Blame | Last modification | View Log | RSS feed
/*** Marlin 3D Printer Firmware* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]** Based on Sprinter and grbl.* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program. If not, see <http://www.gnu.org/licenses/>.**//*** temperature.h - temperature controller*/#ifndef TEMPERATURE_H#define TEMPERATURE_H#include "thermistortables.h"#include "MarlinConfig.h"#if ENABLED(AUTO_POWER_CONTROL)#include "power.h"#endif#if ENABLED(PID_EXTRUSION_SCALING)#include "stepper.h"#endif#ifndef SOFT_PWM_SCALE#define SOFT_PWM_SCALE 0#endif#define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0B)#define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0B)#define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0B)#define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)#if HOTENDS == 1#define HOTEND_INDEX 0#else#define HOTEND_INDEX e#endif/*** States for ADC reading in the ISR*/enum ADCSensorState : char {StartSampling,#if HAS_TEMP_ADC_0PrepareTemp_0,MeasureTemp_0,#endif#if HAS_TEMP_ADC_1PrepareTemp_1,MeasureTemp_1,#endif#if HAS_TEMP_ADC_2PrepareTemp_2,MeasureTemp_2,#endif#if HAS_TEMP_ADC_3PrepareTemp_3,MeasureTemp_3,#endif#if HAS_TEMP_ADC_4PrepareTemp_4,MeasureTemp_4,#endif#if HAS_HEATED_BEDPrepareTemp_BED,MeasureTemp_BED,#endif#if HAS_TEMP_CHAMBERPrepareTemp_CHAMBER,MeasureTemp_CHAMBER,#endif#if ENABLED(FILAMENT_WIDTH_SENSOR)Prepare_FILWIDTH,Measure_FILWIDTH,#endif#if ENABLED(ADC_KEYPAD)Prepare_ADC_KEY,Measure_ADC_KEY,#endifSensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle};// Minimum number of Temperature::ISR loops between sensor readings.// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to// get all oversampled sensor readings#define MIN_ADC_ISR_LOOPS 10#define ACTUAL_ADC_SAMPLES MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))#if HAS_PID_HEATING#define PID_K2 (1.0f-PID_K1)#define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0f / 256.0f))// Apply the scale factors to the PID values#define scalePID_i(i) ( (i) * float(PID_dT) )#define unscalePID_i(i) ( (i) / float(PID_dT) )#define scalePID_d(d) ( (d) / float(PID_dT) )#define unscalePID_d(d) ( (d) * float(PID_dT) )#endifclass Temperature {public:static float current_temperature[HOTENDS];static int16_t current_temperature_raw[HOTENDS],target_temperature[HOTENDS];static uint8_t soft_pwm_amount[HOTENDS];#if ENABLED(AUTO_POWER_E_FANS)static int16_t autofan_speed[HOTENDS];#endif#if ENABLED(FAN_SOFT_PWM)static uint8_t soft_pwm_amount_fan[FAN_COUNT],soft_pwm_count_fan[FAN_COUNT];#endif#if ENABLED(PIDTEMP)#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];#if ENABLED(PID_EXTRUSION_SCALING)static float Kc[HOTENDS];#endif#define PID_PARAM(param, h) Temperature::param[h]#elsestatic float Kp, Ki, Kd;#if ENABLED(PID_EXTRUSION_SCALING)static float Kc;#endif#define PID_PARAM(param, h) Temperature::param#endif // PID_PARAMS_PER_HOTEND#endif#if HAS_HEATED_BEDstatic float current_temperature_bed;static int16_t current_temperature_bed_raw, target_temperature_bed;static uint8_t soft_pwm_amount_bed;#if ENABLED(PIDTEMPBED)static float bedKp, bedKi, bedKd;#endif#endif#if ENABLED(BABYSTEPPING)static volatile int babystepsTodo[3];#endif#if ENABLED(PREVENT_COLD_EXTRUSION)static bool allow_cold_extrude;static int16_t extrude_min_temp;FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn tooCold(degHotend(HOTEND_INDEX));}FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn tooCold(degTargetHotend(HOTEND_INDEX));}#elseFORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }#endifFORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }private:static volatile bool temp_meas_ready;static uint16_t raw_temp_value[MAX_EXTRUDERS];#if WATCH_HOTENDSstatic uint16_t watch_target_temp[HOTENDS];static millis_t watch_heater_next_ms[HOTENDS];#endif#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)static uint16_t redundant_temperature_raw;static float redundant_temperature;#endif#if ENABLED(PIDTEMP)static float temp_iState[HOTENDS],temp_dState[HOTENDS],pTerm[HOTENDS],iTerm[HOTENDS],dTerm[HOTENDS];#if ENABLED(PID_EXTRUSION_SCALING)static float cTerm[HOTENDS];static long last_e_position;static long lpq[LPQ_MAX_LEN];static int lpq_ptr;#endifstatic float pid_error[HOTENDS];static bool pid_reset[HOTENDS];#endif// Init min and max temp with extreme values to prevent false errors during startupstatic int16_t minttemp_raw[HOTENDS],maxttemp_raw[HOTENDS],minttemp[HOTENDS],maxttemp[HOTENDS];#if HAS_HEATED_BEDstatic uint16_t raw_temp_bed_value;#if WATCH_THE_BEDstatic uint16_t watch_target_bed_temp;static millis_t watch_bed_next_ms;#endif#if ENABLED(PIDTEMPBED)static float temp_iState_bed,temp_dState_bed,pTerm_bed,iTerm_bed,dTerm_bed,pid_error_bed;#elsestatic millis_t next_bed_check_ms;#endif#if HEATER_IDLE_HANDLERstatic millis_t bed_idle_timeout_ms;static bool bed_idle_timeout_exceeded;#endif#ifdef BED_MINTEMPstatic int16_t bed_minttemp_raw;#endif#ifdef BED_MAXTEMPstatic int16_t bed_maxttemp_raw;#endif#endif#if HAS_TEMP_CHAMBERstatic uint16_t raw_temp_chamber_value;static float current_temperature_chamber;static int16_t current_temperature_chamber_raw;#endif#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWEDstatic uint8_t consecutive_low_temperature_error[HOTENDS];#endif#ifdef MILLISECONDS_PREHEAT_TIMEstatic millis_t preheat_end_time[HOTENDS];#endif#if ENABLED(FILAMENT_WIDTH_SENSOR)static int8_t meas_shift_index; // Index of a delayed sample in buffer#endif#if HAS_AUTO_FANstatic millis_t next_auto_fan_check_ms;#endif#if ENABLED(FILAMENT_WIDTH_SENSOR)static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only#endif#if ENABLED(PROBING_HEATERS_OFF)static bool paused;#endif#if HEATER_IDLE_HANDLERstatic millis_t heater_idle_timeout_ms[HOTENDS];static bool heater_idle_timeout_exceeded[HOTENDS];#endifpublic:#if ENABLED(ADC_KEYPAD)static uint32_t current_ADCKey_raw;static uint8_t ADCKey_count;#endif#if ENABLED(PID_EXTRUSION_SCALING)static int16_t lpq_len;#endif/*** Instance Methods*/Temperature();void init();/*** Static (class) methods*/static float analog_to_celsius_hotend(const int raw, const uint8_t e);#if HAS_HEATED_BEDstatic float analog_to_celsius_bed(const int raw);#endif#if HAS_TEMP_CHAMBERstatic float analog_to_celsius_chamber(const int raw);#endif/*** Called from the Temperature ISR*/static void readings_ready();static void isr();/*** Call periodically to manage heaters*/static void manage_heater() _O2; // Added _O2 to work around a compiler error/*** Preheating hotends*/#ifdef MILLISECONDS_PREHEAT_TIMEstatic bool is_preheating(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);}static void start_preheat_time(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifpreheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;}static void reset_preheat_time(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifpreheat_end_time[HOTEND_INDEX] = 0;}#else#define is_preheating(n) (false)#endif#if ENABLED(FILAMENT_WIDTH_SENSOR)static float analog_to_mm_fil_width(); // Convert raw Filament Width to millimetersstatic int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio#endif//high level conversion routines, for use outside of temperature.cpp//inline so that there is no performance decrease.//deg=degreeCelsiusFORCE_INLINE static float degHotend(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn current_temperature[HOTEND_INDEX];}#if ENABLED(SHOW_TEMP_ADC_VALUES)FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn current_temperature_raw[HOTEND_INDEX];}#endifFORCE_INLINE static int16_t degTargetHotend(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn target_temperature[HOTEND_INDEX];}#if WATCH_HOTENDSstatic void start_watching_heater(const uint8_t e = 0);#endifstatic void setTargetHotend(const int16_t celsius, const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endif#ifdef MILLISECONDS_PREHEAT_TIMEif (celsius == 0)reset_preheat_time(HOTEND_INDEX);else if (target_temperature[HOTEND_INDEX] == 0)start_preheat_time(HOTEND_INDEX);#endif#if ENABLED(AUTO_POWER_CONTROL)powerManager.power_on();#endiftarget_temperature[HOTEND_INDEX] = MIN(celsius, maxttemp[HOTEND_INDEX] - 15);#if WATCH_HOTENDSstart_watching_heater(HOTEND_INDEX);#endif}FORCE_INLINE static bool isHeatingHotend(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];}FORCE_INLINE static bool isCoolingHotend(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];}#if HAS_HEATED_BED#if ENABLED(SHOW_TEMP_ADC_VALUES)FORCE_INLINE static int16_t rawBedTemp() { return current_temperature_bed_raw; }#endifFORCE_INLINE static float degBed() { return current_temperature_bed; }FORCE_INLINE static int16_t degTargetBed() { return target_temperature_bed; }FORCE_INLINE static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }FORCE_INLINE static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }static void setTargetBed(const int16_t celsius) {#if ENABLED(AUTO_POWER_CONTROL)powerManager.power_on();#endiftarget_temperature_bed =#ifdef BED_MAXTEMPMIN(celsius, BED_MAXTEMP - 15)#elsecelsius#endif;#if WATCH_THE_BEDstart_watching_bed();#endif}#if WATCH_THE_BEDstatic void start_watching_bed();#endif#endif#if HAS_TEMP_CHAMBER#if ENABLED(SHOW_TEMP_ADC_VALUES)FORCE_INLINE static int16_t rawChamberTemp() { return current_temperature_chamber_raw; }#endifFORCE_INLINE static float degChamber() { return current_temperature_chamber; }#endifFORCE_INLINE static bool wait_for_heating(const uint8_t e) {return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;}/*** The software PWM power for a heater*/static int getHeaterPower(const int heater);/*** Switch off all heaters, set all target temperatures to 0*/static void disable_all_heaters();/*** Perform auto-tuning for hotend or bed in response to M303*/#if HAS_PID_HEATINGstatic void pid_autotune(const float &target, const int8_t hotend, const int8_t ncycles, const bool set_result=false);/*** Update the temp manager when PID values change*/#if ENABLED(PIDTEMP)FORCE_INLINE static void update_pid() {#if ENABLED(PID_EXTRUSION_SCALING)last_e_position = 0;#endif}#endif#endif#if ENABLED(BABYSTEPPING)static void babystep_axis(const AxisEnum axis, const int16_t distance) {if (TEST(axis_known_position, axis)) {#if IS_CORE#if ENABLED(BABYSTEP_XY)switch (axis) {case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZbabystepsTodo[CORE_AXIS_1] += distance * 2;babystepsTodo[CORE_AXIS_2] += distance * 2;break;case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZbabystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);break;case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZbabystepsTodo[NORMAL_AXIS] += distance;break;}#elif CORE_IS_XZ || CORE_IS_YZ// Only Z stepping needs to be handled herebabystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);#elsebabystepsTodo[Z_AXIS] += distance;#endif#elsebabystepsTodo[axis] += distance;#endif}}#endif // BABYSTEPPING#if ENABLED(PROBING_HEATERS_OFF)static void pause(const bool p);FORCE_INLINE static bool is_paused() { return paused; }#endif#if HEATER_IDLE_HANDLERstatic void start_heater_idle_timer(const uint8_t e, const millis_t timeout_ms) {#if HOTENDS == 1UNUSED(e);#endifheater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;heater_idle_timeout_exceeded[HOTEND_INDEX] = false;}static void reset_heater_idle_timer(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifheater_idle_timeout_ms[HOTEND_INDEX] = 0;heater_idle_timeout_exceeded[HOTEND_INDEX] = false;#if WATCH_HOTENDSstart_watching_heater(HOTEND_INDEX);#endif}FORCE_INLINE static bool is_heater_idle(const uint8_t e) {#if HOTENDS == 1UNUSED(e);#endifreturn heater_idle_timeout_exceeded[HOTEND_INDEX];}#if HAS_HEATED_BEDstatic void start_bed_idle_timer(const millis_t timeout_ms) {bed_idle_timeout_ms = millis() + timeout_ms;bed_idle_timeout_exceeded = false;}static void reset_bed_idle_timer() {bed_idle_timeout_ms = 0;bed_idle_timeout_exceeded = false;#if WATCH_THE_BEDstart_watching_bed();#endif}FORCE_INLINE static bool is_bed_idle() { return bed_idle_timeout_exceeded; }#endif#endif // HEATER_IDLE_HANDLER#if HAS_TEMP_SENSORstatic void print_heaterstates();#if ENABLED(AUTO_REPORT_TEMPERATURES)static uint8_t auto_report_temp_interval;static millis_t next_temp_report_ms;static void auto_report_temperatures(void);FORCE_INLINE void set_auto_report_interval(uint8_t v) {NOMORE(v, 60);auto_report_temp_interval = v;next_temp_report_ms = millis() + 1000UL * v;}#endif#endifprivate:#if ENABLED(FAST_PWM_FAN)static void setPwmFrequency(const pin_t pin, int val);#endifstatic void set_current_temp_raw();static void calculate_celsius_temperatures();#if ENABLED(HEATER_0_USES_MAX6675)static int read_max6675();#endifstatic void check_extruder_auto_fans();static float get_pid_output(const int8_t e);#if ENABLED(PIDTEMPBED)static float get_pid_output_bed();#endifstatic void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);static void min_temp_error(const int8_t e);static void max_temp_error(const int8_t e);#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BEDenum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);#if ENABLED(THERMAL_PROTECTION_HOTENDS)static TRState thermal_runaway_state_machine[HOTENDS];static millis_t thermal_runaway_timer[HOTENDS];#endif#if HAS_THERMALLY_PROTECTED_BEDstatic TRState thermal_runaway_bed_state_machine;static millis_t thermal_runaway_bed_timer;#endif#endif // THERMAL_PROTECTION};extern Temperature thermalManager;#endif // TEMPERATURE_H