Blame | Last modification | View Log | RSS feed
/*** Marlin 3D Printer Firmware* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]** Based on Sprinter and grbl.* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program. If not, see <http://www.gnu.org/licenses/>.**//*** stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors* Derived from Grbl** Copyright (c) 2009-2011 Simen Svale Skogsrud** Grbl is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** Grbl is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with Grbl. If not, see <http://www.gnu.org/licenses/>.*/#ifndef STEPPER_H#define STEPPER_H#include "MarlinConfig.h"// Disable multiple steps per ISR//#define DISABLE_MULTI_STEPPING//// Estimate the amount of time the Stepper ISR will take to execute//#ifndef MINIMUM_STEPPER_PULSE#define MINIMUM_STEPPER_PULSE 0UL#endif#ifndef MAXIMUM_STEPPER_RATE#if MINIMUM_STEPPER_PULSE#define MAXIMUM_STEPPER_RATE (1000000UL / (2UL * (unsigned long)(MINIMUM_STEPPER_PULSE)))#else#define MAXIMUM_STEPPER_RATE 500000UL#endif#endif// The base ISR takes 752 cycles#define ISR_BASE_CYCLES 752UL// Linear advance base time is 32 cycles#if ENABLED(LIN_ADVANCE)#define ISR_LA_BASE_CYCLES 32UL#else#define ISR_LA_BASE_CYCLES 0UL#endif// S curve interpolation adds 160 cycles#if ENABLED(S_CURVE_ACCELERATION)#define ISR_S_CURVE_CYCLES 160UL#else#define ISR_S_CURVE_CYCLES 0UL#endif// Stepper Loop base cycles#define ISR_LOOP_BASE_CYCLES 32UL// To start the step pulse, in the worst case takes#define ISR_START_STEPPER_CYCLES 57UL// And each stepper (start + stop pulse) takes in worst case#define ISR_STEPPER_CYCLES 88UL// Add time for each stepper#ifdef HAS_X_STEP#define ISR_START_X_STEPPER_CYCLES ISR_START_STEPPER_CYCLES#define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES#else#define ISR_START_X_STEPPER_CYCLES 0UL#define ISR_X_STEPPER_CYCLES 0UL#endif#ifdef HAS_Y_STEP#define ISR_START_Y_STEPPER_CYCLES ISR_START_STEPPER_CYCLES#define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES#else#define ISR_START_Y_STEPPER_CYCLES 0UL#define ISR_Y_STEPPER_CYCLES 0UL#endif#ifdef HAS_Z_STEP#define ISR_START_Z_STEPPER_CYCLES ISR_START_STEPPER_CYCLES#define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES#else#define ISR_START_Z_STEPPER_CYCLES 0UL#define ISR_Z_STEPPER_CYCLES 0UL#endif// E is always interpolated, even for mixing extruders#define ISR_START_E_STEPPER_CYCLES ISR_START_STEPPER_CYCLES#define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES// If linear advance is disabled, then the loop also handles them#if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)#define ISR_START_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_START_STEPPER_CYCLES))#define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))#else#define ISR_START_MIXING_STEPPER_CYCLES 0UL#define ISR_MIXING_STEPPER_CYCLES 0UL#endif// Calculate the minimum time to start all stepper pulses in the ISR loop#define MIN_ISR_START_LOOP_CYCLES (ISR_START_X_STEPPER_CYCLES + ISR_START_Y_STEPPER_CYCLES + ISR_START_Z_STEPPER_CYCLES + ISR_START_E_STEPPER_CYCLES + ISR_START_MIXING_STEPPER_CYCLES)// And the total minimum loop time, not including the base#define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate#define _MIN_STEPPER_PULSE_CYCLES(N) MAX((unsigned long)((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))#if MINIMUM_STEPPER_PULSE#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES((unsigned long)(MINIMUM_STEPPER_PULSE))#else#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)#endif// Calculate the minimum ticks of the PULSE timer that must elapse with the step pulse enabled// adding the "start stepper pulse" code section execution cycles to account for that not all// pulses start at the beginning of the loop, so an extra time must be added to compensate so// the last generated pulse (usually the extruder stepper) has the right length#define MIN_PULSE_TICKS (((PULSE_TIMER_TICKS_PER_US) * (unsigned long)(MINIMUM_STEPPER_PULSE)) + ((MIN_ISR_START_LOOP_CYCLES) / (unsigned long)(PULSE_TIMER_PRESCALE)))// Calculate the extra ticks of the PULSE timer between step pulses#define ADDED_STEP_TICKS (((MIN_STEPPER_PULSE_CYCLES) / (PULSE_TIMER_PRESCALE)) - (MIN_PULSE_TICKS))// But the user could be enforcing a minimum time, so the loop time is#define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))// If linear advance is enabled, then it is handled separately#if ENABLED(LIN_ADVANCE)// Estimate the minimum LA loop time#if ENABLED(MIXING_EXTRUDER)#define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))#else#define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES#endif// And the real loop time#define ISR_LA_LOOP_CYCLES MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)#else#define ISR_LA_LOOP_CYCLES 0UL#endif// Now estimate the total ISR execution time in cycles given a step per ISR multiplier#define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)#define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))#define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))#define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))#define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))#define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))#define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))#define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))#define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))// The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)#define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X//// Stepper class definition//#include "planner.h"#include "speed_lookuptable.h"#include "stepper_indirection.h"#include "language.h"#include "types.h"// intRes = intIn1 * intIn2 >> 16// uses:// r26 to store 0// r27 to store the byte 1 of the 24 bit resultstatic FORCE_INLINE uint16_t MultiU16X8toH16(uint8_t charIn1, uint16_t intIn2) {register uint8_t tmp;register uint16_t intRes;__asm__ __volatile__ (A("clr %[tmp]")A("mul %[charIn1], %B[intIn2]")A("movw %A[intRes], r0")A("mul %[charIn1], %A[intIn2]")A("add %A[intRes], r1")A("adc %B[intRes], %[tmp]")A("lsr r0")A("adc %A[intRes], %[tmp]")A("adc %B[intRes], %[tmp]")A("clr r1"): [intRes] "=&r" (intRes),[tmp] "=&r" (tmp): [charIn1] "d" (charIn1),[intIn2] "d" (intIn2): "cc");return intRes;}class Stepper {public:#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)static bool homing_dual_axis;#endif#if HAS_MOTOR_CURRENT_PWM#ifndef PWM_MOTOR_CURRENT#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT#endifstatic uint32_t motor_current_setting[3];#endifprivate:static block_t* current_block; // A pointer to the block currently being tracedstatic uint8_t last_direction_bits, // The next stepping-bits to be outputaxis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from plannerstatic bool abort_current_block; // Signals to the stepper that current block should be aborted#if DISABLED(MIXING_EXTRUDER)static uint8_t last_moved_extruder; // Last-moved extruder, as set when the last movement was fetched from planner#endif#if ENABLED(X_DUAL_ENDSTOPS)static bool locked_X_motor, locked_X2_motor;#endif#if ENABLED(Y_DUAL_ENDSTOPS)static bool locked_Y_motor, locked_Y2_motor;#endif#if ENABLED(Z_DUAL_ENDSTOPS)static bool locked_Z_motor, locked_Z2_motor;#endifstatic uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticksstatic uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call#if ENABLED(ADAPTIVE_STEP_SMOOTHING)static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis#elsestatic constexpr uint8_t oversampling_factor = 0;#endif// Delta error variables for the Bresenham line tracerstatic int32_t delta_error[NUM_AXIS];static uint32_t advance_dividend[NUM_AXIS],advance_divisor,step_events_completed, // The number of step events executed in the current blockaccelerate_until, // The point from where we need to stop accelerationdecelerate_after, // The point from where we need to start deceleratingstep_event_count; // The total event count for the current block// Mixing extruder mix delta_errors for bresenham tracing#if ENABLED(MIXING_EXTRUDER)static int32_t delta_error_m[MIXING_STEPPERS];static uint32_t advance_dividend_m[MIXING_STEPPERS],advance_divisor_m;#define MIXING_STEPPERS_LOOP(VAR) \for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++)#elsestatic int8_t active_extruder; // Active extruder#endif#if ENABLED(S_CURVE_ACCELERATION)static int32_t bezier_A, // A coefficient in Bézier speed curvebezier_B, // B coefficient in Bézier speed curvebezier_C; // C coefficient in Bézier speed curvestatic uint32_t bezier_F, // F coefficient in Bézier speed curvebezier_AV; // AV coefficient in Bézier speed curvestatic bool A_negative, // If A coefficient was negativebezier_2nd_half; // If Bézier curve has been initialized or not#endifstatic uint32_t nextMainISR; // time remaining for the next Step ISR#if ENABLED(LIN_ADVANCE)static uint32_t nextAdvanceISR, LA_isr_rate;static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".static int8_t LA_steps;static bool LA_use_advance_lead;#endif // LIN_ADVANCEstatic int32_t ticks_nominal;#if DISABLED(S_CURVE_ACCELERATION)static uint32_t acc_step_rate; // needed for deceleration start point#endifstatic volatile int32_t endstops_trigsteps[XYZ];//// Positions of stepper motors, in step units//static volatile int32_t count_position[NUM_AXIS];//// Current direction of stepper motors (+1 or -1)//static int8_t count_direction[NUM_AXIS];public://// Constructor / initializer//Stepper() { };// Initialize stepper hardwarestatic void init();// Interrupt Service Routines// The ISR schedulerstatic void isr();// The stepper pulse phase ISRstatic void stepper_pulse_phase_isr();// The stepper block processing phase ISRstatic uint32_t stepper_block_phase_isr();#if ENABLED(LIN_ADVANCE)// The Linear advance stepper ISRstatic uint32_t advance_isr();#endif// Check if the given block is busy or not - Must not be called from ISR contextsstatic bool is_block_busy(const block_t* const block);// Get the position of a stepper, in stepsstatic int32_t position(const AxisEnum axis);// Report the positions of the steppers, in stepsstatic void report_positions();// The stepper subsystem goes to sleep when it runs out of things to execute. Call this// to notify the subsystem that it is time to go to work.static void wake_up();// Quickly stop all steppersFORCE_INLINE static void quick_stop() { abort_current_block = true; }// The direction of a single motorFORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }// The extruder associated to the last movementFORCE_INLINE static uint8_t movement_extruder() {return#if ENABLED(MIXING_EXTRUDER)0#elselast_moved_extruder#endif;}// Handle a triggered endstopstatic void endstop_triggered(const AxisEnum axis);// Triggered position of an axis in stepsstatic int32_t triggered_position(const AxisEnum axis);#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWMstatic void digitalPotWrite(const int16_t address, const int16_t value);static void digipot_current(const uint8_t driver, const int16_t current);#endif#if HAS_MICROSTEPSstatic void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2);static void microstep_mode(const uint8_t driver, const uint8_t stepping);static void microstep_readings();#endif#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)FORCE_INLINE static void set_homing_dual_axis(const bool state) { homing_dual_axis = state; }#endif#if ENABLED(X_DUAL_ENDSTOPS)FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }#endif#if ENABLED(Y_DUAL_ENDSTOPS)FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }#endif#if ENABLED(Z_DUAL_ENDSTOPS)FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; }FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }#endif#if ENABLED(BABYSTEPPING)static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention#endif#if HAS_MOTOR_CURRENT_PWMstatic void refresh_motor_power();#endif// Set the current position in stepsinline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c#if ENABLED(HANGPRINTER), const int32_t &d#endif, const int32_t &e) {planner.synchronize();const bool was_enabled = STEPPER_ISR_ENABLED();if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();_set_position(a, b, c#if ENABLED(HANGPRINTER), d#endif, e);if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();}inline static void set_position(const AxisEnum a, const int32_t &v) {planner.synchronize();const bool was_enabled = STEPPER_ISR_ENABLED();if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();count_position[a] = v;if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();}private:// Set the current position in stepsstatic void _set_position(const int32_t &a, const int32_t &b, const int32_t &c#if ENABLED(HANGPRINTER), const int32_t &d#endif, const int32_t &e);// Set direction bits for all steppersstatic void set_directions();// Allow reset_stepper_drivers to access private set_directionsfriend void reset_stepper_drivers();FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t scale, uint8_t* loops) {uint32_t timer;// Scale the frequency, as requested by the callerstep_rate <<= scale;uint8_t multistep = 1;#if DISABLED(DISABLE_MULTI_STEPPING)// The stepping frequency limits for each multistepping ratestatic const uint32_t limit[] PROGMEM = {( MAX_STEP_ISR_FREQUENCY_1X ),( MAX_STEP_ISR_FREQUENCY_2X >> 1),( MAX_STEP_ISR_FREQUENCY_4X >> 2),( MAX_STEP_ISR_FREQUENCY_8X >> 3),( MAX_STEP_ISR_FREQUENCY_16X >> 4),( MAX_STEP_ISR_FREQUENCY_32X >> 5),( MAX_STEP_ISR_FREQUENCY_64X >> 6),(MAX_STEP_ISR_FREQUENCY_128X >> 7)};// Select the proper multisteppinguint8_t idx = 0;while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {step_rate >>= 1;multistep <<= 1;++idx;};#elseNOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));#endif*loops = multistep;constexpr uint32_t min_step_rate = F_CPU / 500000U;NOLESS(step_rate, min_step_rate);step_rate -= min_step_rate; // Correct for minimal speedif (step_rate >= (8 * 256)) { // higher step rateconst uint8_t tmp_step_rate = (step_rate & 0x00FF);const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],gain = (uint16_t)pgm_read_word_near(table_address + 2);timer = MultiU16X8toH16(tmp_step_rate, gain);timer = (uint16_t)pgm_read_word_near(table_address) - timer;}else { // lower step ratesuint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];table_address += ((step_rate) >> 1) & 0xFFFC;timer = (uint16_t)pgm_read_word_near(table_address)- (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);}// (there is no need to limit the timer value here. All limits have been// applied above, and AVR is able to keep up at 30khz Stepping ISR rate)return timer;}#if ENABLED(S_CURVE_ACCELERATION)static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);static int32_t _eval_bezier_curve(const uint32_t curr_step);#endif#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWMstatic void digipot_init();#endif#if HAS_MICROSTEPSstatic void microstep_init();#endif};extern Stepper stepper;#endif // STEPPER_H