Blame | Last modification | View Log | RSS feed
/*** Marlin 3D Printer Firmware* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]** Based on Sprinter and grbl.* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program. If not, see <http://www.gnu.org/licenses/>.**//*** This module is off by default, but can be enabled to facilitate the display of* extra debug information during code development.** Just connect up 5V and GND to give it power, then connect up the pins assigned* in Configuration_adv.h. For example, on the Re-ARM you could use:** #define MAX7219_CLK_PIN 77* #define MAX7219_DIN_PIN 78* #define MAX7219_LOAD_PIN 79** send() is called automatically at startup, and then there are a number of* support functions available to control the LEDs in the 8x8 grid.*/#include "MarlinConfig.h"#if ENABLED(MAX7219_DEBUG)#define MAX7219_ERRORS // Disable to save 406 bytes of Program Memory#include "Max7219_Debug_LEDs.h"#include "planner.h"#include "stepper.h"#include "Marlin.h"#include "delay.h"Max7219 max7219;uint8_t Max7219::led_line[MAX7219_LINES]; // = { 0 };#define LINE_REG(Q) (max7219_reg_digit0 + ((Q) & 0x7))#if _ROT == 0 || _ROT == 270#define _LED_BIT(Q) (7 - ((Q) & 0x7))#define _LED_UNIT(Q) ((Q) & ~0x7)#else#define _LED_BIT(Q) ((Q) & 0x7)#define _LED_UNIT(Q) ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3)#endif#if _ROT < 180#define _LED_IND(P,Q) (_LED_UNIT(P) + (Q))#else#define _LED_IND(P,Q) (_LED_UNIT(P) + (7 - ((Q) & 0x7)))#endif#if _ROT == 0 || _ROT == 180#define LED_IND(X,Y) _LED_IND(X,Y)#define LED_BIT(X,Y) _LED_BIT(X)#elif _ROT == 90 || _ROT == 270#define LED_IND(X,Y) _LED_IND(Y,X)#define LED_BIT(X,Y) _LED_BIT(Y)#endif#define XOR_7219(X,Y) do{ led_line[LED_IND(X,Y)] ^= _BV(LED_BIT(X,Y)); }while(0)#define SET_7219(X,Y) do{ led_line[LED_IND(X,Y)] |= _BV(LED_BIT(X,Y)); }while(0)#define CLR_7219(X,Y) do{ led_line[LED_IND(X,Y)] &= ~_BV(LED_BIT(X,Y)); }while(0)#define BIT_7219(X,Y) TEST(led_line[LED_IND(X,Y)], LED_BIT(X,Y))#ifdef CPU_32_BIT#define SIG_DELAY() DELAY_US(1) // Approximate a 1µs delay on 32-bit ARM#undef CRITICAL_SECTION_START#undef CRITICAL_SECTION_END#define CRITICAL_SECTION_START NOOP#define CRITICAL_SECTION_END NOOP#else#define SIG_DELAY() DELAY_NS(188) // Delay for 0.1875µs (16MHz AVR) or 0.15µs (20MHz AVR)#endifvoid Max7219::error(const char * const func, const int32_t v1, const int32_t v2/*=-1*/) {#if ENABLED(MAX7219_ERRORS)SERIAL_ECHOPGM("??? Max7219::");serialprintPGM(func);SERIAL_CHAR('(');SERIAL_ECHO(v1);if (v2 > 0) SERIAL_ECHOPAIR(", ", v2);SERIAL_CHAR(')');SERIAL_EOL();#elseUNUSED(func); UNUSED(v1); UNUSED(v2);#endif}/*** Flip the lowest n_bytes of the supplied bits:* flipped(x, 1) flips the low 8 bits of x.* flipped(x, 2) flips the low 16 bits of x.* flipped(x, 3) flips the low 24 bits of x.* flipped(x, 4) flips the low 32 bits of x.*/inline uint32_t flipped(const uint32_t bits, const uint8_t n_bytes) {uint32_t mask = 1, outbits = 0;for (uint8_t b = 0; b < n_bytes * 8; b++) {outbits <<= 1;if (bits & mask) outbits |= 1;mask <<= 1;}return outbits;}void Max7219::noop() {CRITICAL_SECTION_START;SIG_DELAY();WRITE(MAX7219_DIN_PIN, LOW);for (uint8_t i = 16; i--;) {SIG_DELAY();WRITE(MAX7219_CLK_PIN, LOW);SIG_DELAY();SIG_DELAY();WRITE(MAX7219_CLK_PIN, HIGH);SIG_DELAY();}CRITICAL_SECTION_END;}void Max7219::putbyte(uint8_t data) {CRITICAL_SECTION_START;for (uint8_t i = 8; i--;) {SIG_DELAY();WRITE(MAX7219_CLK_PIN, LOW); // tickSIG_DELAY();WRITE(MAX7219_DIN_PIN, (data & 0x80) ? HIGH : LOW); // send 1 or 0 based on data bitSIG_DELAY();WRITE(MAX7219_CLK_PIN, HIGH); // tockSIG_DELAY();data <<= 1;}CRITICAL_SECTION_END;}void Max7219::pulse_load() {SIG_DELAY();WRITE(MAX7219_LOAD_PIN, LOW); // tell the chip to load the dataSIG_DELAY();WRITE(MAX7219_LOAD_PIN, HIGH);SIG_DELAY();}void Max7219::send(const uint8_t reg, const uint8_t data) {SIG_DELAY();CRITICAL_SECTION_START;SIG_DELAY();putbyte(reg); // specify registerSIG_DELAY();putbyte(data); // put dataCRITICAL_SECTION_END;}// Send out a single native row of bits to all unitsvoid Max7219::refresh_line(const uint8_t line) {for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)send(LINE_REG(line), led_line[(u << 3) | (line & 0x7)]);pulse_load();}// Send out a single native row of bits to just one unitvoid Max7219::refresh_unit_line(const uint8_t line) {for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)if (u == (line >> 3)) send(LINE_REG(line), led_line[line]); else noop();pulse_load();}void Max7219::set(const uint8_t line, const uint8_t bits) {led_line[line] = bits;refresh_line(line);}#if ENABLED(MAX7219_NUMERIC)// Draw an integer with optional leading zeros and optional decimal pointvoid Max7219::print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false) {constexpr uint8_t led_numeral[10] = { 0x7E, 0x60, 0x6D, 0x79, 0x63, 0x5B, 0x5F, 0x70, 0x7F, 0x7A },led_decimal = 0x80, led_minus = 0x01;bool blank = false, neg = value < 0;if (neg) value *= -1;while (size--) {const bool minus = neg && blank;if (minus) neg = false;send(max7219_reg_digit0 + start + size,minus ? led_minus : blank ? 0x00 : led_numeral[value % 10] | (dec ? led_decimal : 0x00));pulse_load(); // tell the chips to load the clocked out datavalue /= 10;if (!value && !leadzero) blank = true;dec = false;}}// Draw a float with a decimal point and optional digitsvoid Max7219::print(const uint8_t start, const float value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) {if (pre_size) print(start, value, pre_size, leadzero, !!post_size);if (post_size) {const int16_t after = ABS(value) * (10 ^ post_size);print(start + pre_size, after, post_size, true);}}#endif // MAX7219_NUMERIC// Modify a single LED bit and send the changed linevoid Max7219::led_set(const uint8_t x, const uint8_t y, const bool on) {if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_set"), x, y);if (BIT_7219(x, y) == on) return;XOR_7219(x, y);refresh_line(LED_IND(x, y));}void Max7219::led_on(const uint8_t x, const uint8_t y) {if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_on"), x, y);led_set(x, y, true);}void Max7219::led_off(const uint8_t x, const uint8_t y) {if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_off"), x, y);led_set(x, y, false);}void Max7219::led_toggle(const uint8_t x, const uint8_t y) {if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_toggle"), x, y);led_set(x, y, !BIT_7219(x, y));}void Max7219::send_row(const uint8_t row) {#if _ROT == 0 || _ROT == 180refresh_line(LED_IND(0, row));#elseUNUSED(row);refresh();#endif}void Max7219::send_column(const uint8_t col) {#if _ROT == 90 || _ROT == 270refresh_line(LED_IND(col, 0));#elseUNUSED(col);refresh();#endif}void Max7219::clear() {ZERO(led_line);refresh();}void Max7219::fill() {memset(led_line, 0xFF, sizeof(led_line));refresh();}void Max7219::clear_row(const uint8_t row) {if (row >= MAX7219_Y_LEDS) return error(PSTR("clear_row"), row);for (uint8_t x = 0; x < MAX7219_X_LEDS; x++) CLR_7219(x, row);send_row(row);}void Max7219::clear_column(const uint8_t col) {if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);for (uint8_t y = 0; y < MAX7219_Y_LEDS; y++) CLR_7219(col, y);send_column(col);}/*** Plot the low order bits of val to the specified row of the matrix.* With 4 Max7219 units in the chain, it's possible to set 32 bits at once with* one call to the function (if rotated 90° or 180°).*/void Max7219::set_row(const uint8_t row, const uint32_t val) {if (row >= MAX7219_Y_LEDS) return error(PSTR("set_row"), row);uint32_t mask = _BV32(MAX7219_X_LEDS - 1);for (uint8_t x = 0; x < MAX7219_X_LEDS; x++) {if (val & mask) SET_7219(x, row); else CLR_7219(x, row);mask >>= 1;}send_row(row);}/*** Plot the low order bits of val to the specified column of the matrix.* With 4 Max7219 units in the chain, it's possible to set 32 bits at once with* one call to the function (if rotated 90° or 180°).*/void Max7219::set_column(const uint8_t col, const uint32_t val) {if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);uint32_t mask = _BV32(MAX7219_Y_LEDS - 1);for (uint8_t y = 0; y < MAX7219_Y_LEDS; y++) {if (val & mask) SET_7219(col, y); else CLR_7219(col, y);mask >>= 1;}send_column(col);}void Max7219::set_rows_16bits(const uint8_t y, uint32_t val) {#if MAX7219_X_LEDS == 8if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_16bits"), y, val);set_row(y + 1, val); val >>= 8;set_row(y + 0, val);#else // at least 16 bits on each rowif (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_16bits"), y, val);set_row(y, val);#endif}void Max7219::set_rows_32bits(const uint8_t y, uint32_t val) {#if MAX7219_X_LEDS == 8if (y > MAX7219_Y_LEDS - 4) return error(PSTR("set_rows_32bits"), y, val);set_row(y + 3, val); val >>= 8;set_row(y + 2, val); val >>= 8;set_row(y + 1, val); val >>= 8;set_row(y + 0, val);#elif MAX7219_X_LEDS == 16if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_32bits"), y, val);set_row(y + 1, val); val >>= 16;set_row(y + 0, val);#else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bitsif (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_32bits"), y, val);set_row(y, val);#endif}void Max7219::set_columns_16bits(const uint8_t x, uint32_t val) {#if MAX7219_Y_LEDS == 8if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_columns_16bits"), x, val);set_column(x + 0, val); val >>= 8;set_column(x + 1, val);#else // at least 16 bits in each columnif (x > MAX7219_X_LEDS - 1) return error(PSTR("set_columns_16bits"), x, val);set_column(x, val);#endif}void Max7219::set_columns_32bits(const uint8_t x, uint32_t val) {#if MAX7219_Y_LEDS == 8if (x > MAX7219_X_LEDS - 4) return error(PSTR("set_rows_32bits"), x, val);set_column(x + 3, val); val >>= 8;set_column(x + 2, val); val >>= 8;set_column(x + 1, val); val >>= 8;set_column(x + 0, val);#elif MAX7219_Y_LEDS == 16if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_rows_32bits"), x, val);set_column(x + 1, val); val >>= 16;set_column(x + 0, val);#else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bitsif (x > MAX7219_X_LEDS - 1) return error(PSTR("set_rows_32bits"), x, val);set_column(x, val);#endif}// Initialize the Max7219void Max7219::register_setup() {for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)send(max7219_reg_scanLimit, 0x07);pulse_load(); // tell the chips to load the clocked out datafor (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)send(max7219_reg_decodeMode, 0x00); // using an led matrix (not digits)pulse_load(); // tell the chips to load the clocked out datafor (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)send(max7219_reg_shutdown, 0x01); // not in shutdown modepulse_load(); // tell the chips to load the clocked out datafor (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)send(max7219_reg_displayTest, 0x00); // no display testpulse_load(); // tell the chips to load the clocked out datafor (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)send(max7219_reg_intensity, 0x01 & 0x0F); // the first 0x0F is the value you can set// range: 0x00 to 0x0Fpulse_load(); // tell the chips to load the clocked out data}#ifdef MAX7219_INIT_TEST#if MAX7219_INIT_TEST == 2void Max7219::spiral(const bool on, const uint16_t del) {constexpr int8_t way[] = { 1, 0, 0, 1, -1, 0, 0, -1 };int8_t px = 0, py = 0, dir = 0;for (uint8_t i = MAX7219_X_LEDS * MAX7219_Y_LEDS; i--;) {led_set(px, py, on);delay(del);const int8_t x = px + way[dir], y = py + way[dir + 1];if (!WITHIN(x, 0, MAX7219_X_LEDS-1) || !WITHIN(y, 0, MAX7219_Y_LEDS-1) || BIT_7219(x, y) == on) dir = (dir + 2) & 0x7;px += way[dir]; py += way[dir + 1];}}#elsevoid Max7219::sweep(const int8_t dir, const uint16_t ms, const bool on) {uint8_t x = dir > 0 ? 0 : MAX7219_X_LEDS-1;for (uint8_t i = MAX7219_X_LEDS; i--; x += dir) {set_column(x, on ? 0xFFFFFFFF : 0x00000000);delay(ms);}}#endif#endif // MAX7219_INIT_TESTvoid Max7219::init() {SET_OUTPUT(MAX7219_DIN_PIN);SET_OUTPUT(MAX7219_CLK_PIN);OUT_WRITE(MAX7219_LOAD_PIN, HIGH);delay(1);register_setup();for (uint8_t i = 0; i <= 7; i++) { // Empty registers to turn all LEDs offled_line[i] = 0x00;send(max7219_reg_digit0 + i, 0);pulse_load(); // tell the chips to load the clocked out data}#ifdef MAX7219_INIT_TEST#if MAX7219_INIT_TEST == 2spiral(true, 8);delay(150);spiral(false, 8);#else// Do an aesthetically-pleasing pattern to fully test the Max7219 module and LEDs.// Light up and turn off columns, both forward and backward.sweep(1, 20, true);sweep(1, 20, false);delay(150);sweep(-1, 20, true);sweep(-1, 20, false);#endif#endif}/*** This code demonstrates some simple debugging using a single 8x8 LED Matrix. If your feature could* benefit from matrix display, add its code here. Very little processing is required, so the 7219 is* ideal for debugging when realtime feedback is important but serial output can't be used.*/// Apply changes to update a markervoid Max7219::mark16(const uint8_t y, const uint8_t v1, const uint8_t v2) {#if MAX7219_X_LEDS == 8#if MAX7219_Y_LEDS == 8led_off(v1 & 0x7, y + (v1 >= 8));led_on(v2 & 0x7, y + (v2 >= 8));#elseled_off(y, v1 & 0xF); // At least 16 LEDs down. Use a single column.led_on(y, v2 & 0xF);#endif#elseled_off(v1 & 0xF, y); // At least 16 LEDs across. Use a single row.led_on(v2 & 0xF, y);#endif}// Apply changes to update a tail-to-head rangevoid Max7219::range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh) {#if MAX7219_X_LEDS == 8#if MAX7219_Y_LEDS == 8if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)led_off(n & 0x7, y + (n >= 8));if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)led_on(n & 0x7, y + (n >= 8));#else // The Max7219 Y-Axis has at least 16 LED's. So use a single columnif (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)led_off(y, n & 0xF);if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)led_on(y, n & 0xF);#endif#else // LED matrix has at least 16 LED's on the X-Axis. Use single line of LED'sif (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)led_off(n & 0xF, y);if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)led_on(n & 0xF, y);#endif}// Apply changes to update a quantityvoid Max7219::quantity16(const uint8_t y, const uint8_t ov, const uint8_t nv) {for (uint8_t i = MIN(nv, ov); i < MAX(nv, ov); i++)#if MAX7219_X_LEDS == 8#if MAX7219_Y_LEDS == 8led_set(i >> 1, y + (i & 1), nv >= ov); // single 8x8 LED matrix. Use two lines to get 16 LED's#elseled_set(y, i, nv >= ov); // The Max7219 Y-Axis has at least 16 LED's. So use a single column#endif#elseled_set(i, y, nv >= ov); // LED matrix has at least 16 LED's on the X-Axis. Use single line of LED's#endif}void Max7219::idle_tasks() {#define MAX7219_USE_HEAD (defined(MAX7219_DEBUG_PLANNER_HEAD) || defined(MAX7219_DEBUG_PLANNER_QUEUE))#define MAX7219_USE_TAIL (defined(MAX7219_DEBUG_PLANNER_TAIL) || defined(MAX7219_DEBUG_PLANNER_QUEUE))#if MAX7219_USE_HEAD || MAX7219_USE_TAILCRITICAL_SECTION_START;#if MAX7219_USE_HEADconst uint8_t head = planner.block_buffer_head;#endif#if MAX7219_USE_TAILconst uint8_t tail = planner.block_buffer_tail;#endifCRITICAL_SECTION_END;#endif#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)static uint8_t refresh_cnt; // = 0constexpr uint16_t refresh_limit = 5;static millis_t next_blink = 0;const millis_t ms = millis();const bool do_blink = ELAPSED(ms, next_blink);#elsestatic uint16_t refresh_cnt; // = 0constexpr bool do_blink = true;constexpr uint16_t refresh_limit = 50000;#endif// Some Max7219 units are vulnerable to electrical noise, especially// with long wires next to high current wires. If the display becomes// corrupted, this will fix it within a couple seconds.if (do_blink && ++refresh_cnt >= refresh_limit) {refresh_cnt = 0;register_setup();}#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)if (do_blink) {led_toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1);next_blink = ms + 1000;}#endif#if defined(MAX7219_DEBUG_PLANNER_HEAD) && defined(MAX7219_DEBUG_PLANNER_TAIL) && MAX7219_DEBUG_PLANNER_HEAD == MAX7219_DEBUG_PLANNER_TAILstatic int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF;if (last_head_cnt != head || last_tail_cnt != tail) {range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head);last_head_cnt = head;last_tail_cnt = tail;}#else#ifdef MAX7219_DEBUG_PLANNER_HEADstatic int16_t last_head_cnt = 0x1;if (last_head_cnt != head) {mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head);last_head_cnt = head;}#endif#ifdef MAX7219_DEBUG_PLANNER_TAILstatic int16_t last_tail_cnt = 0x1;if (last_tail_cnt != tail) {mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail);last_tail_cnt = tail;}#endif#endif#ifdef MAX7219_DEBUG_PLANNER_QUEUEstatic int16_t last_depth = 0;const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF;if (current_depth != last_depth) {quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth);last_depth = current_depth;}#endif}#endif // MAX7219_DEBUG