SERIAL_ECHO_START();SERIAL_ECHOLNPAIR("Bed Leveling ", planner.leveling_active ? MSG_ON : MSG_OFF);#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)SERIAL_ECHO_START();SERIAL_ECHOPGM("Fade Height ");if (planner.z_fade_height > 0.0)SERIAL_ECHOLN(planner.z_fade_height);elseSERIAL_ECHOLNPGM(MSG_OFF);#endif// Report change in positionif (memcmp(oldpos, current_position, sizeof(oldpos)))report_current_position();}#endif // HAS_LEVELING#if ENABLED(MESH_BED_LEVELING)/*** M421: Set a single Mesh Bed Leveling Z coordinate** Usage:* M421 X<linear> Y<linear> Z<linear>* M421 X<linear> Y<linear> Q<offset>* M421 I<xindex> J<yindex> Z<linear>* M421 I<xindex> J<yindex> Q<offset>*/inline void gcode_M421() {const bool hasX = parser.seen('X'), hasI = parser.seen('I');const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);}else if (ix < 0 || iy < 0) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);}elsembl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));}#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)/*** M421: Set a single Mesh Bed Leveling Z coordinate** Usage:* M421 I<xindex> J<yindex> Z<linear>* M421 I<xindex> J<yindex> Q<offset>*/inline void gcode_M421() {int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);const bool hasI = ix >= 0,hasJ = iy >= 0,hasZ = parser.seen('Z'),hasQ = !hasZ && parser.seen('Q');if (!hasI || !hasJ || !(hasZ || hasQ)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);}else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);}else {z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);#if ENABLED(ABL_BILINEAR_SUBDIVISION)bed_level_virt_interpolate();#endif}}#elif ENABLED(AUTO_BED_LEVELING_UBL)/*** M421: Set a single Mesh Bed Leveling Z coordinate** Usage:* M421 I<xindex> J<yindex> Z<linear>* M421 I<xindex> J<yindex> Q<offset>* M421 I<xindex> J<yindex> N* M421 C Z<linear>* M421 C Q<offset>*/inline void gcode_M421() {int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);const bool hasI = ix >= 0,hasJ = iy >= 0,hasC = parser.seen('C'),hasN = parser.seen('N'),hasZ = parser.seen('Z'),hasQ = !hasZ && parser.seen('Q');if (hasC) {const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);ix = location.x_index;iy = location.y_index;}if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ || hasN)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);}else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);}elseubl.z_values[ix][iy] = hasN ? NAN : parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);}#endif // AUTO_BED_LEVELING_UBL#if HAS_M206_COMMAND/*** M428: Set home_offset based on the distance between the* current_position and the nearest "reference point."* If an axis is past center its endstop position* is the reference-point. Otherwise it uses 0. This allows* the Z offset to be set near the bed when using a max endstop.** M428 can't be used more than 2cm away from 0 or an endstop.** Use M206 to set these values directly.*/inline void gcode_M428() {if (axis_unhomed_error()) return;float diff[XYZ];LOOP_XYZ(i) {diff[i] = base_home_pos((AxisEnum)i) - current_position[i];if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)diff[i] = -current_position[i];if (!WITHIN(diff[i], -20, 20)) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);LCD_ALERTMESSAGEPGM("Err: Too far!");BUZZ(200, 40);return;}}LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);report_current_position();LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);BUZZ(100, 659);BUZZ(100, 698);}#endif // HAS_M206_COMMAND/*** M500: Store settings in EEPROM*/inline void gcode_M500() {(void)settings.save();}/*** M501: Read settings from EEPROM*/inline void gcode_M501() {(void)settings.load();}/*** M502: Revert to default settings*/inline void gcode_M502() {(void)settings.reset();}#if DISABLED(DISABLE_M503)/*** M503: print settings currently in memory*/inline void gcode_M503() {(void)settings.report(parser.seen('S') && !parser.value_bool());}#endif#if ENABLED(EEPROM_SETTINGS)/*** M504: Validate EEPROM Contents*/inline void gcode_M504() {if (settings.validate()) {SERIAL_ECHO_START();SERIAL_ECHOLNPGM("EEPROM OK");}}#endif#if ENABLED(SDSUPPORT)/*** M524: Abort the current SD print job (started with M24)*/inline void gcode_M524() {if (IS_SD_PRINTING()) card.abort_sd_printing = true;}#endif // SDSUPPORT#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)/*** M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)*/inline void gcode_M540() {if (parser.seen('S')) planner.abort_on_endstop_hit = parser.value_bool();}#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED#if HAS_BED_PROBEinline void gcode_M851() {if (parser.seenval('Z')) {const float value = parser.value_linear_units();if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX))zprobe_zoffset = value;else {SERIAL_ERROR_START();SERIAL_ERRORLNPGM("?Z out of range (" STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " to " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX) ")");}return;}SERIAL_ECHO_START();SERIAL_ECHOPGM(MSG_PROBE_Z_OFFSET);SERIAL_ECHOLNPAIR(": ", zprobe_zoffset);}#endif // HAS_BED_PROBE#if ENABLED(SKEW_CORRECTION_GCODE)/*** M852: Get or set the machine skew factors. Reports current values with no arguments.** S[xy_factor] - Alias for 'I'* I[xy_factor] - New XY skew factor* J[xz_factor] - New XZ skew factor* K[yz_factor] - New YZ skew factor*/inline void gcode_M852() {uint8_t ijk = 0, badval = 0, setval = 0;if (parser.seen('I') || parser.seen('S')) {++ijk;const float value = parser.value_linear_units();if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {if (planner.xy_skew_factor != value) {planner.xy_skew_factor = value;++setval;}}else++badval;}#if ENABLED(SKEW_CORRECTION_FOR_Z)if (parser.seen('J')) {++ijk;const float value = parser.value_linear_units();if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {if (planner.xz_skew_factor != value) {planner.xz_skew_factor = value;++setval;}}else++badval;}if (parser.seen('K')) {++ijk;const float value = parser.value_linear_units();if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {if (planner.yz_skew_factor != value) {planner.yz_skew_factor = value;++setval;}}else++badval;}#endifif (badval)SERIAL_ECHOLNPGM(MSG_SKEW_MIN " " STRINGIFY(SKEW_FACTOR_MIN) " " MSG_SKEW_MAX " " STRINGIFY(SKEW_FACTOR_MAX));// When skew is changed the current position changesif (setval) {set_current_from_steppers_for_axis(ALL_AXES);SYNC_PLAN_POSITION_KINEMATIC();report_current_position();}if (!ijk) {SERIAL_ECHO_START();SERIAL_ECHOPGM(MSG_SKEW_FACTOR " XY: ");SERIAL_ECHO_F(planner.xy_skew_factor, 6);SERIAL_EOL();#if ENABLED(SKEW_CORRECTION_FOR_Z)SERIAL_ECHOPAIR(" XZ: ", planner.xz_skew_factor);SERIAL_ECHOLNPAIR(" YZ: ", planner.yz_skew_factor);#elseSERIAL_EOL();#endif}}#endif // SKEW_CORRECTION_GCODE#if ENABLED(ADVANCED_PAUSE_FEATURE)/*** M600: Pause for filament change** E[distance] - Retract the filament this far* Z[distance] - Move the Z axis by this distance* X[position] - Move to this X position, with Y* Y[position] - Move to this Y position, with X* U[distance] - Retract distance for removal (manual reload)* L[distance] - Extrude distance for insertion (manual reload)* B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)* T[toolhead] - Select extruder for filament change** Default values are used for omitted arguments.*/inline void gcode_M600() {point_t park_point = NOZZLE_PARK_POINT;if (get_target_extruder_from_command(600)) return;// Show initial message#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT, ADVANCED_PAUSE_MODE_PAUSE_PRINT, target_extruder);#endif#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)// Don't allow filament change without homing firstif (axis_unhomed_error()) home_all_axes();#endif#if EXTRUDERS > 1// Change toolhead if specifieduint8_t active_extruder_before_filament_change = active_extruder;if (active_extruder != target_extruder)tool_change(target_extruder, 0, true);#endif// Initial retract before move to filament change positionconst float retract = -ABS(parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0#ifdef PAUSE_PARK_RETRACT_LENGTH+ (PAUSE_PARK_RETRACT_LENGTH)#endif);// Lift Z axisif (parser.seenval('Z')) park_point.z = parser.linearval('Z');// Move XY axes to filament change position or given positionif (parser.seenval('X')) park_point.x = parser.linearval('X');if (parser.seenval('Y')) park_point.y = parser.linearval('Y');#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) && DISABLED(DELTA)park_point.x += (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0);park_point.y += (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0);#endif// Unload filamentconst float unload_length = -ABS(parser.seen('U') ? parser.value_axis_units(E_AXIS) :filament_change_unload_length[active_extruder]);// Slow load filamentconstexpr float slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;// Fast load filamentconst float fast_load_length = ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) :filament_change_load_length[active_extruder]);const int beep_count = parser.intval('B',#ifdef FILAMENT_CHANGE_ALERT_BEEPSFILAMENT_CHANGE_ALERT_BEEPS#else-1#endif);const bool job_running = print_job_timer.isRunning();if (pause_print(retract, park_point, unload_length, true)) {wait_for_filament_reload(beep_count);resume_print(slow_load_length, fast_load_length, ADVANCED_PAUSE_PURGE_LENGTH, beep_count);}#if EXTRUDERS > 1// Restore toolhead if it was changedif (active_extruder_before_filament_change != active_extruder)tool_change(active_extruder_before_filament_change, 0, true);#endif// Resume the print job timer if it was runningif (job_running) print_job_timer.start();}/*** M603: Configure filament change** T[toolhead] - Select extruder to configure, active extruder if not specified* U[distance] - Retract distance for removal, for the specified extruder* L[distance] - Extrude distance for insertion, for the specified extruder**/inline void gcode_M603() {if (get_target_extruder_from_command(603)) return;// Unload lengthif (parser.seen('U')) {filament_change_unload_length[target_extruder] = ABS(parser.value_axis_units(E_AXIS));#if ENABLED(PREVENT_LENGTHY_EXTRUDE)NOMORE(filament_change_unload_length[target_extruder], EXTRUDE_MAXLENGTH);#endif}// Load lengthif (parser.seen('L')) {filament_change_load_length[target_extruder] = ABS(parser.value_axis_units(E_AXIS));#if ENABLED(PREVENT_LENGTHY_EXTRUDE)NOMORE(filament_change_load_length[target_extruder], EXTRUDE_MAXLENGTH);#endif}}#endif // ADVANCED_PAUSE_FEATURE#if ENABLED(MK2_MULTIPLEXER)inline void select_multiplexed_stepper(const uint8_t e) {planner.synchronize();disable_e_steppers();WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);safe_delay(100);}#endif // MK2_MULTIPLEXER#if ENABLED(DUAL_X_CARRIAGE)/*** M605: Set dual x-carriage movement mode** M605 S0: Full control mode. The slicer has full control over x-carriage movement* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn* units x-offset and an optional differential hotend temperature of* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate* the first with a spacing of 100mm in the x direction and 2 degrees hotter.** Note: the X axis should be homed after changing dual x-carriage mode.*/inline void gcode_M605() {planner.synchronize();if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();switch (dual_x_carriage_mode) {case DXC_FULL_CONTROL_MODE:case DXC_AUTO_PARK_MODE:break;case DXC_DUPLICATION_MODE:if (parser.seen('X')) duplicate_extruder_x_offset = MAX(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();SERIAL_ECHO_START();SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);SERIAL_CHAR(' ');SERIAL_ECHO(hotend_offset[X_AXIS][0]);SERIAL_CHAR(',');SERIAL_ECHO(hotend_offset[Y_AXIS][0]);SERIAL_CHAR(' ');SERIAL_ECHO(duplicate_extruder_x_offset);SERIAL_CHAR(',');SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);break;default:dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;break;}active_extruder_parked = false;extruder_duplication_enabled = false;delayed_move_time = 0;}#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)inline void gcode_M605() {planner.synchronize();extruder_duplication_enabled = parser.intval('S') == int(DXC_DUPLICATION_MODE);SERIAL_ECHO_START();SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);}#endif // DUAL_NOZZLE_DUPLICATION_MODE#if ENABLED(FILAMENT_LOAD_UNLOAD_GCODES)/*** M701: Load filament** T<extruder> - Optional extruder number. Current extruder if omitted.* Z<distance> - Move the Z axis by this distance* L<distance> - Extrude distance for insertion (positive value) (manual reload)** Default values are used for omitted arguments.*/inline void gcode_M701() {point_t park_point = NOZZLE_PARK_POINT;#if ENABLED(NO_MOTION_BEFORE_HOMING)// Only raise Z if the machine is homedif (axis_unhomed_error()) park_point.z = 0;#endifif (get_target_extruder_from_command(701)) return;// Z axis liftif (parser.seenval('Z')) park_point.z = parser.linearval('Z');// Show initial "wait for load" message#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD, ADVANCED_PAUSE_MODE_LOAD_FILAMENT, target_extruder);#endif#if EXTRUDERS > 1// Change toolhead if specifieduint8_t active_extruder_before_filament_change = active_extruder;if (active_extruder != target_extruder)tool_change(target_extruder, 0, true);#endif// Lift Z axisif (park_point.z > 0)do_blocking_move_to_z(MIN(current_position[Z_AXIS] + park_point.z, Z_MAX_POS), NOZZLE_PARK_Z_FEEDRATE);constexpr float slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;const float fast_load_length = ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) : filament_change_load_length[active_extruder]);load_filament(slow_load_length, fast_load_length, ADVANCED_PAUSE_PURGE_LENGTH, FILAMENT_CHANGE_ALERT_BEEPS,true, thermalManager.wait_for_heating(target_extruder), ADVANCED_PAUSE_MODE_LOAD_FILAMENT);// Restore Z axisif (park_point.z > 0)do_blocking_move_to_z(MAX(current_position[Z_AXIS] - park_point.z, 0), NOZZLE_PARK_Z_FEEDRATE);#if EXTRUDERS > 1// Restore toolhead if it was changedif (active_extruder_before_filament_change != active_extruder)tool_change(active_extruder_before_filament_change, 0, true);#endif// Show status screen#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);#endif}/*** M702: Unload filament** T<extruder> - Optional extruder number. If omitted, current extruder* (or ALL extruders with FILAMENT_UNLOAD_ALL_EXTRUDERS).* Z<distance> - Move the Z axis by this distance* U<distance> - Retract distance for removal (manual reload)** Default values are used for omitted arguments.*/inline void gcode_M702() {point_t park_point = NOZZLE_PARK_POINT;#if ENABLED(NO_MOTION_BEFORE_HOMING)// Only raise Z if the machine is homedif (axis_unhomed_error()) park_point.z = 0;#endifif (get_target_extruder_from_command(702)) return;// Z axis liftif (parser.seenval('Z')) park_point.z = parser.linearval('Z');// Show initial message#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT, target_extruder);#endif#if EXTRUDERS > 1// Change toolhead if specifieduint8_t active_extruder_before_filament_change = active_extruder;if (active_extruder != target_extruder)tool_change(target_extruder, 0, true);#endif// Lift Z axisif (park_point.z > 0)do_blocking_move_to_z(MIN(current_position[Z_AXIS] + park_point.z, Z_MAX_POS), NOZZLE_PARK_Z_FEEDRATE);// Unload filament#if EXTRUDERS > 1 && ENABLED(FILAMENT_UNLOAD_ALL_EXTRUDERS)if (!parser.seenval('T')) {HOTEND_LOOP() {if (e != active_extruder) tool_change(e, 0, true);unload_filament(-filament_change_unload_length[e], true, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT);}}else#endif{// Unload lengthconst float unload_length = -ABS(parser.seen('U') ? parser.value_axis_units(E_AXIS) :filament_change_unload_length[target_extruder]);unload_filament(unload_length, true, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT);}// Restore Z axisif (park_point.z > 0)do_blocking_move_to_z(MAX(current_position[Z_AXIS] - park_point.z, 0), NOZZLE_PARK_Z_FEEDRATE);#if EXTRUDERS > 1// Restore toolhead if it was changedif (active_extruder_before_filament_change != active_extruder)tool_change(active_extruder_before_filament_change, 0, true);#endif// Show status screen#if ENABLED(ULTIPANEL)lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);#endif}#endif // FILAMENT_LOAD_UNLOAD_GCODES#if ENABLED(MAX7219_GCODE)/*** M7219: Control the Max7219 LED matrix** I - Initialize (clear) the matrix* F - Fill the matrix (set all bits)* P - Dump the LEDs[] array values* C<column> - Set a column to the 8-bit value V* R<row> - Set a row to the 8-bit value V* X<pos> - X position of an LED to set or toggle* Y<pos> - Y position of an LED to set or toggle* V<value> - The potentially 32-bit value or on/off state to set* (for example: a chain of 4 Max7219 devices can have 32 bit* rows or columns depending upon rotation)*/inline void gcode_M7219() {if (parser.seen('I')) {max7219.register_setup();max7219.clear();}if (parser.seen('F')) max7219.fill();const uint32_t v = parser.ulongval('V');if (parser.seenval('R')) {const uint8_t r = parser.value_byte();max7219.set_row(r, v);}else if (parser.seenval('C')) {const uint8_t c = parser.value_byte();max7219.set_column(c, v);}else if (parser.seenval('X') || parser.seenval('Y')) {const uint8_t x = parser.byteval('X'), y = parser.byteval('Y');if (parser.seenval('V'))max7219.led_set(x, y, parser.boolval('V'));elsemax7219.led_toggle(x, y);}else if (parser.seen('D')) {const uint8_t line = parser.byteval('D') + (parser.byteval('U') << 3);if (line < MAX7219_LINES) {max7219.led_line[line] = v;return max7219.refresh_line(line);}}if (parser.seen('P')) {for (uint8_t r = 0; r < MAX7219_LINES; r++) {SERIAL_ECHOPGM("led_line[");if (r < 10) SERIAL_CHAR(' ');SERIAL_ECHO(int(r));SERIAL_ECHOPGM("]=");for (uint8_t b = 8; b--;) SERIAL_CHAR('0' + TEST(max7219.led_line[r], b));SERIAL_EOL();}}}#endif // MAX7219_GCODE#if ENABLED(LIN_ADVANCE)/*** M900: Get or Set Linear Advance K-factor** K<factor> Set advance K factor*/inline void gcode_M900() {if (parser.seenval('K')) {const float newK = parser.floatval('K');if (WITHIN(newK, 0, 10)) {planner.synchronize();planner.extruder_advance_K = newK;}elseSERIAL_PROTOCOLLNPGM("?K value out of range (0-10).");}else {SERIAL_ECHO_START();SERIAL_ECHOLNPAIR("Advance K=", planner.extruder_advance_K);}}#endif // LIN_ADVANCE#if HAS_TRINAMIC#if ENABLED(TMC_DEBUG)inline void gcode_M122() {if (parser.seen('S'))tmc_set_report_status(parser.value_bool());elsetmc_report_all();}#endif // TMC_DEBUG/*** M906: Set motor current in milliamps using axis codes X, Y, Z, E* Uses axis codes A, B, C, D, E for Hangprinter* Report driver currents when no axis specified*/inline void gcode_M906() {#define TMC_SAY_CURRENT(Q) tmc_get_current(stepper##Q, TMC_##Q)#define TMC_SET_CURRENT(Q) tmc_set_current(stepper##Q, value)bool report = true;const uint8_t index = parser.byteval('I');LOOP_NUM_AXIS(i) if (uint16_t value = parser.intval(RAW_AXIS_CODES(i))) {report = false;switch (i) {// Assumes {A_AXIS, B_AXIS, C_AXIS} == {X_AXIS, Y_AXIS, Z_AXIS}case X_AXIS:#if AXIS_IS_TMC(X)if (index < 2) TMC_SET_CURRENT(X);#endif#if AXIS_IS_TMC(X2)if (!(index & 1)) TMC_SET_CURRENT(X2);#endifbreak;case Y_AXIS:#if AXIS_IS_TMC(Y)if (index < 2) TMC_SET_CURRENT(Y);#endif#if AXIS_IS_TMC(Y2)if (!(index & 1)) TMC_SET_CURRENT(Y2);#endifbreak;case Z_AXIS:#if AXIS_IS_TMC(Z)if (index < 2) TMC_SET_CURRENT(Z);#endif#if AXIS_IS_TMC(Z2)if (!(index & 1)) TMC_SET_CURRENT(Z2);#endifbreak;case E_AXIS: {if (get_target_extruder_from_command(906)) return;switch (target_extruder) {#if AXIS_IS_TMC(E0)case 0: TMC_SET_CURRENT(E0); break;#endif#if ENABLED(HANGPRINTER)// Avoid setting the D-current#if AXIS_IS_TMC(E1) && EXTRUDERS > 1case 1: TMC_SET_CURRENT(E1); break;#endif#if AXIS_IS_TMC(E2) && EXTRUDERS > 2case 2: TMC_SET_CURRENT(E2); break;#endif#if AXIS_IS_TMC(E3) && EXTRUDERS > 3case 3: TMC_SET_CURRENT(E3); break;#endif#if AXIS_IS_TMC(E4) && EXTRUDERS > 4case 4: TMC_SET_CURRENT(E4); break;#endif#else#if AXIS_IS_TMC(E1)case 1: TMC_SET_CURRENT(E1); break;#endif#if AXIS_IS_TMC(E2)case 2: TMC_SET_CURRENT(E2); break;#endif#if AXIS_IS_TMC(E3)case 3: TMC_SET_CURRENT(E3); break;#endif#if AXIS_IS_TMC(E4)case 4: TMC_SET_CURRENT(E4); break;#endif#endif}} break;#if ENABLED(HANGPRINTER)case D_AXIS:// D is connected on the first of E1, E2, E3, E4 output that is not an extruder#if AXIS_IS_TMC(E1) && EXTRUDERS == 1TMC_SET_CURRENT(E1); break;#endif#if AXIS_IS_TMC(E2) && EXTRUDERS == 2TMC_SET_CURRENT(E2); break;#endif#if AXIS_IS_TMC(E3) && EXTRUDERS == 3TMC_SET_CURRENT(E3); break;#endif#if AXIS_IS_TMC(E4) && EXTRUDERS == 4TMC_SET_CURRENT(E4); break;#endif#endif}}if (report) {#if AXIS_IS_TMC(X)TMC_SAY_CURRENT(X);#endif#if AXIS_IS_TMC(X2)TMC_SAY_CURRENT(X2);#endif#if AXIS_IS_TMC(Y)TMC_SAY_CURRENT(Y);#endif#if AXIS_IS_TMC(Y2)TMC_SAY_CURRENT(Y2);#endif#if AXIS_IS_TMC(Z)TMC_SAY_CURRENT(Z);#endif#if AXIS_IS_TMC(Z2)TMC_SAY_CURRENT(Z2);#endif#if AXIS_IS_TMC(E0)TMC_SAY_CURRENT(E0);#endif#if ENABLED(HANGPRINTER)// D is connected on the first of E1, E2, E3, E4 output that is not an extruder#if AXIS_IS_TMC(E1) && EXTRUDERS == 1TMC_SAY_CURRENT(E1);#endif#if AXIS_IS_TMC(E2) && EXTRUDERS == 2TMC_SAY_CURRENT(E2);#endif#if AXIS_IS_TMC(E3) && EXTRUDERS == 3TMC_SAY_CURRENT(E3);#endif#if AXIS_IS_TMC(E4) && EXTRUDERS == 4TMC_SAY_CURRENT(E4);#endif#else#if AXIS_IS_TMC(E1)TMC_SAY_CURRENT(E1);#endif#if AXIS_IS_TMC(E2)TMC_SAY_CURRENT(E2);#endif#if AXIS_IS_TMC(E3)TMC_SAY_CURRENT(E3);#endif#if AXIS_IS_TMC(E4)TMC_SAY_CURRENT(E4);#endif#endif}}#define M91x_USE(ST) (AXIS_DRIVER_TYPE(ST, TMC2130) || (AXIS_DRIVER_TYPE(ST, TMC2208) && PIN_EXISTS(ST##_SERIAL_RX)))#define M91x_USE_E(N) (E_STEPPERS > N && M91x_USE(E##N))/*** M911: Report TMC stepper driver overtemperature pre-warn flag* This flag is held by the library, persisting until cleared by M912*/inline void gcode_M911() {#if M91x_USE(X)tmc_report_otpw(stepperX, TMC_X);#endif#if M91x_USE(X2)tmc_report_otpw(stepperX2, TMC_X2);#endif#if M91x_USE(Y)tmc_report_otpw(stepperY, TMC_Y);#endif#if M91x_USE(Y2)tmc_report_otpw(stepperY2, TMC_Y2);#endif#if M91x_USE(Z)tmc_report_otpw(stepperZ, TMC_Z);#endif#if M91x_USE(Z2)tmc_report_otpw(stepperZ2, TMC_Z2);#endif#if M91x_USE_E(0)tmc_report_otpw(stepperE0, TMC_E0);#endif#if M91x_USE_E(1)tmc_report_otpw(stepperE1, TMC_E1);#endif#if M91x_USE_E(2)tmc_report_otpw(stepperE2, TMC_E2);#endif#if M91x_USE_E(3)tmc_report_otpw(stepperE3, TMC_E3);#endif#if M91x_USE_E(4)tmc_report_otpw(stepperE4, TMC_E4);#endif}/*** M912: Clear TMC stepper driver overtemperature pre-warn flag held by the library* Specify one or more axes with X, Y, Z, X1, Y1, Z1, X2, Y2, Z2, and E[index].* If no axes are given, clear all.** Examples:* M912 X ; clear X and X2* M912 X1 ; clear X1 only* M912 X2 ; clear X2 only* M912 X E ; clear X, X2, and all E* M912 E1 ; clear E1 only*/inline void gcode_M912() {const bool hasX = parser.seen(axis_codes[X_AXIS]),hasY = parser.seen(axis_codes[Y_AXIS]),hasZ = parser.seen(axis_codes[Z_AXIS]),hasE = parser.seen(axis_codes[E_CART]),hasNone = !hasX && !hasY && !hasZ && !hasE;#if M91x_USE(X) || M91x_USE(X2)const uint8_t xval = parser.byteval(axis_codes[X_AXIS], 10);#if M91x_USE(X)if (hasNone || xval == 1 || (hasX && xval == 10)) tmc_clear_otpw(stepperX, TMC_X);#endif#if M91x_USE(X2)if (hasNone || xval == 2 || (hasX && xval == 10)) tmc_clear_otpw(stepperX2, TMC_X2);#endif#endif#if M91x_USE(Y) || M91x_USE(Y2)const uint8_t yval = parser.byteval(axis_codes[Y_AXIS], 10);#if M91x_USE(Y)if (hasNone || yval == 1 || (hasY && yval == 10)) tmc_clear_otpw(stepperY, TMC_Y);#endif#if M91x_USE(Y2)if (hasNone || yval == 2 || (hasY && yval == 10)) tmc_clear_otpw(stepperY2, TMC_Y2);#endif#endif#if M91x_USE(Z) || M91x_USE(Z2)const uint8_t zval = parser.byteval(axis_codes[Z_AXIS], 10);#if M91x_USE(Z)if (hasNone || zval == 1 || (hasZ && zval == 10)) tmc_clear_otpw(stepperZ, TMC_Z);#endif#if M91x_USE(Z2)if (hasNone || zval == 2 || (hasZ && zval == 10)) tmc_clear_otpw(stepperZ2, TMC_Z2);#endif#endif// TODO: If this is a Hangprinter, E_AXIS will not correspond to E0, E1, etc in this way#if M91x_USE_E(0) || M91x_USE_E(1) || M91x_USE_E(2) || M91x_USE_E(3) || M91x_USE_E(4)const uint8_t eval = parser.byteval(axis_codes[E_AXIS], 10);#if M91x_USE_E(0)if (hasNone || eval == 0 || (hasE && eval == 10)) tmc_clear_otpw(stepperE0, TMC_E0);#endif#if M91x_USE_E(1)if (hasNone || eval == 1 || (hasE && eval == 10)) tmc_clear_otpw(stepperE1, TMC_E1);#endif#if M91x_USE_E(2)if (hasNone || eval == 2 || (hasE && eval == 10)) tmc_clear_otpw(stepperE2, TMC_E2);#endif#if M91x_USE_E(3)if (hasNone || eval == 3 || (hasE && eval == 10)) tmc_clear_otpw(stepperE3, TMC_E3);#endif#if M91x_USE_E(4)if (hasNone || eval == 4 || (hasE && eval == 10)) tmc_clear_otpw(stepperE4, TMC_E4);#endif#endif}/*** M913: Set HYBRID_THRESHOLD speed.*/#if ENABLED(HYBRID_THRESHOLD)inline void gcode_M913() {#define TMC_SAY_PWMTHRS(A,Q) tmc_get_pwmthrs(stepper##Q, TMC_##Q, planner.axis_steps_per_mm[_AXIS(A)])#define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, value, planner.axis_steps_per_mm[_AXIS(A)])#define TMC_SAY_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_get_pwmthrs(stepperE##E, TMC_E##E, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)#define TMC_SET_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_set_pwmthrs(stepperE##E, value, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)bool report = true;const uint8_t index = parser.byteval('I');LOOP_XYZE(i) if (int32_t value = parser.longval(axis_codes[i])) {report = false;switch (i) {case X_AXIS:#if AXIS_HAS_STEALTHCHOP(X)if (index < 2) TMC_SET_PWMTHRS(X,X);#endif#if AXIS_HAS_STEALTHCHOP(X2)if (!(index & 1)) TMC_SET_PWMTHRS(X,X2);#endifbreak;case Y_AXIS:#if AXIS_HAS_STEALTHCHOP(Y)if (index < 2) TMC_SET_PWMTHRS(Y,Y);#endif#if AXIS_HAS_STEALTHCHOP(Y2)if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2);#endifbreak;case Z_AXIS:#if AXIS_HAS_STEALTHCHOP(Z)if (index < 2) TMC_SET_PWMTHRS(Z,Z);#endif#if AXIS_HAS_STEALTHCHOP(Z2)if (!(index & 1)) TMC_SET_PWMTHRS(Z,Z2);#endifbreak;case E_CART: {if (get_target_extruder_from_command(913)) return;switch (target_extruder) {#if AXIS_HAS_STEALTHCHOP(E0)case 0: TMC_SET_PWMTHRS_E(0); break;#endif#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)case 1: TMC_SET_PWMTHRS_E(1); break;#endif#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)case 2: TMC_SET_PWMTHRS_E(2); break;#endif#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)case 3: TMC_SET_PWMTHRS_E(3); break;#endif#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)case 4: TMC_SET_PWMTHRS_E(4); break;#endif}} break;}}if (report) {#if AXIS_HAS_STEALTHCHOP(X)TMC_SAY_PWMTHRS(X,X);#endif#if AXIS_HAS_STEALTHCHOP(X2)TMC_SAY_PWMTHRS(X,X2);#endif#if AXIS_HAS_STEALTHCHOP(Y)TMC_SAY_PWMTHRS(Y,Y);#endif#if AXIS_HAS_STEALTHCHOP(Y2)TMC_SAY_PWMTHRS(Y,Y2);#endif#if AXIS_HAS_STEALTHCHOP(Z)TMC_SAY_PWMTHRS(Z,Z);#endif#if AXIS_HAS_STEALTHCHOP(Z2)TMC_SAY_PWMTHRS(Z,Z2);#endif#if AXIS_HAS_STEALTHCHOP(E0)TMC_SAY_PWMTHRS_E(0);#endif#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)TMC_SAY_PWMTHRS_E(1);#endif#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)TMC_SAY_PWMTHRS_E(2);#endif#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)TMC_SAY_PWMTHRS_E(3);#endif#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)TMC_SAY_PWMTHRS_E(4);#endif}}#endif // HYBRID_THRESHOLD/*** M914: Set SENSORLESS_HOMING sensitivity.*/#if ENABLED(SENSORLESS_HOMING)inline void gcode_M914() {#define TMC_SAY_SGT(Q) tmc_get_sgt(stepper##Q, TMC_##Q)#define TMC_SET_SGT(Q) tmc_set_sgt(stepper##Q, value)bool report = true;const uint8_t index = parser.byteval('I');LOOP_XYZ(i) if (parser.seen(axis_codes[i])) {const int8_t value = (int8_t)constrain(parser.value_int(), -64, 63);report = false;switch (i) {#if X_SENSORLESScase X_AXIS:#if AXIS_HAS_STALLGUARD(X)if (index < 2) TMC_SET_SGT(X);#endif#if AXIS_HAS_STALLGUARD(X2)if (!(index & 1)) TMC_SET_SGT(X2);#endifbreak;#endif#if Y_SENSORLESScase Y_AXIS:#if AXIS_HAS_STALLGUARD(Y)if (index < 2) TMC_SET_SGT(Y);#endif#if AXIS_HAS_STALLGUARD(Y2)if (!(index & 1)) TMC_SET_SGT(Y2);#endifbreak;#endif#if Z_SENSORLESScase Z_AXIS:#if AXIS_HAS_STALLGUARD(Z)if (index < 2) TMC_SET_SGT(Z);#endif#if AXIS_HAS_STALLGUARD(Z2)if (!(index & 1)) TMC_SET_SGT(Z2);#endifbreak;#endif}}if (report) {#if X_SENSORLESS#if AXIS_HAS_STALLGUARD(X)TMC_SAY_SGT(X);#endif#if AXIS_HAS_STALLGUARD(X2)TMC_SAY_SGT(X2);#endif#endif#if Y_SENSORLESS#if AXIS_HAS_STALLGUARD(Y)TMC_SAY_SGT(Y);#endif#if AXIS_HAS_STALLGUARD(Y2)TMC_SAY_SGT(Y2);#endif#endif#if Z_SENSORLESS#if AXIS_HAS_STALLGUARD(Z)TMC_SAY_SGT(Z);#endif#if AXIS_HAS_STALLGUARD(Z2)TMC_SAY_SGT(Z2);#endif#endif}}#endif // SENSORLESS_HOMING/*** TMC Z axis calibration routine*/#if ENABLED(TMC_Z_CALIBRATION)inline void gcode_M915() {const uint16_t _rms = parser.seenval('S') ? parser.value_int() : CALIBRATION_CURRENT,_z = parser.seenval('Z') ? parser.value_linear_units() : CALIBRATION_EXTRA_HEIGHT;if (!TEST(axis_known_position, Z_AXIS)) {SERIAL_ECHOLNPGM("\nPlease home Z axis first");return;}#if AXIS_IS_TMC(Z)const uint16_t Z_current_1 = stepperZ.getCurrent();stepperZ.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);#endif#if AXIS_IS_TMC(Z2)const uint16_t Z2_current_1 = stepperZ2.getCurrent();stepperZ2.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);#endifSERIAL_ECHOPAIR("\nCalibration current: Z", _rms);soft_endstops_enabled = false;do_blocking_move_to_z(Z_MAX_POS+_z);#if AXIS_IS_TMC(Z)stepperZ.setCurrent(Z_current_1, R_SENSE, HOLD_MULTIPLIER);#endif#if AXIS_IS_TMC(Z2)stepperZ2.setCurrent(Z2_current_1, R_SENSE, HOLD_MULTIPLIER);#endifdo_blocking_move_to_z(Z_MAX_POS);soft_endstops_enabled = true;SERIAL_ECHOLNPGM("\nHoming Z due to lost steps");enqueue_and_echo_commands_P(PSTR("G28 Z"));}#endif#endif // HAS_TRINAMIC/*** M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S*/inline void gcode_M907() {#if HAS_DIGIPOTSSLOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());#elif HAS_MOTOR_CURRENT_PWM#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());#endif#endif#if ENABLED(DIGIPOT_I2C)// this one uses actual amps in floating pointLOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());#endif#if ENABLED(DAC_STEPPER_CURRENT)if (parser.seen('S')) {const float dac_percent = parser.value_float();for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);}LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());#endif}#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)/*** M908: Control digital trimpot directly (M908 P<pin> S<current>)*/inline void gcode_M908() {#if HAS_DIGIPOTSSstepper.digitalPotWrite(parser.intval('P'),parser.intval('S'));#endif#ifdef DAC_STEPPER_CURRENTdac_current_raw(parser.byteval('P', -1),parser.ushortval('S', 0));#endif}#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevFinline void gcode_M909() { dac_print_values(); }inline void gcode_M910() { dac_commit_eeprom(); }#endif#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT#if HAS_MICROSTEPS// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.inline void gcode_M350() {if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());stepper.microstep_readings();}/*** M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B* S# determines MS1 or MS2, X# sets the pin high/low.*/inline void gcode_M351() {if (parser.seenval('S')) switch (parser.value_byte()) {case 1:LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);break;case 2:LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());break;}stepper.microstep_readings();}#endif // HAS_MICROSTEPS#if HAS_CASE_LIGHT#ifndef INVERT_CASE_LIGHT#define INVERT_CASE_LIGHT false#endifuint8_t case_light_brightness; // LCD routine wants INTbool case_light_on;#if ENABLED(CASE_LIGHT_USE_NEOPIXEL)LEDColor case_light_color =#ifdef CASE_LIGHT_NEOPIXEL_COLORCASE_LIGHT_NEOPIXEL_COLOR#else{ 255, 255, 255, 255 }#endif;#endifvoid update_case_light() {const uint8_t i = case_light_on ? case_light_brightness : 0, n10ct = INVERT_CASE_LIGHT ? 255 - i : i;#if ENABLED(CASE_LIGHT_USE_NEOPIXEL)leds.set_color(MakeLEDColor(case_light_color.r, case_light_color.g, case_light_color.b, case_light_color.w, n10ct),false);#else // !CASE_LIGHT_USE_NEOPIXELSET_OUTPUT(CASE_LIGHT_PIN);if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))analogWrite(CASE_LIGHT_PIN, n10ct);else {const bool s = case_light_on ? !INVERT_CASE_LIGHT : INVERT_CASE_LIGHT;WRITE(CASE_LIGHT_PIN, s ? HIGH : LOW);}#endif // !CASE_LIGHT_USE_NEOPIXEL}#endif // HAS_CASE_LIGHT/*** M355: Turn case light on/off and set brightness** P<byte> Set case light brightness (PWM pin required - ignored otherwise)** S<bool> Set case light on/off** When S turns on the light on a PWM pin then the current brightness level is used/restored** M355 P200 S0 turns off the light & sets the brightness level* M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)*/inline void gcode_M355() {#if HAS_CASE_LIGHTuint8_t args = 0;if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();if (args) update_case_light();// always report case light statusSERIAL_ECHO_START();if (!case_light_on) {SERIAL_ECHOLNPGM("Case light: off");}else {if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLNPGM("Case light: on");else SERIAL_ECHOLNPAIR("Case light: ", int(case_light_brightness));}#elseSERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);#endif // HAS_CASE_LIGHT}#if ENABLED(MIXING_EXTRUDER)/*** M163: Set a single mix factor for a mixing extruder* This is called "weight" by some systems.* The 'P' values must sum to 1.0 or must be followed by M164 to normalize them.** S[index] The channel index to set* P[float] The mix value*/inline void gcode_M163() {const int mix_index = parser.intval('S');if (mix_index < MIXING_STEPPERS)mixing_factor[mix_index] = MAX(parser.floatval('P'), 0.0);}/*** M164: Normalize and commit the mix.* If 'S' is given store as a virtual tool. (Requires MIXING_VIRTUAL_TOOLS > 1)** S[index] The virtual tool to store*/inline void gcode_M164() {normalize_mix();#if MIXING_VIRTUAL_TOOLS > 1const int tool_index = parser.intval('S', -1);if (WITHIN(tool_index, 0, MIXING_VIRTUAL_TOOLS - 1)) {for (uint8_t i = 0; i < MIXING_STEPPERS; i++)mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];}#endif}#if ENABLED(DIRECT_MIXING_IN_G1)/*** M165: Set multiple mix factors for a mixing extruder.* Factors that are left out will be set to 0.* All factors should sum to 1.0, but they will be normalized regardless.** A[factor] Mix factor for extruder stepper 1* B[factor] Mix factor for extruder stepper 2* C[factor] Mix factor for extruder stepper 3* D[factor] Mix factor for extruder stepper 4* H[factor] Mix factor for extruder stepper 5* I[factor] Mix factor for extruder stepper 6*/inline void gcode_M165() { gcode_get_mix(); }#endif#endif // MIXING_EXTRUDER/*** M999: Restart after being stopped** Default behaviour is to flush the serial buffer and request* a resend to the host starting on the last N line received.** Sending "M999 S1" will resume printing without flushing the* existing command buffer.**/inline void gcode_M999() {Running = true;lcd_reset_alert_level();if (parser.boolval('S')) return;// gcode_LastN = Stopped_gcode_LastN;flush_and_request_resend();}#if DO_SWITCH_EXTRUDER#if EXTRUDERS > 3#define REQ_ANGLES 4#define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)#else#define REQ_ANGLES 2#define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR#endifinline void move_extruder_servo(const uint8_t e) {constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");planner.synchronize();#if EXTRUDERS & 1if (e < EXTRUDERS - 1)#endif{MOVE_SERVO(_SERVO_NR, angles[e]);safe_delay(500);}}#endif // DO_SWITCH_EXTRUDER#if ENABLED(SWITCHING_NOZZLE)inline void move_nozzle_servo(const uint8_t e) {const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;planner.synchronize();MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);safe_delay(500);}#endifinline void invalid_extruder_error(const uint8_t e) {SERIAL_ECHO_START();SERIAL_CHAR('T');SERIAL_ECHO_F(e, DEC);SERIAL_CHAR(' ');SERIAL_ECHOLNPGM(MSG_INVALID_EXTRUDER);}#if ENABLED(PARKING_EXTRUDER)#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)#define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE#else#define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE#endifvoid pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {switch (extruder_num) {case 1: OUT_WRITE(SOL1_PIN, state); break;default: OUT_WRITE(SOL0_PIN, state); break;}#if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);#endif}inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }#endif // PARKING_EXTRUDER#if HAS_FANMUXvoid fanmux_switch(const uint8_t e) {WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);#if PIN_EXISTS(FANMUX1)WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);#if PIN_EXISTS(FANMUX2)WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);#endif#endif}FORCE_INLINE void fanmux_init(void) {SET_OUTPUT(FANMUX0_PIN);#if PIN_EXISTS(FANMUX1)SET_OUTPUT(FANMUX1_PIN);#if PIN_EXISTS(FANMUX2)SET_OUTPUT(FANMUX2_PIN);#endif#endiffanmux_switch(0);}#endif // HAS_FANMUX/*** Tool Change functions*/#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1inline void mixing_tool_change(const uint8_t tmp_extruder) {if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)return invalid_extruder_error(tmp_extruder);// T0-Tnnn: Switch virtual tool by changing the mixfor (uint8_t j = 0; j < MIXING_STEPPERS; j++)mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];}#endif // MIXING_EXTRUDER && MIXING_VIRTUAL_TOOLS > 1#if ENABLED(DUAL_X_CARRIAGE)inline void dualx_tool_change(const uint8_t tmp_extruder, bool &no_move) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPGM("Dual X Carriage Mode ");switch (dual_x_carriage_mode) {case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;}}#endifconst float xhome = x_home_pos(active_extruder);if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE&& IsRunning()&& (delayed_move_time || current_position[X_AXIS] != xhome)) {float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;#if ENABLED(MAX_SOFTWARE_ENDSTOPS)NOMORE(raised_z, soft_endstop_max[Z_AXIS]);#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPAIR("Raise to ", raised_z);SERIAL_ECHOLNPAIR("MoveX to ", xhome);SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);}#endif// Park old head: 1) raise 2) move to park position 3) lowerfor (uint8_t i = 0; i < 3; i++)planner.buffer_line(i == 0 ? current_position[X_AXIS] : xhome,current_position[Y_AXIS],i == 2 ? current_position[Z_AXIS] : raised_z,current_position[E_CART],planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],active_extruder);planner.synchronize();}// Apply Y & Z extruder offset (X offset is used as home pos with Dual X)current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];// Activate the new extruder ahead of calling set_axis_is_at_home!active_extruder = tmp_extruder;// This function resets the max/min values - the current position may be overwritten below.set_axis_is_at_home(X_AXIS);#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);#endif// Only when auto-parking are carriages safe to moveif (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;switch (dual_x_carriage_mode) {case DXC_FULL_CONTROL_MODE:// New current position is the position of the activated extrudercurrent_position[X_AXIS] = inactive_extruder_x_pos;// Save the inactive extruder's position (from the old current_position)inactive_extruder_x_pos = destination[X_AXIS];break;case DXC_AUTO_PARK_MODE:// record raised toolhead position for use by unparkCOPY(raised_parked_position, current_position);raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;#if ENABLED(MAX_SOFTWARE_ENDSTOPS)NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);#endifactive_extruder_parked = true;delayed_move_time = 0;break;case DXC_DUPLICATION_MODE:// If the new extruder is the left one, set it "parked"// This triggers the second extruder to move into the duplication positionactive_extruder_parked = (active_extruder == 0);current_position[X_AXIS] = active_extruder_parked ? inactive_extruder_x_pos : destination[X_AXIS] + duplicate_extruder_x_offset;inactive_extruder_x_pos = destination[X_AXIS];extruder_duplication_enabled = false;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");}#endifbreak;}#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");DEBUG_POS("New extruder (parked)", current_position);}#endif// No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?}#endif // DUAL_X_CARRIAGE#if ENABLED(PARKING_EXTRUDER)inline void parking_extruder_tool_change(const uint8_t tmp_extruder, bool no_move) {constexpr float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;if (!no_move) {const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,midpos = (parkingposx[0] + parkingposx[1]) * 0.5 + hotend_offset[X_AXIS][active_extruder],grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]+ (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);/*** Steps:* 1. Raise Z-Axis to give enough clearance* 2. Move to park position of old extruder* 3. Disengage magnetic field, wait for delay* 4. Move near new extruder* 5. Engage magnetic field for new extruder* 6. Move to parking incl. offset of new extruder* 7. Lower Z-Axis*/// STEP 1#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPGM("Starting Autopark");if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);#endifcurrent_position[Z_AXIS] += z_raise;#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);#endifplanner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);planner.synchronize();// STEP 2current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);#endifplanner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);planner.synchronize();// STEP 3#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPGM("(3) Disengage magnet ");#endifpe_deactivate_magnet(active_extruder);// STEP 4#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPGM("(4) Move to position near new extruder");#endifcurrent_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);#endifplanner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);planner.synchronize();// STEP 5#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPGM("(5) Engage magnetic field");#endif#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)pe_activate_magnet(active_extruder); //just save power for inverted magnets#endifpe_activate_magnet(tmp_extruder);// STEP 6current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);current_position[X_AXIS] = grabpos;#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);#endifplanner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);planner.synchronize();// Step 7current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPGM("(7) Move midway between hotends");if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);#endifplanner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);planner.synchronize();#if ENABLED(DEBUG_LEVELING_FEATURE)SERIAL_ECHOLNPGM("Autopark done.");#endif}else { // nomove == true// Only engage magnetic field for new extruderpe_activate_magnet(tmp_extruder);#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)pe_activate_magnet(active_extruder); // Just save power for inverted magnets#endif}current_position[Z_AXIS] += hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);#endif}#endif // PARKING_EXTRUDER/*** Perform a tool-change, which may result in moving the* previous tool out of the way and the new tool into place.*/void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {planner.synchronize();#if HAS_LEVELING// Set current position to the physical positionconst bool leveling_was_active = planner.leveling_active;set_bed_leveling_enabled(false);#endif#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1mixing_tool_change(tmp_extruder);#else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1if (tmp_extruder >= EXTRUDERS)return invalid_extruder_error(tmp_extruder);#if HOTENDS > 1const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;if (tmp_extruder != active_extruder) {if (!no_move && axis_unhomed_error()) {no_move = true;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");#endif}#if ENABLED(DUAL_X_CARRIAGE)#if HAS_SOFTWARE_ENDSTOPS// Update the X software endstops earlyactive_extruder = tmp_extruder;update_software_endstops(X_AXIS);active_extruder = !tmp_extruder;#endif// Don't move the new extruder out of boundsif (!WITHIN(current_position[X_AXIS], soft_endstop_min[X_AXIS], soft_endstop_max[X_AXIS]))no_move = true;if (!no_move) set_destination_from_current();dualx_tool_change(tmp_extruder, no_move); // Can modify no_move#else // !DUAL_X_CARRIAGEset_destination_from_current();#if ENABLED(PARKING_EXTRUDER)parking_extruder_tool_change(tmp_extruder, no_move);#endif#if ENABLED(SWITCHING_NOZZLE)// Always raise by at least 1 to avoid workpiececonst float zdiff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];current_position[Z_AXIS] += (zdiff > 0.0 ? zdiff : 0.0) + 1;planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);move_nozzle_servo(tmp_extruder);#endifconst float xdiff = hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],ydiff = hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder];#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("Offset Tool XY by { ", xdiff);SERIAL_ECHOPAIR(", ", ydiff);SERIAL_ECHOLNPGM(" }");}#endif// The newly-selected extruder XY is actually at...current_position[X_AXIS] += xdiff;current_position[Y_AXIS] += ydiff;// Set the new active extruderactive_extruder = tmp_extruder;#endif // !DUAL_X_CARRIAGE#if ENABLED(SWITCHING_NOZZLE)// The newly-selected extruder Z is actually at...current_position[Z_AXIS] -= zdiff;#endif// Tell the planner the new "current position"SYNC_PLAN_POSITION_KINEMATIC();#if ENABLED(DELTA)//LOOP_XYZ(i) update_software_endstops(i); // or modify the constrain functionconst bool safe_to_move = current_position[Z_AXIS] < delta_clip_start_height - 1;#elseconstexpr bool safe_to_move = true;#endif// Raise, move, and lower againif (safe_to_move && !no_move && IsRunning()) {#if DISABLED(SWITCHING_NOZZLE)// Do a small lift to avoid the workpiece in the move back (below)current_position[Z_AXIS] += 1.0;planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);#endif// Move back to the original (or tweaked) positiondo_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);#if ENABLED(DUAL_X_CARRIAGE)active_extruder_parked = false;#endif}#if ENABLED(SWITCHING_NOZZLE)else {// Move back down. (Including when the new tool is higher.)do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);}#endif} // (tmp_extruder != active_extruder)planner.synchronize();#if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)disable_all_solenoids();enable_solenoid_on_active_extruder();#endiffeedrate_mm_s = old_feedrate_mm_s;#if HAS_SOFTWARE_ENDSTOPS && ENABLED(DUAL_X_CARRIAGE)update_software_endstops(X_AXIS);#endif#else // HOTENDS <= 1UNUSED(fr_mm_s);UNUSED(no_move);#if ENABLED(MK2_MULTIPLEXER)if (tmp_extruder >= E_STEPPERS)return invalid_extruder_error(tmp_extruder);select_multiplexed_stepper(tmp_extruder);#endif// Set the new active extruderactive_extruder = tmp_extruder;#endif // HOTENDS <= 1#if DO_SWITCH_EXTRUDERplanner.synchronize();move_extruder_servo(active_extruder);#endif#if HAS_FANMUXfanmux_switch(active_extruder);#endif#if HAS_LEVELING// Restore leveling to re-establish the logical positionset_bed_leveling_enabled(leveling_was_active);#endifSERIAL_ECHO_START();SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(active_extruder));#endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1}/*** T0-T3: Switch tool, usually switching extruders** F[units/min] Set the movement feedrate* S1 Don't move the tool in XY after change*/inline void gcode_T(const uint8_t tmp_extruder) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);SERIAL_CHAR(')');SERIAL_EOL();DEBUG_POS("BEFORE", current_position);}#endif#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)tool_change(tmp_extruder);#elif HOTENDS > 1tool_change(tmp_extruder,MMM_TO_MMS(parser.linearval('F')),(tmp_extruder == active_extruder) || parser.boolval('S'));#endif#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {DEBUG_POS("AFTER", current_position);SERIAL_ECHOLNPGM("<<< gcode_T");}#endif}/*** Process the parsed command and dispatch it to its handler*/void process_parsed_command() {KEEPALIVE_STATE(IN_HANDLER);// Handle a known G, M, or Tswitch (parser.command_letter) {case 'G': switch (parser.codenum) {case 0: case 1: gcode_G0_G1( // G0: Fast Move, G1: Linear Move#if IS_SCARAparser.codenum == 0#endif); break;#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)case 2: case 3: gcode_G2_G3(parser.codenum == 2); break; // G2: CW ARC, G3: CCW ARC#endifcase 4: gcode_G4(); break; // G4: Dwell#if ENABLED(BEZIER_CURVE_SUPPORT)case 5: gcode_G5(); break; // G5: Cubic B_spline#endif#if ENABLED(UNREGISTERED_MOVE_SUPPORT)case 6: gcode_G6(); break; // G6: Direct stepper move#endif#if ENABLED(FWRETRACT)case 10: gcode_G10(); break; // G10: Retractcase 11: gcode_G11(); break; // G11: Prime#endif#if ENABLED(NOZZLE_CLEAN_FEATURE)case 12: gcode_G12(); break; // G12: Clean Nozzle#endif#if ENABLED(CNC_WORKSPACE_PLANES)case 17: gcode_G17(); break; // G17: Select Plane XYcase 18: gcode_G18(); break; // G18: Select Plane ZXcase 19: gcode_G19(); break; // G19: Select Plane YZ#endif#if ENABLED(INCH_MODE_SUPPORT)case 20: gcode_G20(); break; // G20: Inch Unitscase 21: gcode_G21(); break; // G21: Millimeter Units#endif#if ENABLED(G26_MESH_VALIDATION)case 26: gcode_G26(); break; // G26: Mesh Validation Pattern#endif#if ENABLED(NOZZLE_PARK_FEATURE)case 27: gcode_G27(); break; // G27: Park Nozzle#endifcase 28: gcode_G28(false); break; // G28: Home one or more axes#if HAS_LEVELINGcase 29: gcode_G29(); break; // G29: Detailed Z probe#endif#if HAS_BED_PROBEcase 30: gcode_G30(); break; // G30: Single Z probe#endif#if ENABLED(Z_PROBE_SLED)case 31: gcode_G31(); break; // G31: Dock sledcase 32: gcode_G32(); break; // G32: Undock sled#endif#if ENABLED(DELTA_AUTO_CALIBRATION)case 33: gcode_G33(); break; // G33: Delta Auto-Calibration#endif#if ENABLED(G38_PROBE_TARGET)case 38:if (parser.subcode == 2 || parser.subcode == 3)gcode_G38(parser.subcode == 2); // G38.2, G38.3: Probe towards objectbreak;#endif#if HAS_MESHcase 42: gcode_G42(); break; // G42: Move to mesh point#endifcase 90: relative_mode = false; break; // G90: Absolute coordinatescase 91: relative_mode = true; break; // G91: Relative coordinatescase 92: gcode_G92(); break; // G92: Set Position#if ENABLED(MECHADUINO_I2C_COMMANDS)case 95: gcode_G95(); break; // G95: Set torque modecase 96: gcode_G96(); break; // G96: Mark encoder reference point#endif#if ENABLED(DEBUG_GCODE_PARSER)case 800: parser.debug(); break; // G800: GCode Parser Test for G#endifdefault: parser.unknown_command_error();}break;case 'M': switch (parser.codenum) {#if HAS_RESUME_CONTINUEcase 0: case 1: gcode_M0_M1(); break; // M0: Unconditional stop, M1: Conditional stop#endif#if ENABLED(SPINDLE_LASER_ENABLE)case 3: gcode_M3_M4(true); break; // M3: Laser/CW-Spindle Powercase 4: gcode_M3_M4(false); break; // M4: Laser/CCW-Spindle Powercase 5: gcode_M5(); break; // M5: Laser/Spindle OFF#endifcase 17: gcode_M17(); break; // M17: Enable all steppers#if ENABLED(SDSUPPORT)case 20: gcode_M20(); break; // M20: List SD Cardcase 21: gcode_M21(); break; // M21: Init SD Cardcase 22: gcode_M22(); break; // M22: Release SD Cardcase 23: gcode_M23(); break; // M23: Select Filecase 24: gcode_M24(); break; // M24: Start SD Printcase 25: gcode_M25(); break; // M25: Pause SD Printcase 26: gcode_M26(); break; // M26: Set SD Indexcase 27: gcode_M27(); break; // M27: Get SD Statuscase 28: gcode_M28(); break; // M28: Start SD Writecase 29: gcode_M29(); break; // M29: Stop SD Writecase 30: gcode_M30(); break; // M30: Delete Filecase 32: gcode_M32(); break; // M32: Select file, Start SD Print#if ENABLED(LONG_FILENAME_HOST_SUPPORT)case 33: gcode_M33(); break; // M33: Report longname path#endif#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)case 34: gcode_M34(); break; // M34: Set SD card sorting options#endifcase 928: gcode_M928(); break; // M928: Start SD write#endif // SDSUPPORTcase 31: gcode_M31(); break; // M31: Report print job elapsed timecase 42: gcode_M42(); break; // M42: Change pin state#if ENABLED(PINS_DEBUGGING)case 43: gcode_M43(); break; // M43: Read/monitor pin and endstop states#endif#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)case 48: gcode_M48(); break; // M48: Z probe repeatability test#endif#if ENABLED(G26_MESH_VALIDATION)case 49: gcode_M49(); break; // M49: Toggle the G26 Debug Flag#endif#if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)case 73: gcode_M73(); break; // M73: Set Print Progress %#endifcase 75: gcode_M75(); break; // M75: Start Print Job Timercase 76: gcode_M76(); break; // M76: Pause Print Job Timercase 77: gcode_M77(); break; // M77: Stop Print Job Timer#if ENABLED(PRINTCOUNTER)case 78: gcode_M78(); break; // M78: Report Print Statistics#endif#if ENABLED(M100_FREE_MEMORY_WATCHER)case 100: gcode_M100(); break; // M100: Free Memory Report#endifcase 104: gcode_M104(); break; // M104: Set Hotend Temperaturecase 110: gcode_M110(); break; // M110: Set Current Line Numbercase 111: gcode_M111(); break; // M111: Set Debug Flags#if DISABLED(EMERGENCY_PARSER)case 108: gcode_M108(); break; // M108: Cancel Waitingcase 112: gcode_M112(); break; // M112: Emergency Stopcase 410: gcode_M410(); break; // M410: Quickstop. Abort all planned moves#elsecase 108: case 112: case 410: break; // Silently drop as handled by emergency parser#endif#if ENABLED(HOST_KEEPALIVE_FEATURE)case 113: gcode_M113(); break; // M113: Set Host Keepalive Interval#endifcase 105: gcode_M105(); KEEPALIVE_STATE(NOT_BUSY); return; // M105: Report Temperatures (and say "ok")#if ENABLED(AUTO_REPORT_TEMPERATURES)case 155: gcode_M155(); break; // M155: Set Temperature Auto-report Interval#endifcase 109: gcode_M109(); break; // M109: Set Hotend Temperature. Wait for target.#if HAS_HEATED_BEDcase 140: gcode_M140(); break; // M140: Set Bed Temperaturecase 190: gcode_M190(); break; // M190: Set Bed Temperature. Wait for target.#endif#if FAN_COUNT > 0case 106: gcode_M106(); break; // M106: Set Fan Speedcase 107: gcode_M107(); break; // M107: Fan Off#endif#if ENABLED(PARK_HEAD_ON_PAUSE)case 125: gcode_M125(); break; // M125: Park (for Filament Change)#endif#if ENABLED(BARICUDA)#if HAS_HEATER_1case 126: gcode_M126(); break; // M126: Valve 1 Opencase 127: gcode_M127(); break; // M127: Valve 1 Closed#endif#if HAS_HEATER_2case 128: gcode_M128(); break; // M128: Valve 2 Opencase 129: gcode_M129(); break; // M129: Valve 2 Closed#endif#endif#if HAS_POWER_SWITCHcase 80: gcode_M80(); break; // M80: Turn on Power Supply#endifcase 81: gcode_M81(); break; // M81: Turn off Power and Power Supplycase 82: gcode_M82(); break; // M82: Disable Relative E-Axiscase 83: gcode_M83(); break; // M83: Set Relative E-Axiscase 18: case 84: gcode_M18_M84(); break; // M18/M84: Disable Steppers / Set Timeoutcase 85: gcode_M85(); break; // M85: Set inactivity stepper shutdown timeoutcase 92: gcode_M92(); break; // M92: Set steps-per-unitcase 114: gcode_M114(); break; // M114: Report Current Positioncase 115: gcode_M115(); break; // M115: Capabilities Reportcase 117: gcode_M117(); break; // M117: Set LCD message textcase 118: gcode_M118(); break; // M118: Print a message in the host consolecase 119: gcode_M119(); break; // M119: Report Endstop statescase 120: gcode_M120(); break; // M120: Enable Endstopscase 121: gcode_M121(); break; // M121: Disable Endstops#if ENABLED(ULTIPANEL)case 145: gcode_M145(); break; // M145: Set material heatup parameters#endif#if ENABLED(TEMPERATURE_UNITS_SUPPORT)case 149: gcode_M149(); break; // M149: Set Temperature Units, C F K#endif#if HAS_COLOR_LEDScase 150: gcode_M150(); break; // M150: Set Status LED Color#endif#if ENABLED(MIXING_EXTRUDER)case 163: gcode_M163(); break; // M163: Set Mixing Component#if MIXING_VIRTUAL_TOOLS > 1case 164: gcode_M164(); break; // M164: Save Current Mix#endif#if ENABLED(DIRECT_MIXING_IN_G1)case 165: gcode_M165(); break; // M165: Set Multiple Mixing Components#endif#endif#if DISABLED(NO_VOLUMETRICS)case 200: gcode_M200(); break; // M200: Set Filament Diameter, Volumetric Extrusion#endifcase 201: gcode_M201(); break; // M201: Set Max Printing Acceleration (units/sec^2)#if 0case 202: gcode_M202(); break; // M202: Not used for Sprinter/grbl gen6#endifcase 203: gcode_M203(); break; // M203: Set Max Feedrate (units/sec)case 204: gcode_M204(); break; // M204: Set Accelerationcase 205: gcode_M205(); break; // M205: Set Advanced settings#if HAS_M206_COMMANDcase 206: gcode_M206(); break; // M206: Set Home Offsetscase 428: gcode_M428(); break; // M428: Set Home Offsets based on current position#endif#if ENABLED(FWRETRACT)case 207: gcode_M207(); break; // M207: Set Retract Length, Feedrate, Z liftcase 208: gcode_M208(); break; // M208: Set Additional Prime Length and Feedratecase 209:if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209(); // M209: Turn Auto-Retract on/offbreak;#endifcase 211: gcode_M211(); break; // M211: Enable/Disable/Report Software Endstops#if HOTENDS > 1case 218: gcode_M218(); break; // M218: Set Tool Offset#endifcase 220: gcode_M220(); break; // M220: Set Feedrate Percentagecase 221: gcode_M221(); break; // M221: Set Flow Percentagecase 226: gcode_M226(); break; // M226: Wait for Pin State#if defined(CHDK) || HAS_PHOTOGRAPHcase 240: gcode_M240(); break; // M240: Trigger Camera#endif#if HAS_LCD_CONTRASTcase 250: gcode_M250(); break; // M250: Set LCD Contrast#endif#if ENABLED(EXPERIMENTAL_I2CBUS)case 260: gcode_M260(); break; // M260: Send Data to i2c slavecase 261: gcode_M261(); break; // M261: Request Data from i2c slave#endif#if HAS_SERVOScase 280: gcode_M280(); break; // M280: Set Servo Position#endif#if ENABLED(BABYSTEPPING)case 290: gcode_M290(); break; // M290: Babystepping#endif#if HAS_BUZZERcase 300: gcode_M300(); break; // M300: Add Tone/Buzz to Queue#endif#if ENABLED(PIDTEMP)case 301: gcode_M301(); break; // M301: Set Hotend PID parameters#endif#if ENABLED(PREVENT_COLD_EXTRUSION)case 302: gcode_M302(); break; // M302: Set Minimum Extrusion Temp#endifcase 303: gcode_M303(); break; // M303: PID Autotune#if ENABLED(PIDTEMPBED)case 304: gcode_M304(); break; // M304: Set Bed PID parameters#endif#if HAS_MICROSTEPScase 350: gcode_M350(); break; // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.case 351: gcode_M351(); break; // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.#endifcase 355: gcode_M355(); break; // M355: Set Case Light brightness#if ENABLED(MORGAN_SCARA)case 360: if (gcode_M360()) return; break; // M360: SCARA Theta pos1case 361: if (gcode_M361()) return; break; // M361: SCARA Theta pos2case 362: if (gcode_M362()) return; break; // M362: SCARA Psi pos1case 363: if (gcode_M363()) return; break; // M363: SCARA Psi pos2case 364: if (gcode_M364()) return; break; // M364: SCARA Psi pos3 (90 deg to Theta)#endifcase 400: gcode_M400(); break; // M400: Synchronize. Wait for moves to finish.#if HAS_BED_PROBEcase 401: gcode_M401(); break; // M401: Deploy Probecase 402: gcode_M402(); break; // M402: Stow Probe#endif#if ENABLED(FILAMENT_WIDTH_SENSOR)case 404: gcode_M404(); break; // M404: Set/Report Nominal Filament Widthcase 405: gcode_M405(); break; // M405: Enable Filament Width Sensorcase 406: gcode_M406(); break; // M406: Disable Filament Width Sensorcase 407: gcode_M407(); break; // M407: Report Measured Filament Width#endif#if HAS_LEVELINGcase 420: gcode_M420(); break; // M420: Set Bed Leveling Enabled / Fade#endif#if HAS_MESHcase 421: gcode_M421(); break; // M421: Set a Mesh Z value#endifcase 500: gcode_M500(); break; // M500: Store Settings in EEPROMcase 501: gcode_M501(); break; // M501: Read Settings from EEPROMcase 502: gcode_M502(); break; // M502: Revert Settings to defaults#if DISABLED(DISABLE_M503)case 503: gcode_M503(); break; // M503: Report Settings (in SRAM)#endif#if ENABLED(EEPROM_SETTINGS)case 504: gcode_M504(); break; // M504: Validate EEPROM#endif#if ENABLED(SDSUPPORT)case 524: gcode_M524(); break; // M524: Abort SD print job#endif#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)case 540: gcode_M540(); break; // M540: Set Abort on Endstop Hit for SD Printing#endif#if ENABLED(ADVANCED_PAUSE_FEATURE)case 600: gcode_M600(); break; // M600: Pause for Filament Changecase 603: gcode_M603(); break; // M603: Configure Filament Change#endif#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)case 605: gcode_M605(); break; // M605: Set Dual X Carriage movement mode#endif#if ENABLED(DELTA) || ENABLED(HANGPRINTER)case 665: gcode_M665(); break; // M665: Delta / Hangprinter Configuration#endif#if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)case 666: gcode_M666(); break; // M666: DELTA/Dual Endstop Adjustment#endif#if ENABLED(FILAMENT_LOAD_UNLOAD_GCODES)case 701: gcode_M701(); break; // M701: Load Filamentcase 702: gcode_M702(); break; // M702: Unload Filament#endif#if ENABLED(MAX7219_GCODE)case 7219: gcode_M7219(); break; // M7219: Set LEDs, columns, and rows#endif#if ENABLED(DEBUG_GCODE_PARSER)case 800: parser.debug(); break; // M800: GCode Parser Test for M#endif#if HAS_BED_PROBEcase 851: gcode_M851(); break; // M851: Set Z Probe Z Offset#endif#if ENABLED(SKEW_CORRECTION_GCODE)case 852: gcode_M852(); break; // M852: Set Skew factors#endif#if ENABLED(I2C_POSITION_ENCODERS)case 860: gcode_M860(); break; // M860: Report encoder module positioncase 861: gcode_M861(); break; // M861: Report encoder module statuscase 862: gcode_M862(); break; // M862: Perform axis testcase 863: gcode_M863(); break; // M863: Calibrate steps/mmcase 864: gcode_M864(); break; // M864: Change module addresscase 865: gcode_M865(); break; // M865: Check module firmware versioncase 866: gcode_M866(); break; // M866: Report axis error countcase 867: gcode_M867(); break; // M867: Toggle error correctioncase 868: gcode_M868(); break; // M868: Set error correction thresholdcase 869: gcode_M869(); break; // M869: Report axis error#endif#if ENABLED(LIN_ADVANCE)case 900: gcode_M900(); break; // M900: Set Linear Advance K factor#endifcase 907: gcode_M907(); break; // M907: Set Digital Trimpot Motor Current using axis codes.#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)case 908: gcode_M908(); break; // M908: Direct Control Digital Trimpot#if ENABLED(DAC_STEPPER_CURRENT)case 909: gcode_M909(); break; // M909: Print Digipot/DAC current value (As with Printrbot RevF)case 910: gcode_M910(); break; // M910: Commit Digipot/DAC value to External EEPROM (As with Printrbot RevF)#endif#endif#if HAS_DRIVER(TMC2130) || HAS_DRIVER(TMC2208)#if ENABLED(TMC_DEBUG)case 122: gcode_M122(); break; // M122: Debug TMC steppers#endifcase 906: gcode_M906(); break; // M906: Set motor current in milliamps using axis codes X, Y, Z, Ecase 911: gcode_M911(); break; // M911: Report TMC prewarn triggered flagscase 912: gcode_M912(); break; // M911: Clear TMC prewarn triggered flags#if ENABLED(HYBRID_THRESHOLD)case 913: gcode_M913(); break; // M913: Set HYBRID_THRESHOLD speed.#endif#if ENABLED(SENSORLESS_HOMING)case 914: gcode_M914(); break; // M914: Set SENSORLESS_HOMING sensitivity.#endif#if ENABLED(TMC_Z_CALIBRATION)case 915: gcode_M915(); break; // M915: TMC Z axis calibration routine#endif#endifcase 999: gcode_M999(); break; // M999: Restart after being Stoppeddefault: parser.unknown_command_error();}break;case 'T': gcode_T(parser.codenum); break; // T: Tool Selectdefault: parser.unknown_command_error();}KEEPALIVE_STATE(NOT_BUSY);ok_to_send();}void process_next_command() {char * const current_command = command_queue[cmd_queue_index_r];if (DEBUGGING(ECHO)) {SERIAL_ECHO_START();SERIAL_ECHOLN(current_command);#if ENABLED(M100_FREE_MEMORY_WATCHER)SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));#endif}// Parse the next command in the queueparser.parse(current_command);process_parsed_command();}/*** Send a "Resend: nnn" message to the host to* indicate that a command needs to be re-sent.*/void flush_and_request_resend() {//char command_queue[cmd_queue_index_r][100]="Resend:";SERIAL_FLUSH();SERIAL_PROTOCOLPGM(MSG_RESEND);SERIAL_PROTOCOLLN(gcode_LastN + 1);ok_to_send();}/*** Send an "ok" message to the host, indicating* that a command was successfully processed.** If ADVANCED_OK is enabled also include:* N<int> Line number of the command, if any* P<int> Planner space remaining* B<int> Block queue space remaining*/void ok_to_send() {if (!send_ok[cmd_queue_index_r]) return;SERIAL_PROTOCOLPGM(MSG_OK);#if ENABLED(ADVANCED_OK)char* p = command_queue[cmd_queue_index_r];if (*p == 'N') {SERIAL_PROTOCOL(' ');SERIAL_ECHO(*p++);while (NUMERIC_SIGNED(*p))SERIAL_ECHO(*p++);}SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);#endifSERIAL_EOL();}#if HAS_SOFTWARE_ENDSTOPS/*** Constrain the given coordinates to the software endstops.** For DELTA/SCARA the XY constraint is based on the smallest* radius within the set software endstops.*/void clamp_to_software_endstops(float target[XYZ]) {if (!soft_endstops_enabled) return;#if IS_KINEMATICconst float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);if (dist_2 > soft_endstop_radius_2) {const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66target[X_AXIS] *= ratio;target[Y_AXIS] *= ratio;}#else#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);#endif#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);#endif#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);#endif#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);#endif#endif#if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);#endif#if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);#endif}#endif#if ENABLED(AUTO_BED_LEVELING_BILINEAR)// Get the Z adjustment for non-linear bed levelingfloat bilinear_z_offset(const float raw[XYZ]) {static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,last_x = -999.999, last_y = -999.999;// Whole units for the grid line indices. Constrained within bounds.static int8_t gridx, gridy, nextx, nexty,last_gridx = -99, last_gridy = -99;// XY relative to the probed areaconst float rx = raw[X_AXIS] - bilinear_start[X_AXIS],ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];#if ENABLED(EXTRAPOLATE_BEYOND_GRID)// Keep using the last grid box#define FAR_EDGE_OR_BOX 2#else// Just use the grid far edge#define FAR_EDGE_OR_BOX 1#endifif (last_x != rx) {last_x = rx;ratio_x = rx * ABL_BG_FACTOR(X_AXIS);const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);ratio_x -= gx; // Subtract whole to get the ratio within the grid box#if DISABLED(EXTRAPOLATE_BEYOND_GRID)// Beyond the grid maintain height at grid edgesNOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)#endifgridx = gx;nextx = MIN(gridx + 1, ABL_BG_POINTS_X - 1);}if (last_y != ry || last_gridx != gridx) {if (last_y != ry) {last_y = ry;ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);ratio_y -= gy;#if DISABLED(EXTRAPOLATE_BEYOND_GRID)// Beyond the grid maintain height at grid edgesNOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)#endifgridy = gy;nexty = MIN(gridy + 1, ABL_BG_POINTS_Y - 1);}if (last_gridx != gridx || last_gridy != gridy) {last_gridx = gridx;last_gridy = gridy;// Z at the box cornersz1 = ABL_BG_GRID(gridx, gridy); // left-frontd2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)z3 = ABL_BG_GRID(nextx, gridy); // right-frontd4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)}// Bilinear interpolate. Needed since ry or gridx has changed.L = z1 + d2 * ratio_y; // Linear interp. LF -> LBconst float R = z3 + d4 * ratio_y; // Linear interp. RF -> RBD = R - L;}const float offset = L + ratio_x * D; // the offset almost always changes/*static float last_offset = 0;if (ABS(last_offset - offset) > 0.2) {SERIAL_ECHOPGM("Sudden Shift at ");SERIAL_ECHOPAIR("x=", rx);SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);SERIAL_ECHOLNPAIR(" -> gridx=", gridx);SERIAL_ECHOPAIR(" y=", ry);SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);SERIAL_ECHOLNPAIR(" -> gridy=", gridy);SERIAL_ECHOPAIR(" ratio_x=", ratio_x);SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);SERIAL_ECHOPAIR(" z1=", z1);SERIAL_ECHOPAIR(" z2=", z2);SERIAL_ECHOPAIR(" z3=", z3);SERIAL_ECHOLNPAIR(" z4=", z4);SERIAL_ECHOPAIR(" L=", L);SERIAL_ECHOPAIR(" R=", R);SERIAL_ECHOLNPAIR(" offset=", offset);}last_offset = offset;//*/return offset;}#endif // AUTO_BED_LEVELING_BILINEAR#if ENABLED(DELTA)/*** Recalculate factors used for delta kinematics whenever* settings have been changed (e.g., by M665).*/void recalc_delta_settings() {const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left towerdelta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right towerdelta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle towerdelta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);update_software_endstops(Z_AXIS);axis_homed = 0;}/*** Delta Inverse Kinematics** Calculate the tower positions for a given machine* position, storing the result in the delta[] array.** This is an expensive calculation, requiring 3 square* roots per segmented linear move, and strains the limits* of a Mega2560 with a Graphical Display.** Suggested optimizations include:** - Disable the home_offset (M206) and/or position_shift (G92)* features to remove up to 12 float additions.*/#define DELTA_DEBUG(VAR) do { \SERIAL_ECHOPAIR("cartesian X:", VAR[X_AXIS]); \SERIAL_ECHOPAIR(" Y:", VAR[Y_AXIS]); \SERIAL_ECHOLNPAIR(" Z:", VAR[Z_AXIS]); \SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \}while(0)void inverse_kinematics(const float raw[XYZ]) {#if HOTENDS > 1// Delta hotend offsets must be applied in Cartesian space with no "spoofing"const float pos[XYZ] = {raw[X_AXIS] - hotend_offset[X_AXIS][active_extruder],raw[Y_AXIS] - hotend_offset[Y_AXIS][active_extruder],raw[Z_AXIS]};DELTA_IK(pos);//DELTA_DEBUG(pos);#elseDELTA_IK(raw);//DELTA_DEBUG(raw);#endif}/*** Calculate the highest Z position where the* effector has the full range of XY motion.*/float delta_safe_distance_from_top() {float cartesian[XYZ] = { 0, 0, 0 };inverse_kinematics(cartesian);const float centered_extent = delta[A_AXIS];cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;inverse_kinematics(cartesian);return ABS(centered_extent - delta[A_AXIS]);}/*** Delta Forward Kinematics** See the Wikipedia article "Trilateration"* https://en.wikipedia.org/wiki/Trilateration** Establish a new coordinate system in the plane of the* three carriage points. This system has its origin at* tower1, with tower2 on the X axis. Tower3 is in the X-Y* plane with a Z component of zero.* We will define unit vectors in this coordinate system* in our original coordinate system. Then when we calculate* the Xnew, Ynew and Znew values, we can translate back into* the original system by moving along those unit vectors* by the corresponding values.** Variable names matched to Marlin, c-version, and avoid the* use of any vector library.** by Andreas Hardtung 2016-06-07* based on a Java function from "Delta Robot Kinematics V3"* by Steve Graves** The result is stored in the cartes[] array.*/void forward_kinematics_DELTA(const float &z1, const float &z2, const float &z3) {// Create a vector in old coordinates along x axis of new coordinateconst float p12[] = {delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],z2 - z1},// Get the reciprocal of Magnitude of vector.d2 = sq(p12[0]) + sq(p12[1]) + sq(p12[2]), inv_d = RSQRT(d2),// Create unit vector by multiplying by the inverse of the magnitude.ex[3] = { p12[0] * inv_d, p12[1] * inv_d, p12[2] * inv_d },// Get the vector from the origin of the new system to the third point.p13[3] = {delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],z3 - z1},// Use the dot product to find the component of this vector on the X axis.i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2],// Create a vector along the x axis that represents the x component of p13.iex[] = { ex[0] * i, ex[1] * i, ex[2] * i };// Subtract the X component from the original vector leaving only Y. We use the// variable that will be the unit vector after we scale it.float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };// The magnitude and the inverse of the magnitude of Y componentconst float j2 = sq(ey[0]) + sq(ey[1]) + sq(ey[2]), inv_j = RSQRT(j2);// Convert to a unit vectorey[0] *= inv_j; ey[1] *= inv_j; ey[2] *= inv_j;// The cross product of the unit x and y is the unit z// float[] ez = vectorCrossProd(ex, ey);const float ez[3] = {ex[1] * ey[2] - ex[2] * ey[1],ex[2] * ey[0] - ex[0] * ey[2],ex[0] * ey[1] - ex[1] * ey[0]},// We now have the d, i and j values defined in Wikipedia.// Plug them into the equations defined in Wikipedia for Xnew, Ynew and ZnewXnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + d2) * inv_d * 0.5,Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + sq(i) + j2) * 0.5 - i * Xnew) * inv_j,Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));// Start from the origin of the old coordinates and add vectors in the// old coords that represent the Xnew, Ynew and Znew to find the point// in the old system.cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;}void forward_kinematics_DELTA(const float (&point)[ABC]) {forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);}#endif // DELTA#if ENABLED(HANGPRINTER)/*** Recalculate factors used for hangprinter kinematics whenever* settings have been changed (e.g., by M665).*/void recalc_hangprinter_settings(){HANGPRINTER_IK_ORIGIN(line_lengths_origin);#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)const uint8_t mech_adv_tmp[MOV_AXIS] = MECHANICAL_ADVANTAGE,actn_pts_tmp[MOV_AXIS] = ACTION_POINTS;const uint16_t m_g_t_tmp[MOV_AXIS] = MOTOR_GEAR_TEETH,s_g_t_tmp[MOV_AXIS] = SPOOL_GEAR_TEETH;const float mnt_l_tmp[MOV_AXIS] = MOUNTED_LINE;float s_r2_tmp[MOV_AXIS] = SPOOL_RADII,steps_per_unit_times_r_tmp[MOV_AXIS];uint8_t nr_lines_dir_tmp[MOV_AXIS];LOOP_MOV_AXIS(i){steps_per_unit_times_r_tmp[i] = (float(mech_adv_tmp[i])*STEPS_PER_MOTOR_REVOLUTION*s_g_t_tmp[i])/(2*M_PI*m_g_t_tmp[i]);nr_lines_dir_tmp[i] = mech_adv_tmp[i]*actn_pts_tmp[i];s_r2_tmp[i] *= s_r2_tmp[i];planner.k2[i] = -(float)nr_lines_dir_tmp[i]*SPOOL_BUILDUP_FACTOR;planner.k0[i] = 2.0*steps_per_unit_times_r_tmp[i]/planner.k2[i];}// Assumes spools are mounted near D-anchor in ceiling#define HYP3D(x,y,z) SQRT(sq(x) + sq(y) + sq(z))float line_on_spool_origin_tmp[MOV_AXIS];line_on_spool_origin_tmp[A_AXIS] = actn_pts_tmp[A_AXIS] * mnt_l_tmp[A_AXIS]- actn_pts_tmp[A_AXIS] * HYPOT(anchor_A_y, anchor_D_z - anchor_A_z)- nr_lines_dir_tmp[A_AXIS] * line_lengths_origin[A_AXIS];line_on_spool_origin_tmp[B_AXIS] = actn_pts_tmp[B_AXIS] * mnt_l_tmp[B_AXIS]- actn_pts_tmp[B_AXIS] * HYP3D(anchor_B_x, anchor_B_y, anchor_D_z - anchor_B_z)- nr_lines_dir_tmp[B_AXIS] * line_lengths_origin[B_AXIS];line_on_spool_origin_tmp[C_AXIS] = actn_pts_tmp[C_AXIS] * mnt_l_tmp[C_AXIS]- actn_pts_tmp[C_AXIS] * HYP3D(anchor_C_x, anchor_C_y, anchor_D_z - anchor_C_z)- nr_lines_dir_tmp[C_AXIS] * line_lengths_origin[C_AXIS];line_on_spool_origin_tmp[D_AXIS] = actn_pts_tmp[D_AXIS] * mnt_l_tmp[D_AXIS]- nr_lines_dir_tmp[D_AXIS] * line_lengths_origin[D_AXIS];LOOP_MOV_AXIS(i) {planner.axis_steps_per_mm[i] = steps_per_unit_times_r_tmp[i] /SQRT((SPOOL_BUILDUP_FACTOR) * line_on_spool_origin_tmp[i] + s_r2_tmp[i]);planner.k1[i] = (SPOOL_BUILDUP_FACTOR) *(line_on_spool_origin_tmp[i] + nr_lines_dir_tmp[i] * line_lengths_origin[i]) + s_r2_tmp[i];planner.sqrtk1[i] = SQRT(planner.k1[i]);}planner.axis_steps_per_mm[E_AXIS] = DEFAULT_E_AXIS_STEPS_PER_UNIT;#endif // LINE_BUILDUP_COMPENSATION_FEATURESYNC_PLAN_POSITION_KINEMATIC(); // recalcs line lengths in case anchor was moved}/*** Hangprinter inverse kinematics*/void inverse_kinematics(const float raw[XYZ]) {HANGPRINTER_IK(raw);}/*** Hangprinter forward kinematics* Basic idea is to subtract squared line lengths to get linear equations.* Subtracting d*d from a*a, b*b, and c*c gives the cleanest derivation:** a*a - d*d = k1 + k2*y + k3*z <---- a line (I)* b*b - d*d = k4 + k5*x + k6*y + k7*z <---- a plane (II)* c*c - d*d = k8 + k9*x + k10*y + k11*z <---- a plane (III)** Use (I) to reduce (II) and (III) into lines. Eliminate y, keep z.** (II): b*b - d*d = k12 + k13*x + k14*z* <=> x = k0b + k1b*z, <---- a line (IV)** (III): c*c - d*d = k15 + k16*x + k17*z* <=> x = k0c + k1c*z, <---- a line (V)** where k1, k2, ..., k17, k0b, k0c, k1b, and k1c are known constants.** These two straight lines are not parallel, so they will cross in exactly one point.* Find z by setting (IV) = (V)* Find x by inserting z into (V)* Find y by inserting z into (I)** Warning: truncation errors will typically be in the order of a few tens of microns.*/void forward_kinematics_HANGPRINTER(float a, float b, float c, float d){const float Asq = sq(anchor_A_y) + sq(anchor_A_z),Bsq = sq(anchor_B_x) + sq(anchor_B_y) + sq(anchor_B_z),Csq = sq(anchor_C_x) + sq(anchor_C_y) + sq(anchor_C_z),Dsq = sq(anchor_D_z),aa = sq(a),dd = sq(d),k0b = (-sq(b) + Bsq - Dsq + dd) / (2.0 * anchor_B_x) + (anchor_B_y / (2.0 * anchor_A_y * anchor_B_x)) * (Dsq - Asq + aa - dd),k0c = (-sq(c) + Csq - Dsq + dd) / (2.0 * anchor_C_x) + (anchor_C_y / (2.0 * anchor_A_y * anchor_C_x)) * (Dsq - Asq + aa - dd),k1b = (anchor_B_y * (anchor_A_z - anchor_D_z)) / (anchor_A_y * anchor_B_x) + (anchor_D_z - anchor_B_z) / anchor_B_x,k1c = (anchor_C_y * (anchor_A_z - anchor_D_z)) / (anchor_A_y * anchor_C_x) + (anchor_D_z - anchor_C_z) / anchor_C_x;cartes[Z_AXIS] = (k0b - k0c) / (k1c - k1b);cartes[X_AXIS] = k0c + k1c * cartes[Z_AXIS];cartes[Y_AXIS] = (Asq - Dsq - aa + dd) / (2.0 * anchor_A_y) + ((anchor_D_z - anchor_A_z) / anchor_A_y) * cartes[Z_AXIS];}#endif // HANGPRINTER/*** Get the stepper positions in the cartes[] array.* Forward kinematics are applied for DELTA and SCARA.** The result is in the current coordinate space with* leveling applied. The coordinates need to be run through* unapply_leveling to obtain machine coordinates suitable* for current_position, etc.*/void get_cartesian_from_steppers() {#if ENABLED(DELTA)forward_kinematics_DELTA(planner.get_axis_position_mm(A_AXIS),planner.get_axis_position_mm(B_AXIS),planner.get_axis_position_mm(C_AXIS));#elif ENABLED(HANGPRINTER)forward_kinematics_HANGPRINTER(planner.get_axis_position_mm(A_AXIS),planner.get_axis_position_mm(B_AXIS),planner.get_axis_position_mm(C_AXIS),planner.get_axis_position_mm(D_AXIS));#else#if IS_SCARAforward_kinematics_SCARA(planner.get_axis_position_degrees(A_AXIS),planner.get_axis_position_degrees(B_AXIS));#elsecartes[X_AXIS] = planner.get_axis_position_mm(X_AXIS);cartes[Y_AXIS] = planner.get_axis_position_mm(Y_AXIS);#endifcartes[Z_AXIS] = planner.get_axis_position_mm(Z_AXIS);#endif}/*** Set the current_position for an axis based on* the stepper positions, removing any leveling that* may have been applied.** To prevent small shifts in axis position always call* SYNC_PLAN_POSITION_KINEMATIC after updating axes with this.** To keep hosts in sync, always call report_current_position* after updating the current_position.*/void set_current_from_steppers_for_axis(const AxisEnum axis) {get_cartesian_from_steppers();#if PLANNER_LEVELINGplanner.unapply_leveling(cartes);#endifif (axis == ALL_AXES)COPY(current_position, cartes);elsecurrent_position[axis] = cartes[axis];}#if IS_CARTESIAN#if ENABLED(SEGMENT_LEVELED_MOVES)/*** Prepare a segmented move on a CARTESIAN setup.** This calls planner.buffer_line several times, adding* small incremental moves. This allows the planner to* apply more detailed bed leveling to the full move.*/inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {const float xdiff = destination[X_AXIS] - current_position[X_AXIS],ydiff = destination[Y_AXIS] - current_position[Y_AXIS];// If the move is only in Z/E don't split up the moveif (!xdiff && !ydiff) {planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);return;}// Remaining cartesian distancesconst float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],ediff = destination[E_CART] - current_position[E_CART];// Get the linear distance in XYZ// If the move is very short, check the E move distance// No E move either? Game over.float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);if (UNEAR_ZERO(cartesian_mm)) return;// The length divided by the segment size// At least one segment is requireduint16_t segments = cartesian_mm / segment_size;NOLESS(segments, 1);// The approximate length of each segmentconst float inv_segments = 1.0f / float(segments),cartesian_segment_mm = cartesian_mm * inv_segments,segment_distance[XYZE] = {xdiff * inv_segments,ydiff * inv_segments,zdiff * inv_segments,ediff * inv_segments};// SERIAL_ECHOPAIR("mm=", cartesian_mm);// SERIAL_ECHOLNPAIR(" segments=", segments);// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);// Get the raw current position as starting pointfloat raw[XYZE];COPY(raw, current_position);// Calculate and execute the segmentswhile (--segments) {static millis_t next_idle_ms = millis() + 200UL;thermalManager.manage_heater(); // This returns immediately if not really needed.if (ELAPSED(millis(), next_idle_ms)) {next_idle_ms = millis() + 200UL;idle();}LOOP_XYZE(i) raw[i] += segment_distance[i];if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm))break;}// Since segment_distance is only approximate,// the final move must be to the exact destination.planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder, cartesian_segment_mm);}#elif ENABLED(MESH_BED_LEVELING)/*** Prepare a mesh-leveled linear move in a Cartesian setup,* splitting the move where it crosses mesh borders.*/void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF) {// Get current and destination cells for this lineint cx1 = mbl.cell_index_x(current_position[X_AXIS]),cy1 = mbl.cell_index_y(current_position[Y_AXIS]),cx2 = mbl.cell_index_x(destination[X_AXIS]),cy2 = mbl.cell_index_y(destination[Y_AXIS]);NOMORE(cx1, GRID_MAX_POINTS_X - 2);NOMORE(cy1, GRID_MAX_POINTS_Y - 2);NOMORE(cx2, GRID_MAX_POINTS_X - 2);NOMORE(cy2, GRID_MAX_POINTS_Y - 2);// Start and end in the same cell? No split needed.if (cx1 == cx2 && cy1 == cy2) {buffer_line_to_destination(fr_mm_s);set_current_from_destination();return;}#define MBL_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)#define MBL_SEGMENT_END_E (current_position[E_CART] + (destination[E_CART] - current_position[E_CART]) * normalized_dist)float normalized_dist, end[XYZE];const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);// Crosses on the X and not already split on this X?// The x_splits flags are insurance against rounding errors.if (cx2 != cx1 && TEST(x_splits, gcx)) {// Split on the X grid lineCBI(x_splits, gcx);COPY(end, destination);destination[X_AXIS] = mbl.index_to_xpos[gcx];normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);destination[Y_AXIS] = MBL_SEGMENT_END(Y);}// Crosses on the Y and not already split on this Y?else if (cy2 != cy1 && TEST(y_splits, gcy)) {// Split on the Y grid lineCBI(y_splits, gcy);COPY(end, destination);destination[Y_AXIS] = mbl.index_to_ypos[gcy];normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);destination[X_AXIS] = MBL_SEGMENT_END(X);}else {// Must already have been split on these border(s)buffer_line_to_destination(fr_mm_s);set_current_from_destination();return;}destination[Z_AXIS] = MBL_SEGMENT_END(Z);destination[E_CART] = MBL_SEGMENT_END_E;// Do the split and look for more bordersmesh_line_to_destination(fr_mm_s, x_splits, y_splits);// Restore destination from stackCOPY(destination, end);mesh_line_to_destination(fr_mm_s, x_splits, y_splits);}#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)#define CELL_INDEX(A,V) ((V - bilinear_start[_AXIS(A)]) * ABL_BG_FACTOR(_AXIS(A)))/*** Prepare a bilinear-leveled linear move on Cartesian,* splitting the move where it crosses grid borders.*/void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF) {// Get current and destination cells for this lineint cx1 = CELL_INDEX(X, current_position[X_AXIS]),cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),cx2 = CELL_INDEX(X, destination[X_AXIS]),cy2 = CELL_INDEX(Y, destination[Y_AXIS]);cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);// Start and end in the same cell? No split needed.if (cx1 == cx2 && cy1 == cy2) {buffer_line_to_destination(fr_mm_s);set_current_from_destination();return;}#define LINE_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)#define LINE_SEGMENT_END_E (current_position[E_CART] + (destination[E_CART] - current_position[E_CART]) * normalized_dist)float normalized_dist, end[XYZE];const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);// Crosses on the X and not already split on this X?// The x_splits flags are insurance against rounding errors.if (cx2 != cx1 && TEST(x_splits, gcx)) {// Split on the X grid lineCBI(x_splits, gcx);COPY(end, destination);destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);destination[Y_AXIS] = LINE_SEGMENT_END(Y);}// Crosses on the Y and not already split on this Y?else if (cy2 != cy1 && TEST(y_splits, gcy)) {// Split on the Y grid lineCBI(y_splits, gcy);COPY(end, destination);destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);destination[X_AXIS] = LINE_SEGMENT_END(X);}else {// Must already have been split on these border(s)buffer_line_to_destination(fr_mm_s);set_current_from_destination();return;}destination[Z_AXIS] = LINE_SEGMENT_END(Z);destination[E_CART] = LINE_SEGMENT_END_E;// Do the split and look for more bordersbilinear_line_to_destination(fr_mm_s, x_splits, y_splits);// Restore destination from stackCOPY(destination, end);bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);}#endif // AUTO_BED_LEVELING_BILINEAR#endif // IS_CARTESIAN#if !UBL_SEGMENTED#if IS_KINEMATIC#if IS_SCARA/*** Before raising this value, use M665 S[seg_per_sec] to decrease* the number of segments-per-second. Default is 200. Some deltas* do better with 160 or lower. It would be good to know how many* segments-per-second are actually possible for SCARA on AVR.** Longer segments result in less kinematic overhead* but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm* and compare the difference.*/#define SCARA_MIN_SEGMENT_LENGTH 0.5f#endif/*** Prepare a linear move in a DELTA, SCARA or HANGPRINTER setup.** This calls planner.buffer_line several times, adding* small incremental moves for DELTA, SCARA or HANGPRINTER.** For Unified Bed Leveling (Delta or Segmented Cartesian)* the ubl.prepare_segmented_line_to method replaces this.*/inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {// Get the top feedrate of the move in the XY planeconst float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS]#if ENABLED(HANGPRINTER), zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS]#endif;// If the move is only in Z/E (for Hangprinter only in E) don't split up the moveif (!xdiff && !ydiff#if ENABLED(HANGPRINTER)&& !zdiff#endif) {planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);return false; // caller will update current_position}// Fail if attempting move outside printable radiusif (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;// Remaining cartesian distancesconst float#if DISABLED(HANGPRINTER)zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],#endifediff = rtarget[E_CART] - current_position[E_CART];// Get the linear distance in XYZ// If the move is very short, check the E move distance// No E move either? Game over.float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);if (UNEAR_ZERO(cartesian_mm)) return true;// Minimum number of seconds to move the given distanceconst float seconds = cartesian_mm / _feedrate_mm_s;// The number of segments-per-second times the duration// gives the number of segmentsuint16_t segments = delta_segments_per_second * seconds;// For SCARA enforce a minimum segment size#if IS_SCARANOMORE(segments, cartesian_mm * (1.0f / float(SCARA_MIN_SEGMENT_LENGTH)));#endif// At least one segment is requiredNOLESS(segments, 1);// The approximate length of each segmentconst float inv_segments = 1.0f / float(segments),segment_distance[XYZE] = {xdiff * inv_segments,ydiff * inv_segments,zdiff * inv_segments,ediff * inv_segments};#if !HAS_FEEDRATE_SCALINGconst float cartesian_segment_mm = cartesian_mm * inv_segments;#endif/*SERIAL_ECHOPAIR("mm=", cartesian_mm);SERIAL_ECHOPAIR(" seconds=", seconds);SERIAL_ECHOPAIR(" segments=", segments);#if !HAS_FEEDRATE_SCALINGSERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);#endifSERIAL_EOL();//*/#if HAS_FEEDRATE_SCALING// SCARA needs to scale the feed rate from mm/s to degrees/s// i.e., Complete the angular vector in the given time.const float segment_length = cartesian_mm * inv_segments,inv_segment_length = 1.0f / segment_length, // 1/mm/segsinverse_secs = inv_segment_length * _feedrate_mm_s;float oldA = planner.position_float[A_AXIS],oldB = planner.position_float[B_AXIS]#if ENABLED(DELTA_FEEDRATE_SCALING), oldC = planner.position_float[C_AXIS]#endif;/*SERIAL_ECHOPGM("Scaled kinematic move: ");SERIAL_ECHOPAIR(" segment_length (inv)=", segment_length);SERIAL_ECHOPAIR(" (", inv_segment_length);SERIAL_ECHOPAIR(") _feedrate_mm_s=", _feedrate_mm_s);SERIAL_ECHOPAIR(" inverse_secs=", inverse_secs);SERIAL_ECHOPAIR(" oldA=", oldA);SERIAL_ECHOPAIR(" oldB=", oldB);#if ENABLED(DELTA_FEEDRATE_SCALING)SERIAL_ECHOPAIR(" oldC=", oldC);#endifSERIAL_EOL();safe_delay(5);//*/#endif// Get the current position as starting pointfloat raw[XYZE];COPY(raw, current_position);// Calculate and execute the segmentswhile (--segments) {static millis_t next_idle_ms = millis() + 200UL;thermalManager.manage_heater(); // This returns immediately if not really needed.if (ELAPSED(millis(), next_idle_ms)) {next_idle_ms = millis() + 200UL;idle();}LOOP_XYZE(i) raw[i] += segment_distance[i];#if ENABLED(DELTA) && HOTENDS < 2DELTA_IK(raw); // Delta can inline its kinematics#elif ENABLED(HANGPRINTER)HANGPRINTER_IK(raw); // Modifies line_lengths[ABCD]#elseinverse_kinematics(raw);#endifADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled#if ENABLED(SCARA_FEEDRATE_SCALING)// For SCARA scale the feed rate from mm/s to degrees/s// i.e., Complete the angular vector in the given time.if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_CART], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, segment_length))break;/*SERIAL_ECHO(segments);SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);SERIAL_ECHOLNPAIR(" F", HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs * 60);safe_delay(5);//*/oldA = delta[A_AXIS]; oldB = delta[B_AXIS];#elif ENABLED(DELTA_FEEDRATE_SCALING)// For DELTA scale the feed rate from Effector mm/s to Carriage mm/s// i.e., Complete the linear vector in the given time.if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, segment_length))break;/*SERIAL_ECHO(segments);SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]);SERIAL_ECHOLNPAIR(" F", SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs * 60);safe_delay(5);//*/oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; oldC = delta[C_AXIS];#elif ENABLED(HANGPRINTER)if (!planner.buffer_line(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], raw[E_CART], _feedrate_mm_s, active_extruder, cartesian_segment_mm))break;#elseif (!planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_CART], _feedrate_mm_s, active_extruder, cartesian_segment_mm))break;#endif}// Ensure last segment arrives at target location.#if HAS_FEEDRATE_SCALINGinverse_kinematics(rtarget);ADJUST_DELTA(rtarget);#endif#if ENABLED(SCARA_FEEDRATE_SCALING)const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);if (diff2) {planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_CART], SQRT(diff2) * inverse_secs, active_extruder, segment_length);/*SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB);SERIAL_ECHOLNPAIR(" F", SQRT(diff2) * inverse_secs * 60);SERIAL_EOL();safe_delay(5);//*/}#elif ENABLED(DELTA_FEEDRATE_SCALING)const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC);if (diff2) {planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder, segment_length);/*SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]);SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB); SERIAL_ECHOPAIR(" cdiff=", delta[C_AXIS] - oldC);SERIAL_ECHOLNPAIR(" F", SQRT(diff2) * inverse_secs * 60);SERIAL_EOL();safe_delay(5);//*/}#elseplanner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);#endifreturn false; // caller will update current_position}#else // !IS_KINEMATIC/*** Prepare a linear move in a Cartesian setup.** When a mesh-based leveling system is active, moves are segmented* according to the configuration of the leveling system.** Returns true if current_position[] was set to destination[]*/inline bool prepare_move_to_destination_cartesian() {#if HAS_MESHif (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {#if ENABLED(AUTO_BED_LEVELING_UBL)ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know aboutreturn true; // all moves, including Z-only moves.#elif ENABLED(SEGMENT_LEVELED_MOVES)segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));return false; // caller will update current_position#else/*** For MBL and ABL-BILINEAR only segment moves when X or Y are involved.* Otherwise fall through to do a direct single move.*/if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {#if ENABLED(MESH_BED_LEVELING)mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));#endifreturn true;}#endif}#endif // HAS_MESHbuffer_line_to_destination(MMS_SCALED(feedrate_mm_s));return false; // caller will update current_position}#endif // !IS_KINEMATIC#endif // !UBL_SEGMENTED#if ENABLED(DUAL_X_CARRIAGE)/*** Unpark the carriage, if needed*/inline bool dual_x_carriage_unpark() {if (active_extruder_parked)switch (dual_x_carriage_mode) {case DXC_FULL_CONTROL_MODE: break;case DXC_AUTO_PARK_MODE:if (current_position[E_CART] == destination[E_CART]) {// This is a travel move (with no extrusion)// Skip it, but keep track of the current position// (so it can be used as the start of the next non-travel move)if (delayed_move_time != 0xFFFFFFFFUL) {set_current_from_destination();NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);delayed_move_time = millis();return true;}}// unpark extruder: 1) raise, 2) move into starting XY position, 3) lowerfor (uint8_t i = 0; i < 3; i++)if (!planner.buffer_line(i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],current_position[E_CART],i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],active_extruder)) break;delayed_move_time = 0;active_extruder_parked = false;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");#endifbreak;case DXC_DUPLICATION_MODE:if (active_extruder == 0) {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) {SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);}#endif// move duplicate extruder into correct duplication position.planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART]);if (!planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART],planner.max_feedrate_mm_s[X_AXIS], 1)) break;planner.synchronize();SYNC_PLAN_POSITION_KINEMATIC();extruder_duplication_enabled = true;active_extruder_parked = false;#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");#endif}else {#if ENABLED(DEBUG_LEVELING_FEATURE)if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");#endif}break;}return false;}#endif // DUAL_X_CARRIAGE/*** Prepare a single move and get ready for the next one** This may result in several calls to planner.buffer_line to* do smaller moves for DELTA, SCARA, HANGPRINTER, mesh moves, etc.** Make sure current_position[E] and destination[E] are good* before calling or cold/lengthy extrusion may get missed.*/void prepare_move_to_destination() {clamp_to_software_endstops(destination);#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)if (!DEBUGGING(DRYRUN)) {if (destination[E_CART] != current_position[E_CART]) {#if ENABLED(PREVENT_COLD_EXTRUSION)if (thermalManager.tooColdToExtrude(active_extruder)) {current_position[E_CART] = destination[E_CART]; // Behave as if the move really took place, but ignore E partSERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);}#endif // PREVENT_COLD_EXTRUSION#if ENABLED(PREVENT_LENGTHY_EXTRUDE)if (ABS(destination[E_CART] - current_position[E_CART]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {current_position[E_CART] = destination[E_CART]; // Behave as if the move really took place, but ignore E partSERIAL_ECHO_START();SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);}#endif // PREVENT_LENGTHY_EXTRUDE}}#endif#if ENABLED(DUAL_X_CARRIAGE)if (dual_x_carriage_unpark()) return;#endifif (#if UBL_SEGMENTEDubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))#elif IS_KINEMATICprepare_kinematic_move_to(destination)#elseprepare_move_to_destination_cartesian()#endif) return;set_current_from_destination();}#if ENABLED(ARC_SUPPORT)#if N_ARC_CORRECTION < 1#undef N_ARC_CORRECTION#define N_ARC_CORRECTION 1#endif/*** Plan an arc in 2 dimensions** The arc is approximated by generating many small linear segments.* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)* Arcs should only be made relatively large (over 5mm), as larger arcs with* larger segments will tend to be more efficient. Your slicer should have* options for G2/G3 arc generation. In future these options may be GCode tunable.*/void plan_arc(const float (&cart)[XYZE], // Destination positionconst float (&offset)[2], // Center of rotation relative to current_positionconst bool clockwise // Clockwise?) {#if ENABLED(CNC_WORKSPACE_PLANES)AxisEnum p_axis, q_axis, l_axis;switch (workspace_plane) {default:case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;}#elseconstexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;#endif// Radius vector from center to current locationfloat r_P = -offset[0], r_Q = -offset[1];const float radius = HYPOT(r_P, r_Q),center_P = current_position[p_axis] - r_P,center_Q = current_position[q_axis] - r_Q,rt_X = cart[p_axis] - center_P,rt_Y = cart[q_axis] - center_Q,linear_travel = cart[l_axis] - current_position[l_axis],extruder_travel = cart[E_CART] - current_position[E_CART];// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);if (angular_travel < 0) angular_travel += RADIANS(360);if (clockwise) angular_travel -= RADIANS(360);// Make a circle if the angular rotation is 0 and the target is current positionif (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis])angular_travel = RADIANS(360);const float flat_mm = radius * angular_travel,mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);if (mm_of_travel < 0.001f) return;uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));NOLESS(segments, 1);/*** Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.* r_T = [cos(phi) -sin(phi);* sin(phi) cos(phi)] * r ;** For arc generation, the center of the circle is the axis of rotation and the radius vector is* defined from the circle center to the initial position. Each line segment is formed by successive* vector rotations. This requires only two cos() and sin() computations to form the rotation* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since* all double numbers are single precision on the Arduino. (True double precision will not have* round off issues for CNC applications.) Single precision error can accumulate to be greater than* tool precision in some cases. Therefore, arc path correction is implemented.** Small angle approximation may be used to reduce computation overhead further. This approximation* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an* issue for CNC machines with the single precision Arduino calculations.** This approximation also allows plan_arc to immediately insert a line segment into the planner* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.* This is important when there are successive arc motions.*/// Vector rotation matrix valuesfloat raw[XYZE];const float theta_per_segment = angular_travel / segments,linear_per_segment = linear_travel / segments,extruder_per_segment = extruder_travel / segments,sin_T = theta_per_segment,cos_T = 1 - 0.5f * sq(theta_per_segment); // Small angle approximation// Initialize the linear axisraw[l_axis] = current_position[l_axis];// Initialize the extruder axisraw[E_CART] = current_position[E_CART];const float fr_mm_s = MMS_SCALED(feedrate_mm_s);millis_t next_idle_ms = millis() + 200UL;#if HAS_FEEDRATE_SCALING// SCARA needs to scale the feed rate from mm/s to degrees/sconst float inv_segment_length = 1.0f / (MM_PER_ARC_SEGMENT),inverse_secs = inv_segment_length * fr_mm_s;float oldA = planner.position_float[A_AXIS],oldB = planner.position_float[B_AXIS]#if ENABLED(DELTA_FEEDRATE_SCALING), oldC = planner.position_float[C_AXIS]#endif;#endif#if N_ARC_CORRECTION > 1int8_t arc_recalc_count = N_ARC_CORRECTION;#endiffor (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) timesthermalManager.manage_heater();if (ELAPSED(millis(), next_idle_ms)) {next_idle_ms = millis() + 200UL;idle();}#if N_ARC_CORRECTION > 1if (--arc_recalc_count) {// Apply vector rotation matrix to previous r_P / 1const float r_new_Y = r_P * sin_T + r_Q * cos_T;r_P = r_P * cos_T - r_Q * sin_T;r_Q = r_new_Y;}else#endif{#if N_ARC_CORRECTION > 1arc_recalc_count = N_ARC_CORRECTION;#endif// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.// Compute exact location by applying transformation matrix from initial radius vector(=-offset).// To reduce stuttering, the sin and cos could be computed at different times.// For now, compute both at the same time.const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;}// Update raw locationraw[p_axis] = center_P + r_P;raw[q_axis] = center_Q + r_Q;raw[l_axis] += linear_per_segment;raw[E_CART] += extruder_per_segment;clamp_to_software_endstops(raw);#if HAS_FEEDRATE_SCALINGinverse_kinematics(raw);ADJUST_DELTA(raw);#endif#if ENABLED(SCARA_FEEDRATE_SCALING)// For SCARA scale the feed rate from mm/s to degrees/s// i.e., Complete the angular vector in the given time.if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_CART], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT))break;oldA = delta[A_AXIS]; oldB = delta[B_AXIS];#elif ENABLED(DELTA_FEEDRATE_SCALING)// For DELTA scale the feed rate from Effector mm/s to Carriage mm/s// i.e., Complete the linear vector in the given time.if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT))break;oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; oldC = delta[C_AXIS];#elif HAS_UBL_AND_CURVESfloat pos[XYZ] = { raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] };planner.apply_leveling(pos);if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_CART], fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT))break;#elseif (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder))break;#endif}// Ensure last segment arrives at target location.#if HAS_FEEDRATE_SCALINGinverse_kinematics(cart);ADJUST_DELTA(cart);#endif#if ENABLED(SCARA_FEEDRATE_SCALING)const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);if (diff2)planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_CART], SQRT(diff2) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT);#elif ENABLED(DELTA_FEEDRATE_SCALING)const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC);if (diff2)planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_CART], SQRT(diff2) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT);#elif HAS_UBL_AND_CURVESfloat pos[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };planner.apply_leveling(pos);planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], cart[E_CART], fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT);#elseplanner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);#endifCOPY(current_position, cart);} // plan_arc#endif // ARC_SUPPORT#if ENABLED(BEZIER_CURVE_SUPPORT)void plan_cubic_move(const float (&cart)[XYZE], const float (&offset)[4]) {cubic_b_spline(current_position, cart, offset, MMS_SCALED(feedrate_mm_s), active_extruder);COPY(current_position, cart);}#endif // BEZIER_CURVE_SUPPORT#if ENABLED(USE_CONTROLLER_FAN)void controllerFan() {static millis_t lastMotorOn = 0, // Last time a motor was turned onnextMotorCheck = 0; // Last time the state was checkedconst millis_t ms = millis();if (ELAPSED(ms, nextMotorCheck)) {nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s// If any of the drivers or the bed are enabled...if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON#if HAS_HEATED_BED|| thermalManager.soft_pwm_amount_bed > 0#endif#if HAS_X2_ENABLE|| X2_ENABLE_READ == X_ENABLE_ON#endif#if HAS_Y2_ENABLE|| Y2_ENABLE_READ == Y_ENABLE_ON#endif#if HAS_Z2_ENABLE|| Z2_ENABLE_READ == Z_ENABLE_ON#endif|| E0_ENABLE_READ == E_ENABLE_ON#if E_STEPPERS > 1|| E1_ENABLE_READ == E_ENABLE_ON#if E_STEPPERS > 2|| E2_ENABLE_READ == E_ENABLE_ON#if E_STEPPERS > 3|| E3_ENABLE_READ == E_ENABLE_ON#if E_STEPPERS > 4|| E4_ENABLE_READ == E_ENABLE_ON#endif#endif#endif#endif) {lastMotorOn = ms; //... set time to NOW so the fan will turn on}// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS secondsconst uint8_t speed = (lastMotorOn && PENDING(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? CONTROLLERFAN_SPEED : 0;controllerFanSpeed = speed;// allows digital or PWM fan output to be used (see M42 handling)WRITE(CONTROLLER_FAN_PIN, speed);analogWrite(CONTROLLER_FAN_PIN, speed);}}#endif // USE_CONTROLLER_FAN#if ENABLED(MORGAN_SCARA)/*** Morgan SCARA Forward Kinematics. Results in cartes[].* Maths and first version by QHARLEY.* Integrated into Marlin and slightly restructured by Joachim Cerny.*/void forward_kinematics_SCARA(const float &a, const float &b) {float a_sin = sin(RADIANS(a)) * L1,a_cos = cos(RADIANS(a)) * L1,b_sin = sin(RADIANS(b)) * L2,b_cos = cos(RADIANS(b)) * L2;cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //thetacartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi/*SERIAL_ECHOPAIR("SCARA FK Angle a=", a);SERIAL_ECHOPAIR(" b=", b);SERIAL_ECHOPAIR(" a_sin=", a_sin);SERIAL_ECHOPAIR(" a_cos=", a_cos);SERIAL_ECHOPAIR(" b_sin=", b_sin);SERIAL_ECHOLNPAIR(" b_cos=", b_cos);SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);//*/}/*** Morgan SCARA Inverse Kinematics. Results in delta[].** See http://forums.reprap.org/read.php?185,283327** Maths and first version by QHARLEY.* Integrated into Marlin and slightly restructured by Joachim Cerny.*/void inverse_kinematics(const float raw[XYZ]) {static float C2, S2, SK1, SK2, THETA, PSI;float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Ysy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.if (L1 == L2)C2 = HYPOT2(sx, sy) / L1_2_2 - 1;elseC2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);S2 = SQRT(1 - sq(C2));// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to EndSK1 = L1 + L2 * C2;// Rotated Arm2 gives the distance from Arm1 to Arm2SK2 = L2 * S2;// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-ElbowTHETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);// Angle of Arm2PSI = ATAN2(S2, C2);delta[A_AXIS] = DEGREES(THETA); // theta is support arm angledelta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)delta[C_AXIS] = raw[Z_AXIS];/*DEBUG_POS("SCARA IK", raw);DEBUG_POS("SCARA IK", delta);SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);SERIAL_ECHOPAIR(",", sy);SERIAL_ECHOPAIR(" C2=", C2);SERIAL_ECHOPAIR(" S2=", S2);SERIAL_ECHOPAIR(" Theta=", THETA);SERIAL_ECHOLNPAIR(" Phi=", PHI);//*/}#endif // MORGAN_SCARA#if ENABLED(TEMP_STAT_LEDS)static uint8_t red_led = -1; // Invalid value to force leds initializzation on startupstatic millis_t next_status_led_update_ms = 0;void handle_status_leds(void) {if (ELAPSED(millis(), next_status_led_update_ms)) {next_status_led_update_ms += 500; // Update every 0.5sfloat max_temp = 0.0;#if HAS_HEATED_BEDmax_temp = MAX(thermalManager.degTargetBed(), thermalManager.degBed());#endifHOTEND_LOOP()max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));const uint8_t new_led = (max_temp > 55.0) ? HIGH : (max_temp < 54.0 || red_led == -1) ? LOW : red_led;if (new_led != red_led) {red_led = new_led;#if PIN_EXISTS(STAT_LED_RED)WRITE(STAT_LED_RED_PIN, new_led);#endif#if PIN_EXISTS(STAT_LED_BLUE)WRITE(STAT_LED_BLUE_PIN, !new_led);#endif}}}#endifvoid enable_all_steppers() {#if ENABLED(AUTO_POWER_CONTROL)powerManager.power_on();#endif#if ENABLED(HANGPRINTER)enable_A();enable_B();enable_C();enable_D();#elseenable_X();enable_Y();enable_Z();enable_E4();#endifenable_E0();enable_E1();enable_E2();enable_E3();}void disable_e_stepper(const uint8_t e) {switch (e) {case 0: disable_E0(); break;case 1: disable_E1(); break;case 2: disable_E2(); break;case 3: disable_E3(); break;case 4: disable_E4(); break;}}void disable_e_steppers() {disable_E0();disable_E1();disable_E2();disable_E3();disable_E4();}void disable_all_steppers() {disable_X();disable_Y();disable_Z();disable_e_steppers();}/*** Manage several activities:* - Check for Filament Runout* - Keep the command buffer full* - Check for maximum inactive time between commands* - Check for maximum inactive time between stepper commands* - Check if pin CHDK needs to go LOW* - Check for KILL button held down* - Check for HOME button held down* - Check if cooling fan needs to be switched on* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)*/void manage_inactivity(const bool ignore_stepper_queue/*=false*/) {#if ENABLED(FILAMENT_RUNOUT_SENSOR)runout.run();#endifif (commands_in_queue < BUFSIZE) get_available_commands();const millis_t ms = millis();if (max_inactive_time && ELAPSED(ms, previous_move_ms + max_inactive_time)) {SERIAL_ERROR_START();SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);kill(PSTR(MSG_KILLED));}// Prevent steppers timing-out in the middle of M600#if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)#define MOVE_AWAY_TEST !did_pause_print#else#define MOVE_AWAY_TEST true#endifif (stepper_inactive_time) {if (planner.has_blocks_queued())previous_move_ms = ms; // reset_stepper_timeout to keep steppers poweredelse if (MOVE_AWAY_TEST && !ignore_stepper_queue && ELAPSED(ms, previous_move_ms + stepper_inactive_time)) {#if ENABLED(DISABLE_INACTIVE_X)disable_X();#endif#if ENABLED(DISABLE_INACTIVE_Y)disable_Y();#endif#if ENABLED(DISABLE_INACTIVE_Z)disable_Z();#endif#if ENABLED(DISABLE_INACTIVE_E)disable_e_steppers();#endif#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) // Only needed with an LCDif (ubl.lcd_map_control) ubl.lcd_map_control = defer_return_to_status = false;#endif}}#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGHif (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {chdkActive = false;WRITE(CHDK, LOW);}#endif#if HAS_KILL// Check if the kill button was pressed and wait just in case it was an accidental// key kill key press// -------------------------------------------------------------------------------static int killCount = 0; // make the inactivity button a bit less responsiveconst int KILL_DELAY = 750;if (!READ(KILL_PIN))killCount++;else if (killCount > 0)killCount--;// Exceeded threshold and we can confirm that it was not accidental// KILL the machine// ----------------------------------------------------------------if (killCount >= KILL_DELAY) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);kill(PSTR(MSG_KILLED));}#endif#if HAS_HOME// Check to see if we have to home, use poor man's debouncer// ---------------------------------------------------------static int homeDebounceCount = 0; // poor man's debouncing countconst int HOME_DEBOUNCE_DELAY = 2500;if (!IS_SD_PRINTING() && !READ(HOME_PIN)) {if (!homeDebounceCount) {enqueue_and_echo_commands_P(PSTR("G28"));LCD_MESSAGEPGM(MSG_AUTO_HOME);}if (homeDebounceCount < HOME_DEBOUNCE_DELAY)homeDebounceCount++;elsehomeDebounceCount = 0;}#endif#if ENABLED(USE_CONTROLLER_FAN)controllerFan(); // Check if fan should be turned on to cool stepper drivers down#endif#if ENABLED(AUTO_POWER_CONTROL)powerManager.check();#endif#if ENABLED(EXTRUDER_RUNOUT_PREVENT)if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP&& ELAPSED(ms, previous_move_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)&& !planner.has_blocks_queued()) {#if ENABLED(SWITCHING_EXTRUDER)bool oldstatus;switch (active_extruder) {default: oldstatus = E0_ENABLE_READ; enable_E0(); break;#if E_STEPPERS > 1case 2: case 3: oldstatus = E1_ENABLE_READ; enable_E1(); break;#if E_STEPPERS > 2case 4: oldstatus = E2_ENABLE_READ; enable_E2(); break;#endif // E_STEPPERS > 2#endif // E_STEPPERS > 1}#else // !SWITCHING_EXTRUDERbool oldstatus;switch (active_extruder) {default: oldstatus = E0_ENABLE_READ; enable_E0(); break;#if E_STEPPERS > 1case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;#if E_STEPPERS > 2case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;#if E_STEPPERS > 3case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;#if E_STEPPERS > 4case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;#endif // E_STEPPERS > 4#endif // E_STEPPERS > 3#endif // E_STEPPERS > 2#endif // E_STEPPERS > 1}#endif // !SWITCHING_EXTRUDERconst float olde = current_position[E_CART];current_position[E_CART] += EXTRUDER_RUNOUT_EXTRUDE;planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);current_position[E_CART] = olde;planner.set_e_position_mm(olde);planner.synchronize();#if ENABLED(SWITCHING_EXTRUDER)switch (active_extruder) {default: oldstatus = E0_ENABLE_WRITE(oldstatus); break;#if E_STEPPERS > 1case 2: case 3: oldstatus = E1_ENABLE_WRITE(oldstatus); break;#if E_STEPPERS > 2case 4: oldstatus = E2_ENABLE_WRITE(oldstatus); break;#endif // E_STEPPERS > 2#endif // E_STEPPERS > 1}#else // !SWITCHING_EXTRUDERswitch (active_extruder) {case 0: E0_ENABLE_WRITE(oldstatus); break;#if E_STEPPERS > 1case 1: E1_ENABLE_WRITE(oldstatus); break;#if E_STEPPERS > 2case 2: E2_ENABLE_WRITE(oldstatus); break;#if E_STEPPERS > 3case 3: E3_ENABLE_WRITE(oldstatus); break;#if E_STEPPERS > 4case 4: E4_ENABLE_WRITE(oldstatus); break;#endif // E_STEPPERS > 4#endif // E_STEPPERS > 3#endif // E_STEPPERS > 2#endif // E_STEPPERS > 1}#endif // !SWITCHING_EXTRUDERprevious_move_ms = ms; // reset_stepper_timeout to keep steppers powered}#endif // EXTRUDER_RUNOUT_PREVENT#if ENABLED(DUAL_X_CARRIAGE)// handle delayed move timeoutif (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {// travel moves have been received so enact themdelayed_move_time = 0xFFFFFFFFUL; // force moves to be doneset_destination_from_current();prepare_move_to_destination();}#endif#if ENABLED(TEMP_STAT_LEDS)handle_status_leds();#endif#if ENABLED(MONITOR_DRIVER_STATUS)monitor_tmc_driver();#endifplanner.check_axes_activity();}/*** Standard idle routine keeps the machine alive*/void idle(#if ENABLED(ADVANCED_PAUSE_FEATURE)bool no_stepper_sleep/*=false*/#endif) {#if ENABLED(MAX7219_DEBUG)max7219.idle_tasks();#endiflcd_update();host_keepalive();manage_inactivity(#if ENABLED(ADVANCED_PAUSE_FEATURE)no_stepper_sleep#endif);thermalManager.manage_heater();#if ENABLED(PRINTCOUNTER)print_job_timer.tick();#endif#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)buzzer.tick();#endif#if ENABLED(I2C_POSITION_ENCODERS)static millis_t i2cpem_next_update_ms;if (planner.has_blocks_queued() && ELAPSED(millis(), i2cpem_next_update_ms)) {I2CPEM.update();i2cpem_next_update_ms = millis() + I2CPE_MIN_UPD_TIME_MS;}#endif#if HAS_AUTO_REPORTINGif (!suspend_auto_report) {#if ENABLED(AUTO_REPORT_TEMPERATURES)thermalManager.auto_report_temperatures();#endif#if ENABLED(AUTO_REPORT_SD_STATUS)card.auto_report_sd_status();#endif}#endif}/*** Kill all activity and lock the machine.* After this the machine will need to be reset.*/void kill(const char* lcd_msg) {SERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_KILLED);thermalManager.disable_all_heaters();disable_all_steppers();#if ENABLED(ULTRA_LCD)kill_screen(lcd_msg);#elseUNUSED(lcd_msg);#endif_delay_ms(600); // Wait a short time (allows messages to get out before shutting down.cli(); // Stop interrupts_delay_ms(250); //Wait to ensure all interrupts routines stoppedthermalManager.disable_all_heaters(); //turn off heaters again#ifdef ACTION_ON_KILLSERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);#endif#if HAS_POWER_SWITCHPSU_OFF();#endifsuicide();while (1) {#if ENABLED(USE_WATCHDOG)watchdog_reset();#endif} // Wait for reset}/*** Turn off heaters and stop the print in progress* After a stop the machine may be resumed with M999*/void stop() {thermalManager.disable_all_heaters(); // 'unpause' taken care of in here#if ENABLED(PROBING_FANS_OFF)if (fans_paused) fans_pause(false); // put things back the way they were#endifif (IsRunning()) {Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restartSERIAL_ERROR_START();SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);LCD_MESSAGEPGM(MSG_STOPPED);safe_delay(350); // allow enough time for messages to get out before stoppingRunning = false;}}/*** Marlin entry-point: Set up before the program loop* - Set up the kill pin, filament runout, power hold* - Start the serial port* - Print startup messages and diagnostics* - Get EEPROM or default settings* - Initialize managers for:* • temperature* • planner* • watchdog* • stepper* • photo pin* • servos* • LCD controller* • Digipot I2C* • Z probe sled* • status LEDs*/void setup() {#if ENABLED(MAX7219_DEBUG)max7219.init();#endif#if ENABLED(DISABLE_JTAG)// Disable JTAG on AT90USB chips to free up pins for IOMCUCR = 0x80;MCUCR = 0x80;#endif#if ENABLED(FILAMENT_RUNOUT_SENSOR)runout.setup();#endifsetup_killpin();setup_powerhold();#if HAS_STEPPER_RESETdisableStepperDrivers();#endifMYSERIAL0.begin(BAUDRATE);SERIAL_PROTOCOLLNPGM("start");SERIAL_ECHO_START();// Prepare communication for TMC drivers#if HAS_DRIVER(TMC2130)tmc_init_cs_pins();#endif#if HAS_DRIVER(TMC2208)tmc2208_serial_begin();#endif// Check startup - does nothing if bootloader sets MCUSR to 0byte mcu = MCUSR;if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);MCUSR = 0;SERIAL_ECHOPGM(MSG_MARLIN);SERIAL_CHAR(' ');SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);SERIAL_EOL();#if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)SERIAL_ECHO_START();SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);SERIAL_ECHO_START();SERIAL_ECHOLNPGM("Compiled: " __DATE__);#endifSERIAL_ECHO_START();SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, int(sizeof(block_t))*(BLOCK_BUFFER_SIZE));// Send "ok" after commands by defaultfor (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;// Load data from EEPROM if available (or use defaults)// This also updates variables in the planner, elsewhere(void)settings.load();#if HAS_M206_COMMAND// Initialize current position based on home_offsetCOPY(current_position, home_offset);#elseZERO(current_position);#endif// Vital to init stepper/planner equivalent for current_positionSYNC_PLAN_POSITION_KINEMATIC();thermalManager.init(); // Initialize temperature loopprint_job_timer.init(); // Initial setup of print job timerendstops.init(); // Init endstops and pullupsstepper.init(); // Init stepper. This enables interrupts!servo_init(); // Initialize all servos, stow servo probe#if HAS_PHOTOGRAPHOUT_WRITE(PHOTOGRAPH_PIN, LOW);#endif#if HAS_CASE_LIGHTcase_light_on = CASE_LIGHT_DEFAULT_ON;case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;update_case_light();#endif#if ENABLED(SPINDLE_LASER_ENABLE)OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off#if SPINDLE_DIR_CHANGEOUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)#endif#if ENABLED(SPINDLE_LASER_PWM)SET_OUTPUT(SPINDLE_LASER_PWM_PIN);analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed#endif#endif#if HAS_BED_PROBEendstops.enable_z_probe(false);#endif#if ENABLED(USE_CONTROLLER_FAN)SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan#endif#if HAS_STEPPER_RESETenableStepperDrivers();#endif#if ENABLED(DIGIPOT_I2C)digipot_i2c_init();#endif#if ENABLED(DAC_STEPPER_CURRENT)dac_init();#endif#if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1OUT_WRITE(SOL1_PIN, LOW); // turn it off#endif#if HAS_HOMESET_INPUT_PULLUP(HOME_PIN);#endif#if PIN_EXISTS(STAT_LED_RED)OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off#endif#if PIN_EXISTS(STAT_LED_BLUE)OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off#endif#if HAS_COLOR_LEDSleds.setup();#endif#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)SET_OUTPUT(RGB_LED_R_PIN);SET_OUTPUT(RGB_LED_G_PIN);SET_OUTPUT(RGB_LED_B_PIN);#if ENABLED(RGBW_LED)SET_OUTPUT(RGB_LED_W_PIN);#endif#endif#if ENABLED(MK2_MULTIPLEXER)SET_OUTPUT(E_MUX0_PIN);SET_OUTPUT(E_MUX1_PIN);SET_OUTPUT(E_MUX2_PIN);#endif#if HAS_FANMUXfanmux_init();#endiflcd_init();lcd_reset_status();#if ENABLED(SHOW_BOOTSCREEN)lcd_bootscreen();#endif#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1// Virtual Tools 0, 1, 2, 3 = Filament 1, 2, 3, 4, etc.for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS && t < MIXING_STEPPERS; t++)for (uint8_t i = 0; i < MIXING_STEPPERS; i++)mixing_virtual_tool_mix[t][i] = (t == i) ? 1.0 : 0.0;// Remaining virtual tools are 100% filament 1#if MIXING_STEPPERS < MIXING_VIRTUAL_TOOLSfor (uint8_t t = MIXING_STEPPERS; t < MIXING_VIRTUAL_TOOLS; t++)for (uint8_t i = 0; i < MIXING_STEPPERS; i++)mixing_virtual_tool_mix[t][i] = (i == 0) ? 1.0 : 0.0;#endif// Initialize mixing to tool 0 colorfor (uint8_t i = 0; i < MIXING_STEPPERS; i++)mixing_factor[i] = mixing_virtual_tool_mix[0][i];#endif#if ENABLED(BLTOUCH)// Make sure any BLTouch error condition is clearedbltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY);set_bltouch_deployed(false);#endif#if ENABLED(I2C_POSITION_ENCODERS)I2CPEM.init();#endif#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0i2c.onReceive(i2c_on_receive);i2c.onRequest(i2c_on_request);#endif#if DO_SWITCH_EXTRUDERmove_extruder_servo(0); // Initialize extruder servo#endif#if ENABLED(SWITCHING_NOZZLE)move_nozzle_servo(0); // Initialize nozzle servo#endif#if ENABLED(PARKING_EXTRUDER)#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)pe_activate_magnet(0);pe_activate_magnet(1);#elsepe_deactivate_magnet(0);pe_deactivate_magnet(1);#endif#endif#if ENABLED(POWER_LOSS_RECOVERY)check_print_job_recovery();#endif#if ENABLED(USE_WATCHDOG)watchdog_init();#endif#if ENABLED(HANGPRINTER)enable_A();enable_B();enable_C();enable_D();#endif#if ENABLED(SDSUPPORT) && !(ENABLED(ULTRA_LCD) && PIN_EXISTS(SD_DETECT))card.beginautostart();#endif}/*** The main Marlin program loop** - Abort SD printing if flagged* - Save or log commands to SD* - Process available commands (if not saving)* - Call heater manager* - Call inactivity manager* - Call endstop manager* - Call LCD update*/void loop() {#if ENABLED(SDSUPPORT)card.checkautostart();if (card.abort_sd_printing) {card.stopSDPrint(#if SD_RESORTtrue#endif);clear_command_queue();quickstop_stepper();print_job_timer.stop();thermalManager.disable_all_heaters();#if FAN_COUNT > 0for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;#endifwait_for_heatup = false;#if ENABLED(POWER_LOSS_RECOVERY)card.removeJobRecoveryFile();#endif}#endif // SDSUPPORTif (commands_in_queue < BUFSIZE) get_available_commands();if (commands_in_queue) {#if ENABLED(SDSUPPORT)if (card.saving) {char* command = command_queue[cmd_queue_index_r];if (strstr_P(command, PSTR("M29"))) {// M29 closes the filecard.closefile();SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);#if USE_MARLINSERIAL#if ENABLED(SERIAL_STATS_DROPPED_RX)SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());#endif#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());#endif#endifok_to_send();}else {// Write the string from the read buffer to SDcard.write_command(command);if (card.logging)process_next_command(); // The card is saving because it's loggingelseok_to_send();}}else {process_next_command();#if ENABLED(POWER_LOSS_RECOVERY)if (card.cardOK && card.sdprinting) save_job_recovery_info();#endif}#elseprocess_next_command();#endif // SDSUPPORT// The queue may be reset by a command handler or by code invoked by idle() within a handlerif (commands_in_queue) {--commands_in_queue;if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;}}endstops.event_handler();idle();}